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Preface

The 12th International Conference on Elastic and Diffractive Scattering, held on 21 – 25 May 2007 at DESY in
Hamburg, had the subtitle Forward Physics and QCD. Besides discussing in detail elastic and diffractive scattering
in ep and pp collisions, emphasis was put on the QCD description of diffractive processes, which becomes more
and more important in the preparation for the start of the highest-energy proton-proton collider ever build, the
LHC. Especially the issue of the underlying event and multi-parton interaction, which is relevant not only for QCD
processes but also for all searches for new phenomena, was discussed in detail.

With more than 100 participants this workshop showed the increasing interest and importance of this area
in high energy physics. Many young researchers participated in this conference, showing that this is an active,
challenging and exciting field.

Unfortunately, not all presentations during the workshop appear as a writeup in these proceedings: K. Below
and G. Marchesini were not able to deliver a written version of their contribution. All the talks with transparcenies
are available at: https://indico.desy.de/conferenceDisplay.py?confId=372

We thank all the participants for making this conference so interesting and lively. We also thank A. Grabowksy,
S. Platz and L. Seskute for their continuous help and support during all the meeting weeks. We are grateful to
the DESY directorate for financial support of this workshop and for the hospitality which they extended to all the
participants of the workshop.

The Organizing Committee:
J. Bartels, K. Borras, M. Diehl and H. Jung
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J Alvarez-Muñiz, P Brogueira, R Conceição, J Dias de Deus, M.C Espı́rito Santo, M Pimenta

Extended air shower simulations based on EPOS 392

K Werner, T Pierog

vii



LHCf: a LHC Detector for Cosmic Ray Physics 398

A Tricomi

VI Theoretical Developments in High-Energy QCD 405

RHIC physics: short overview 406

A Stasto

Nuclear shadowing and collisions of heavy ions 414

A Kaidalov

NLO jet production in kT factorization 421

J Bartels, A Sabio Vera, F Schwennsen

Connections between high-energy QCD and statistical physics 428

S Munier

High energy QCD beyond the mean field approximation 436

A Shoshi

High-energy scattering and Euclidean-Minkowskian duality 444

E Meggiolaro

Insight into new physics with tagged forward protons at the LHC 452

V Khoze, A.D Martin, M.G Ryskin

BFKL at NNLO 459

S Marzani, R.D Ball, P Falgari, S Forte

Unintegrated parton distributions and correlation functions 465

A Stasto

Nonlinear QCD at high energies 471

E Levin

Small x QCD and multigluon states: a color toy model 476

G P Vacca, P. L Iafelice

The Reggeon→ 2 Reggeons + particle vertex in the Lipatov effective action formalism 482

M Braun, M.I Vyazovsky

On the behaviour of RpA at high energy 488

M Kozlov, A Shoshi, B.W Xiao

The coordinate representation of NLO BFKL and the dipole picture 495

V Fadin

viii



Angular decorrelations in Mueller-Navelet jets and DIS 501

A Sabio Vera, F Schwennsen

Breakdown of coherence? 507

M Seymour

BFKL equation and anomalous dimensions in N = 4 SUSY 515

L Lipatov

Gluon saturation and black hole criticality 523

L Álvarez-Gaumé, C Gómez, A Sabio Vera, A Tavanfar, M. A Vázquez-Mozo

VII Summary 529

Experimental summary 530

H Abramowicz

Theoretical summary 538

K Golec-Biernat

ix





Part I

Lepton-Proton Collisions

1



Exclusive vector meson electroproduction at HERA

Aharon Levy
Tel Aviv University and DESY

Abstract
The latest results on exclusive vector meson electroproduction from
HERA are reviewed. In particular, the new high-statistics measure-
ments of the ρ0 electroproduction are presented and compared to sev-
eral models.

1 Introduction

Exclusive electroproduction of light vector mesons is a particularly good process for studying the
transition from the soft to the hard regime of strong interactions, the former being well described
within the Regge phenomenology while the latter - by perturbative QCD (pQCD). Among the
most striking expectations [1] in this transition is the change of the logarithmic derivative δ of the
cross section σ with respect to the γ∗p center-of-mass energy W , from a value of about 0.2 in the
soft regime (represented by a soft Pomeron [2] exchange diagram in Fig. 1) to 0.8 in the hard one
(represented by a two-gluon exchange diagram in Fig. 2), and the decrease of the exponential
slope b of the differential cross section with respect to the squared-four-momentum transfer t,
from a value of about 10 GeV−2 to an asymptotic value of about 5 GeV−2 when the virtuality
Q2 of the photon increases.

When calculating the cross section of exclusive electroproduction of vector mesons (V),
one needs information on the wave function of the initial virtual photon, the wave function of the
produced vector meson, the qq̄p scattering amplitude, which requires the gluon density and the p
elastic form factor (see Fig. 2). In the following we present the available data on exclusive vector

Fig. 1: A diagram describing exclusive vector meson elec-

troproduction in terms of a Pomeron exchange. Fig. 2: A diagram describing exclusive vector meson elec-

troproduction in terms of a two-gluon exchange.

meson electroproduction and then use the recent precision measurements by ZEUS [3] of the ρ0

vector meson to discuss what one can learn about the produced vector meson wave function and
about the gluon density in the proton.
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2 W dependence of the cross section

The soft to hard transition can be seen by studying the W dependence of the cross section for
exclusive vector meson photoproduction, from the lightest one, ρ0, to the heavier ones, up to the
Υ. The scale in this case is the mass of the vector meson, as in photoproduction Q2 = 0. Figure 3
shows σ(γp → V p) as function of W for light and heavy vector mesons. For comparison,
the total photoproduction cross section, σtot(γp), is also shown. The data at high W can be
parameterised as W δ , and the value of δ is displayed in the figure for each reaction. One sees
clearly the transition from a shallow W dependence for low scales to a steeper one as the scale
increases.

Fig. 3: The W dependence of the cross section for exclusive vector meson photoproduction, σ(γp→ V p). The total

photoproduction cross section is also shown. The lines are the result of a fit of the form W δ to the high energy part of

the data.

One can also check this transition by varying Q2 for a given vector meson. The cross
section σ(γ∗p→ ρ0p) is presented in Fig. 4 as a function of W , for different values of Q2. The
cross section rises with W in all Q2 bins. In order to quantify this rise, the logarithmic derivative
δ of σ with respect to W is obtained by fitting the data to the expression σ ∼ W δ in each of
the Q2 intervals. The resulting values of δ from the recent ZEUS measurement are compiled

EXCLUSIVE VECTOR MESON ELECTROPRODUCTION AT HERA
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in Fig 5. Also included in this figure are values of δ from other measurements [4] for the ρ0

as well as those for φ [5], J/ψ [6] and γ [7] (Deeply Virtual Compton Scattering (DVCS)). In
this case the results are plotted as a function of Q2 + M2, where M is the mass of the vector
meson. One sees a universal behaviour, showing an increase of δ as the scale becomes larger, in
agreement with the expectations mentioned in the introduction. The value of δ at low scale is the
one expected from the soft Pomeron intercept [2], while the one at large scale is in accordance
with twice the logarithmic derivative of the gluon density with respect to W .

ZEUS

ZEUS 120 pb-1

W (GeV)

σγ*
p 

→
 ρ

p  (n
b)

10
-1

1

10

10 2

10 3

20 40 60 80 100 120 140 160 180 200

Fig. 4: The W dependence of the cross section for exclu-

sive ρ0 electroproduction, for different Q2 values, as indi-

cated in the figure. The lines are the result of a fit of the

form W δ to the data.

ρ ZEUS 94
ρ ZEUS 95

DVCS ZEUS 96-00
DVCS ZEUS (prel.) (28 pb-1)

J/ψ ZEUS
φ ZEUS

J/ψ H1

DVCS H1 HERAII e-p (prel.)
DVCS H1 96-00

ρ ZEUS (120 pb-1)

Q2+M2(GeV2)

δ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40

Fig. 5: A compilation of the value of δ from a fit of the

form W δ for exclusive vector-meson electroproduction, as

a function of Q2 +M2. It includes also the DVCS results.

3 t dependence of the cross section

The differential cross section, dσ/dt, has been parameterised by an exponential function e−b|t|

and fitted to the data of exclusive vector meson electroproduction and also to DVCS. The result-
ing values of b as a function of the scale Q2 +M2 are plotted in Fig. 6. As expected, b decreases
to a universal value of about 5 GeV−2 as the scale increases.

The value of b can be related via a Fourier transform to the impact parameter. Assuming
that the process of exclusive electroproduction of vector mesons is hard and dominated by gluons,
one can use the relation < r2 >= b(h̄c)2 to obtain the radius of the gluon density in the proton.
The value of about 5 GeV−2 corresponds to a value of < r >g∼ 0.6 fm, smaller than the value of
the charge density of the proton (< r >p∼ 0.8 fm), indicating that the gluons are well-contained
within the charge-radius of the proton.

One can study the W dependence of dσ/dt for fixed t values and extract the effective
Pomeron trajectory αIP (t). This was done in case of the ρ0 for two Q2 values and the trajectory
was fitted to a linear form to obtain the intercept αIP (0) and the slope α′IP . These values are

A LEVY

4



ρ ZEUS (120 pb-1)
ρ ZEUS 94
ρ ZEUS 95

φ ZEUS 98-00
φ ZEUS 94
J/ψ ZEUS 98-00
J/ψ ZEUS 96-97
J/ψ H1 96-00

ρ H1 95-96

DVCS H1 96-00
DVCS H1 HERAII e-p (prel.)
DVCS ZEUS (prel.) (28 pb-1)

Q2+M2(GeV2)

b(
G

eV
-2

)

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Fig. 6: A compilation of the value of the slope b from a

fit of the form dσ/d|t| ∝ e−b|t| for exclusive vector-meson

electroproduction, as a function ofQ2+M2. Also included

is the DVCS result.

α’
IP

(G
eV

-2
)

α IP
(0

)
Fig. 7: Values of the intercept and slope of the effective

Pomeron trajectory as a function of Q2 +M2, as obtained

from measurements of exclusive electroproduction of ρ0, φ,

and J/ψ vector mesons.

presented in a compilation of the effective Pomeron intercept and slope, from this and from
similar studies for other vector mesons, in Fig. 7. As in the other compilations, the values are
plotted as a function of Q2 +M2. The value of αIP (0) increases with Q2 while the value of α′IP
tends to decrease with Q2.

4 Q2,W and t dependence of r04
00 = σL/σtot for γ∗p→ ρ0p

The helicity analysis of the decay-matrix element r04
00 of the ρ0 was used to extract the ratio

R = σL/σT of longitudinal (σL) to transverse (σT ) γ∗p cross sections. When the value of r04
00 is

close to one, as is the case for this analysis, the error on R becomes large and highly asymmetric.
It is then advantageous to study the properties of r04

00 itself which carries the same information
(= σL/σtot), rather than R. While r04

00 is an increasing function of Q2, as shown in Fig. 8, it is
independent of W in all Q2 intervals (Fig. 9). This implies that the W behaviour of σL is the
same as that of σT , a result which is somewhat surprising. The qq̄ configurations in the wave
function of γ∗L have typically a small transverse size, while the configurations contributing to γ ∗T
may have large transverse sizes. The contribution to σT of large-size qq̄ configurations, which are
more hadron-like, is expected to lead to a shallower W dependence than in case of σL. Thus, the
result presented in Fig. 9 suggests that the large-size configurations of the transversely polarised
photon are suppressed.

The above conclusion can also explain the behaviour of r04
00 as a function of t, shown in

Fig. 10 for two Q2 values. Different sizes of interacting objects imply different t distributions, in
particular a steeper dσT /dt compared to dσL/dt. This turns out not to be the case. In both Q2

EXCLUSIVE VECTOR MESON ELECTROPRODUCTION AT HERA

5



ZEUS

Q2 (GeV2)

 r
04 00

 =
  σ

L 
/ σ

to
t

ZEUS 1994
ZEUS 1995

ZEUS 120 pb-1

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50

Fig. 8: The ratio r04
00 as a function of Q2 for W = 90 GeV.
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Fig. 9: The ratio r04
00 as a function ofW for different values

of Q2, as indicated in the figure.

ZEUS
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|t| (GeV2)
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0004
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 σ

L 
/ σ
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t

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Fig. 10: The ratio r04
00 as a function of |t| for different val-

ues of Q2, as indicated in the figure.

10
-1

1

10

10 2

40 50 60 70 80 90 100

W [GeV]

 σ
D

V
C

S
 [n

b] Q2 = 8 GeV2

Q2 = 15.5 GeV2

Q2 = 25 GeV2

H1

10-1

1

10

102

40 50 60 70 80 90 100

Fig. 11: The DVCS cross section as a function of W at

three values of Q2. The solid lines represent the results of

fits of the form W δ .

ranges, r04
00 is independent of t, reinforcing the earlier conclusion about the suppression of the

large-size configurations in the transversely polarised photon.

This suppression is also seen in DVCS, γ∗p → γp. The final state photon is real and
therefore transversely polarised. Using s-channel helicity conservation, also the initial virtual
photon would be transversely polarised. Looking at the new H1 measurement of the DVCS cross
section [8], shown in Fig. 11, which has a steep W dependence (δ ∼ 0.8), one concludes that the
large-size configurations in the transversely polarised photon are suppressed.

5 Comparison of the data of γ∗p→ ρ0p to models

The precision measurements of the reaction γ∗p → ρ0p were used to compare to some selected
pQCD-inspired models.

All models are based on the dipole representation of the virtual photon, in which the photon
first fluctuates into a qq̄ pair (colour dipole), which then interacts with the proton to produce the
ρ0. The ingredients necessary in such calculations are the virtual-photon wave-function, the

A LEVY
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dipole-proton cross section and the ρ0 wave-function. The photon wave-function is known from
QED. The models differ in the treatment of the dipole-proton cross section and the assumed ρ0

wave-function.

The models of Frankfurt, Koepf and Strikman (FKS) [9] and of Martin, Ryskin and Teub-
ner (MRT) [10] are based on two-gluon exchange as the dominant mechanism for the dipole-
proton interaction. The gluon distributions are derived from inclusive measurements of the pro-
ton structure function. In the FKS model, a three-dimensional Gaussian is assumed for the ρ0

wave-function, while MRT use parton-hadron duality and normalise the calculations to the data.
For the comparison with the present measurements the MRST99 [11] and CTEQ6.5M [12] pa-
rameterisations for the gluon density were used.

Kowalski, Motyka and Watt (KMW) [13] use an improved version of the saturation model [14],
with an explicit dependence on the impact parameter and DGLAP evolution in Q2, introduced
through the unintegrated gluon distribution [15]. Forshaw, Sandapen and Shaw (FSS) [16] model
the dipole-proton interaction through the exchange of a soft [2] and a hard [17] Pomeron, with
(Sat) and without (Nosat) saturation, and use the DGKP and Gaussian ρ0 wave-functions. In the
model of Dosch and Ferreira (DF) [18], the dipole cross section is calculated using Wilson loops,
making use of the stochastic vacuum model for the non-perturbative QCD contribution.

While the calculations based on two-gluon exchange are limited to relatively high-Q2

values (typically ∼ 4 GeV2), those based on modelling the dipole cross section incorporate both
the perturbative and non-perturbative aspects of ρ0 production.

10
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-1

1

10

10 2

10 3

10 4

10
-1

1 10 10
2

ZEUS

σγ*
p 

→
 ρ

p  (n
b)

 ZEUS 120 pb-1

 ZEUS 1995
 ZEUS 1994

KMW
DF

Q2 (GeV2)

FSS (Sat-DGKP)
FSS (Sat-Gauss)
FSS (NoSat-DGKP)
FSS (NoSat-Gauss)

10
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-1

1

10

10 2

10 3

10 4

10
-1

1 10 10
2

Fig. 12: The Q2 dependence of the γ∗p → ρ0p cross sec-

tion at W=90 GeV. The same data are plotted in (a) and

(b), compared to different models, as described in the text.

1

10
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10 3

20 40 60 80 100 120 140 160 180 200

ZEUS

σγ*
p 

→
 ρ

p  (n
b)

KMW
FSS (Sat-Gauss)
FSS (NoSat-Gauss)

ZEUS 120 pb-1

W (GeV)

MRT (CTEQ6.5M)
MRT (MRST99)

1

10

10 2

10 3

20 40 60 80 100 120 140 160 180 200

Fig. 13: The W dependence of the γ∗p → ρ0p cross sec-

tion for different values of Q2, as indicated in the figure.

The same data are plotted in (a) and (b), compared to dif-

ferent models, as described in the text.

The different predictions discussed above are compared to the Q2 dependence of the cross
section in Fig. 12. None of the models gives a good description of the data over the full kine-

EXCLUSIVE VECTOR MESON ELECTROPRODUCTION AT HERA
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matic range of the measurement. The FSS model with the three-dimensional Gaussian ρ0 wave-
function describes the low-Q2 data very well, while the KMW and DF models describe the
Q2 > 1 GeV2 region well.

The various predictions are also compared with the W dependence of the cross section,
for different Q2 values, in Fig. 13. Here again, none of the models reproduces the magnitude of
the cross section measurements. The closest to the data, in shape and magnitude, are the MRT
model with the CTEQ6.5M parametrisation of the gluon distribution in the proton and the KMW
model.
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Fig. 14: The ratio r04
00 as a function of W for different val-

ues of Q2 compared to the predictions of models as indi-

cated in the figure (see text).
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cated in the figure (see text).

While all the models exhibit a mild dependence of r04
00 on W , consistent with the data as

shown in Figs. 14 and 15, none of them reproduces correctly the magnitude of r04
00 in all the Q2

bins.

In summary, none of the models considered above is able to describe all the features of
the data. The high precision of the measurements can be used to refine models for exclusive ρ0

electroproduction and contribute to a better understanding of the ρ0 wave function and of the
gluon density in the proton.
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Abstract
Hard exclusive production in deep inelastic lepton scattering provides
new access to the poorly known Generalized Parton Distributions of
the nucleon. Different observables for hard exclusive production of
photons and mesons have been measured by the HERMES experiment.
Emphasis is given to recent results which help to determine the total
angular momentum of quarks in the proton.

1 Introduction
The analysis of hard exclusive processes can be used to investigate the generalized parton dis-
tributions (GPDs) [1]. From a formal point of view, GPDs show a continuity in describing both
inclusive and exclusive processes, the usual parton distributions being a kinematic limit of GPDs.
Also, the elastic form factors are specific moments of GPDs. Strong interest in the formalism of
GPDs has emerged after GPDs were found to offer the first possibility to reveal the total angular
momentum carried by the quarks and gluons in the nucleon.

In this paper, the latest results obtained by the HERMES experiment on Deeply Virtual
Compton Scattering (DVCS) and exclusive meson production are reviewed [2]. The data pre-
sented here were collected using internal, longitudinally or transversely polarized or unpolarized
hydrogen and deuterium targets with longitudinally polarised 27.6 GeV positrons (electrons) in
the HERA storage ring at DESY.

2 Deeply Virtual Compton Scattering
The basic mechanism for DVCS (in electroproduction) is a quark absorbing a virtual photon
and radiating a real photon. At large photon virtuality, the process amplitude is a convolution
of a hard scattering term exactly calculable in perturbative QCD, and a soft (non perturbative)
term [3]. The soft term describes the nucleon transition in the process, and is parameterized by
the four leading-twist GPDs which conserve quark helicity, H,E, H̃ , and Ẽ. In hard exclusive
processes like DVCS, a direct extraction of the GPDs from experimentally measured observables
can in general not be performed because at the amplitude level, GPDS are convolved with the
hard scattering term, and cannot be disentangled. As a consequence, models of GPDs have to be
used to calculate observables that can be compared to corresponding experimental results. The
convolved H,E, H̃ , and Ẽ terms are traditionally represented with the symbols H, E , H̃, and Ẽ ,
respectively.

Experimentally, for electroproduction of photons, one cannot disentangle the DVCS from
the Bethe-Heitler (BH) process, where the virtual photon is absorbed by the nucleon target and
a real photon is emitted by either the incoming or the outgoing lepton. Within the HERMES
kinematical acceptance, the DVCS cross section is at least one order of magnitude smaller than
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the BH cross section [4]. Nevertheless, the DVCS amplitude can still be accessed through the
BH-DVCS interference term, which can be projected out by considering specific cross section
asymmetries in the azimuthal angle φ. The latter is defined as the angle between the incoming
and outgoing lepton trajectories and the plane correspondingly defined by the virtual and the real
photon.

The event selection at HERMES requires events with exactly one photon and one charged
track, identified as the scattered lepton, with Q2 > 1 GeV2, where −Q2 is the squared four-
momentum of the initial virtual photon. The recoiling proton is not detected, and exclusive events
are identified by requiring the missing mass MX of the reaction ep→ eγX to correspond to the
proton mass. Due to the finite energy resolution, the exclusive sample is selected in the region
−1.5 < MX < 1.7 GeV, based on signal-to-background studies using Monte Carlo simulations.

For an unpolarized target, the beam-charge cross section asymmetry AC(φ) with unpolar-
ized lepton of either charge, and the beam-spin cross section asymmetry ALU (φ) using a longi-
tudinally polarized positron beam, at leading-twist in the HERMES kinematics reduce to [4]

AC(φ) def=
dσ(e+p, φ)− dσ(e−p, φ)
dσ(e+p, φ) + dσ(e−p, φ)

∝ cosφ ·Re(F1H), (1)

ALU (φ) def=
dσ(

→
e+ p, φ)− dσ(

←
e+ p, φ)

dσ(
→
e+ p, φ) + dσ(

←
e+p, φ)

∝ sinφ · Im(F1H), (2)

where F1 is the Dirac form factor of the proton. The first measurement of the asymmetry AC was
performed by HERMES using a hydrogen target. The dependence of the cosφ moment on the
squared four-momentum transfer t to the target is shown in the left panel of Fig. 1, and compared
with predictions in the GPD framework based on [5] (VGG) with different assumptions on the
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the GPDs with the contribution of the so-called D-term [6]. The φ-dependence of the asymmetry
ALU is shown in the right panel of Fig. 1. Also displayed are the fit results which show the
expected leading-twist sinφ modulation of the asymmetry.

The longitudinal target-spin cross section asymmetry AUL(φ) for an unpolarized positron
beam, at leading-twist is expected to reduce [7], in the HERMES kinematics, to

AUL(φ) def=
dσ(e+

⇒
p , φ)− dσ(e+

⇐
p , φ)

dσ(e+
⇒
p , φ) + dσ(e+

⇐
p , φ)

∝ sinφ · Im
(
F1H̃+

xB
2− xB

(F1 + F2)H
)
, (3)

where F2 is the Pauli form factor of the proton. The φ-dependence of the longitudinal target-spin
asymmetry on a hydrogen target is shown in Fig. 2, where the fit results show the expected non-
zero leading-twist sinφ modulation of the asymmetry. The sin 2φ moment is 3σ different from
zero, an indication that higher-twist effects might contribute toAUL in the HERMES kinematics.

A useful observable to access the convolved GPDs E and Ẽ is the transverse target-spin
asymmetry with unpolarized beam AUT , which in the HERMES kinematics reads

AUT (φ− φS) def=
dσ(φ− φS)− dσ(φ− φS + π)
dσ(φ− φS) + dσ(φ− φS + π)

(4)

∝ Im [F2H− F1E ] · sin(φ− φS) cosφ+

Im

[
F2H̃ − F1

xB
2− xB

Ẽ
]
· cos(φ− φS) sinφ,

where φS denotes the azimuthal angle between the target polarization plane with respect to the
lepton plane. The kinematical dependences of the moments Asin(φ−φS) cosφ

UT andAcos(φ−φS) sinφ
UT

on transversely polarized hydrogen target are shown in Fig. 3. Also shown are the predictions [8]
based on the VGG code [5] with different ansaetze for the parameterizations of GPDs [9]. The
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displayed curves represent the moments evaluated for a set of u-quark total angular momen-
tum values Ju, as a model parameter for E, and for a fixed value of the d-quark total angular
momentum Jd = 0, as inspired by the results of recent lattice calculations [10].

By comparing the measured moment and the moment predicted for different Ju and Jd
assumptions (relaxing the condition Jd = 0) using the VGG code, the quantity ∆χ2 = χ2−χ2

min

is calculated from

χ2(Ju, Jd) =

kin bins∑

i

[
A

sin(φ−φS)·cos(φ)
UT,i |exp −Asin(φ−φS)·cos(φ)

UT,i |V GG(Ju,Jd)

]2

δA2
stat,i + δA2

syst,i + δA2
accept,i

. (5)

The area in the (Ju, Jd)-plane, in which the ∆χ2 value is not larger than unity is defined as
the one-standard-deviation constraint on Ju versus Jd, and is shown in Fig. 4. This HERMES
result, described by the relation Ju + Jd/2.9 = 0.42 ± 0.21 ± 0.06, provides the first GPD
model-dependent constraint on the total angular momenta Ju and Jd.

3 Exclusive Meson Production

Another process to access GPDs is the exclusive production of mesons by hard longitudinal vir-
tual photons. In the Bjorken limit the process amplitude can be factorized similarly to the DVCS
case, with one additional soft part describing the hadronization of virtual partons into the final
meson state [11]. Validity of factorization has been demonstrated only for longitudinal pho-
tons. Nevertheless, compared to the longitudinal cross section, the cross section for transversely
polarized photons was shown to be suppressed by a factor 1/Q2.

While the leading order amplitude factorization holds, interesting selection rules among
produced mesons and probed GPDs in the target nucleon arise, due to quantum numbers conser-
vation in the QED and QCD processes involved [11]. As an example, longitudinally polarized
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modeled using the Regge ansatz. The impact of this choice, compared to its alternatives, was found to be negligible.

The D-term contribution to the GPDs is set to zero, as suggested by the results on the beam-spin asymmetry.

vector meson channels are sensitive only to the unpolarized GPDs (H and E). Additionally,
flavor singlet and non-singlet combinations of unpolarized GPDs can be separately accessed by
measuring either vector mesons or meson states with quantum numbers of the f -meson fam-
ily [12]. In contrast, DVCS depends at the same time on both unpolarized and polarized GPDs.

3.1 Hard Exclusive ρo
L Meson Production

Exclusive longitudinal ρo events, generated from scattering positrons or electrons off transversely
polarized proton target, were identified by detecting the scattered leptons and the produced h+h−

hadron pairs. The invariant mass of the two-hadron system m2π was determined assuming both
hadrons to be pions. The requirement 0.6 < m2π < 1.0 GeV was used to select exclusive
resonant pion pairs produced in the decay ρo → π+π−. In addition, the missing energy ∆E of
the events was required to be lower than 0.6 GeV, assuming the undetected recoiling target to be
a proton. The non-resonant exclusive pion background was estimated to be a few percent, and
the data were not corrected for it. Due to the limited experimental missing mass resolution, the
analyzed exclusive reaction ep → epρo → epπ+π− cannot be separated unambiguously from
semi-inclusive background which can be smeared into the exclusive region. This contribution
was estimated using a PYTHIA simulation, and the data were corrected for it.

From the exclusive events, the transverse target spin asymmetry for longitudinal ρ0 pro-
duction was determined by using the unbinned maximum likelihood method. The x- and t-
dependence of the extracted asymmetry moment Asin(φ−φS)

UT are shown in Fig. 5.

3.2 Hard Exclusive π+π− Production
Hard exclusive pion pair production may involve both resonant and non-resonant channels mainly
through the quark exchange mechanism which is dominant at HERMES kinematics. The pion
pairs can be generated with the values of the strong isospin I , total angular momentum J , and
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Fig. 5: MomentAsin(φ−φS)
UT for exclusive production of longitudinally-polarized ρ0 off transversely polarized protons.

The x- (left panel) and t−dependence (right panel) are compared with predictions based on a GPD model [8] which

show the potential analysis sensitivity to the quark angular momentum J , entering the parameterization of GPD E.

C-parity of either a ρ-meson (I = 1, J = 1, 3..., C = −1), or an f -meson (I = 0, J = 0, 2...,
C = +1). The quark exchange with C = +1 and C = −1 is described by flavor singlet and
non-singlet H and E combinations [12], respectively. The latter cannot be accessed by analyzing
ρ0 decay. The interference between the two isospin channels provide information on the weaker
isoscalar channel at the amplitude level.

For the purpose of studying the interference between π+π− production in P -wave (I = 1)
and S,D-wave states (I = 0), the Legendre moment 〈P1(cos θ)〉 [13] is particularly useful be-
cause it is only sensitive to such interference. Here θ is the polar angle of the π+ meson with
respect to the direction of the π+π− pair in the pions rest-frame, and P1 is the first-order Legen-
dre polynomial.

The first experimental data for hard exclusive π+π− pair production on hydrogen and
deuterium targets have been reported by HERMES. The Bjorken x-dependence of 〈P1〉 is shown

x
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1(c
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systematic uncertainty is given by the error

band. Theoretical predictions (stars) [13]
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change mechanism, are compared with the
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in Fig. 6 in the π+π− invariant mass mππ region around the ρ0 meson resonance. For both
targets 〈P1〉 is non-zero, which we interpret as originating from the interference of the resonant
ρ0 P -wave with non-resonant S-wave π+π− production. The moment increases in magnitude
with x, suggesting that the exchange of flavor non-singlet quark GPD combinations (C = −1)
becomes competitive with the dominant singlet exchange (C = +1).

4 Conclusions
Several observables in DVCS, hard exclusive ρ0

L and π+π− production have been measured, and
compared with GPD-based predictions in order to provide constraints on GPDs. The first GPD
model-dependent constraint on the total angular momenta Ju and Jd has been obtained.
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[9] K. Göeke et al., Prog. Part. Nucl. Phys. 47 (2001) 401.
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Abstract
We outline the twist-two analysis of deeply virtual Compton scatter-
ing within the SO(2, 1) partial wave expansion of the amplitude, rep-
resented as a Mellin–Barnes integral. The complete next-to-leading
order results, including evolution, are obtained in the MS and a con-
formal factorization scheme. Within the latter, exploiting conformal
symmetry, the radiative corrections are evaluated up to next-to-next-
to-leading order. Using a new proposed parameterization for GPDs,
we study the convergence of perturbation theory and demonstrate that
our formalism is suitable for a fitting procedure of DVCS observables.

1 Introduction

The proton structure has been widely explored in inclusive measurements, mainly, in deeply in-
elastic lepton-proton scattering (DIS). Here the scattering essentially occurs due to the exchange
of a virtual boson (photon) on a single parton, and so one can access parton distribution functions
(PDFs). This universal, however, convention-dependent functions qa(x) are interpreted as proba-
bilities that partons of certain flavour a will be found with given longitudinal momentum fraction
x. Since the PDFs are naturally defined in a translation invariant manner, they do not carry infor-
mation about the transversal distribution of partons. Some information about transversal degrees
of freedom can be obtained from elastic lepton-proton scattering. The electromagnetic form fac-
tors F1,2(t) are Fourier transforms of the electric and magnetic charge distribution in nucleon,
and can be, e.g., in the infinite momentum frame, interpreted as probability that partons are found
at some transversal distance b from the center-of-mass. However, one can not assume that a re-
alistic probability distribution of partons, given by a two-variable function q(x,b) is simply a
direct product, i.e., q(x)⊗ q(b), of two probability functions. Rather it is anticipated that longi-
tudinal and transversal degrees of freedom have a cross talk, e.g., as x gets bigger partons carry
more of the nucleon longitudinal momentum and are expected to be closer to the proton center,
and thus the b dependence in q(x,b) should become narrower with increasing x.

The three dimensional distribution of partons in the nucleon can be addressed within more
general objects, called generalized parton distributions (GPDs) [1, 2]. Such distributions can
be revealed by analyzing hard exclusive leptoproduction of mesons or photon. The former pro-
cesses are perhaps theoretically more problematic to describe but offer a direct view into indi-
vidual flavour GPDs. To the latter one the deeply virtual Compton scattering (DVCS) process
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Fig. 1: a) DVCS. b) Leading-order perturbative contribution to DVCS. c) Factorization (to all orders in αs) on an

example of special parity-even, helicity conserving contribution aH (5).

contributes, where one photon has a large virtuality. DVCS is theoretically considered as the
cleanest probe of GPDs, however, here only certain flavour combinations of GPDs appear.

The non-forward Compton scattering process is described by the Compton tensor

Tµν(q, P,∆) =
i

e2

∫
d4x eix·q〈P2, S2|Tjµ(x/2)jν(−x/2)|P1, S1〉, (1)

where q = (q1 + q2)/2, P = P1 + P2 and ∆ = P2 − P1. The generalized Bjorken limit
corresponds to Q2 = −q2 →∞ with the scaling variables

ξ =
Q2

P · q , η = −∆ · q
P · q , (2)

and the momentum transfer squared ∆2 being fixed. Note that in the forward case, i.e., ∆ → 0,
the hadronic DIS tensor Wµν is related to the forward Compton scattering tensor by the optical
theorem Wµν = =mTµν(q, P = 2p,∆ = 0)/(2π), where p = P1 = P2 and ξ → xBj .

In DVCS – Fig.1a – the virtuality of the incoming photon Q2 = −q2
1 is large while the

final photon is on-shell. The skewness parameter η and the Bjorken-like scaling parameter ξ
are then equal to twist-two accuracy, i.e., η = ξ + O(1/Q2). In the generalized Bjorken limit,
similarly as for DIS structure functions, the amplitude factorizes into long- and short-distance
contributions (Fig.1b and c): short-distance physics is perturbatively calculable Compton scat-
tering on a parton, while long-distance physics is encoded in an non-perturbative amplitude for a
parton being emitted and later reabsorbed by the nucleon. The latter amplitude is called GPD.

The GPDs with even parity, we are considering here, are defined as

qF (x, η,∆2) =
∫
dz−

2π
eixP

+z−〈P2|q̄(−z)γ+q(z)|P1〉
∣∣∣
z+=0, z⊥=0

GF (x, η,∆2) =
4
P+

∫
dz−

2π
eixP

+z−〈P2|G+µ
a (−z)G +

aµ (z)|P1〉
∣∣∣
z+=0, z⊥=0

, (3)

and similar for odd parity. Furthermore, it is convenient to decompose GPDs,

aF =
ū(P2)γ+u(P1)

P+
aH +

ū(P2)iσ+νu(P1)∆ν

2MP+
aE , a = q,G . (4)
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into helicity conserving and non-conserving generalized form factors. The Compton tensor (1)
is analogously decomposed into Compton form factors with corresponding parity and helicity
properties. In the forward limit (∆ → 0) GPDs reduce to PDFs. Together with sum rules, e.g.,
relating GPDs to electromagnetic form factors, this provides constraints that are important for
GPD modelling. But as they do not constrain much the skewness (η) dependence, modelling is
still a difficult problem. One guiding feature is a polynomiality property of GPDs: n-th (Mellin)
moment of GPD is even polynomial in η of order n or n ± 1. Similar polynomiality will be
obeyed also for conformal moments which are just linear combination of Mellin moments. The
usefulness of the GPDs has also been widely realized in connection with the spin problem, since
they encode the angular momentum carried by the individual parton species, as explicated by the
Ji’s sum rule [2]. For recent detailed account of GPDs and their properties, we refer to [3].

In the following we outline the perturbative QCD approach to DVCS that is based on
the conformal partial wave expansion, represented as Mellin-Barnes integral, as described in
Ref. [4, 5]. Here, as in Refs. [5–7], we concentrate on the dominant Compton form factor H
corresponding to parity-even helicity-conserving GPD H . For simplicity, we present only the
results for the singlet part which is dominant for the kinematics of collider experiments.

2 Deeply virtual Compton scattering

Besides DVCS the Bethe-Heitler brehmstrahlung process contributes to the measured hard pho-
ton leptoproduction off a proton. The Bethe-Heitler amplitude, known in leading order of the
QED fine structure constant, is expressed in terms of the known electromagnetic form-factors.
Generally, there are two types of DVCS experiments: collider experiments and fixed target ex-
periments. The former usually provide information in the phase space 10−4 . ξ . 10−1 and
1 GeV2 . Q2 . 100 GeV2, and such are H1 and ZEUS experiments at HERA. The main ob-
servables here are total and differential DVCS cross sections, however, also the beam charge
asymmetry is feasible. For the fixed target experiments, such as Hall A, Hall B (CLAS) at JLAB,
and HERMES at DESY, the interference term can be more easily accessed via single beam, tar-
get spin and beam charge (HERMES) asymmetries, while the investigated phase space covers
the so-called valence quark region, i.e., 0.05 . ξ . 0.3 within 1 GeV2 . Q2 . 10 GeV2.

One can express H as a convolution (Fig.1c) over the longitudinal momentum fraction x

aH(ξ,∆2,Q2) =
∫

dx aC(x, ξ,Q2/µ2) aH(x, η = ξ,∆2, µ2) , (5)

where µ2 is a factorization scale that separates short- and long-distance dynamics often taken
µ2 = Q2. Here the index a ∈ {NS,S(Σ, G)} denotes either non-singlet or singlet parts, where to
latter both quarks (Σ) and gluons (G) contribute.

The coefficient function Ca is a perturbative quantity which describes qγ∗ → qγ and
gγ∗ → gγ subprocesses. The well known leading-order (LO) contribution to C a is actually a
pure QED process (Fig. 1b). The next-to-leading order (NLO) contribution – the first order in αs
– has been calculated by various groups [8]. Obviously, to stabilize the perturbation series and
investigate its convergence one needs the second order in αs, i.e., next-to-next-to-leading order
(NNLO) contributions. The importance of NNLO in singlet case is amplified by the fact that at
LO photons scatter only off charged partons, whereas gluons start contributing at NLO.
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The GPDs are intrinsically non-perturbative quantities whose form at some initial scale
has to be deduced by some non-perturbative methods (lattice calculation, fit to data etc.). The
evolution to the factorization scale of interest is governed by perturbation theory, cf. [5,7] for LO
examples. The anomalous dimensions of non-diagonal operators were calculated up to NLO [9].
Still, NLO evolution is numerically not easy to implement and has been investigated beyond
NLO only recently, using the below explained procedure [5].

Instead of using the convolution form (5) one can equivalently use the sum over the con-
formal moments, and the singlet contribution takes then the form

SH(ξ,∆2,Q2) = 2
∞∑

j=0

ξ−j−1Cj(Q2/µ2, αs(µ)) Hj(η = ξ,∆2, µ2) , (6)

where Cj =
(

ΣCj,
GCj

)
and Hj =

(
ΣHj ,

GHj

)
are conformal moments. They are analogous

to common Mellin moments used in DIS but the integral kernel xj is replaced by Gegenbauer
polynomials C3/2

j (x) and C5/2
j (x), which are solutions of LO evolutional equations for quarks

and gluons, respectively. Unfortunately, the series (6) only converges in the unphysical region.
Hence, it is necessary to resum this series, e.g., by means of the Mellin-Barnes integral [5]

SH(ξ,∆2,Q2) =
1
2i

∫ c+i∞

c−i∞
dj ξ−j−1

[
i+ tan

(
πj

2

)]
Cj(Q2/µ2, αs(µ))Hj(ξ,∆2, µ2) .

(7)

The advantages of using conformal moments, i.e., Mellin-Barnes representation, are man-
ifold. It allows for an efficient and stable numerical treatment, it enables a simple inclusion of
evolution, and it opens a new door for interesting modelling of GPDs. Finally, by making use
of conformal operator product expansion (OPE) and known NNLO DIS results, it enables the
assessment of NNLO contributions.

3 Conformal approach to DVCS beyond NLO

Neither Wilson coefficients nor anomalous dimensions are calculated (only so-called quark bub-
ble insertions were partly evaluated) in non-forward kinematics at NNLO. To access the NNLO
of non-forward Compton scattering, we use the conformal approach, making it possible to cal-
culate relevant objects using only diagonal results of forward Compton scattering, i.e., DIS.

DVCS belongs to a class of two-photon processes (DIS, DVCS, two-photon production of
hadronic states . . . ) calculable by means of the OPE, Tµν(q, P,∆) → Cj Oj , for which the use
of generalized Bjorken kinematics and conformal symmetry enables a unified description. While
massless QCD is conformally invariant at tree level, this invariance is broken at the loop level
since renormalization introduces a mass scale, leading to the running of the coupling constant
(β 6= 0). Assuming the existence of a non-trivial fixed point α∗s , i.e., β(α∗s) = 0, the conformal
OPE (COPE) prediction for Wilson coefficients in general kinematics reads [10]

Cj(α∗s) = cj(α∗s) 2F1

(
(2 + 2j + γj(α∗s))/4, (4 + 2j + γj(α∗s))/4

(5 + 2j + γj(α∗s))/2

∣∣∣η
2

ξ2

)(
µ2

Q2

)γj(α∗s)/2

. (8)
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Fig. 2: Relative NLO and NNLO corrections (12) in the CS scheme (∆2 = 0.25GeV2 , input scale Q2
0 = 2.5GeV2).

Thick [thin] lines – “hard” [“soft”] gluon: NG = 0.4, αG(0) = αΣ(0) + 0.05 [NG = 0.3, αG(0) = αΣ(0)− 0.02].

For η = 0 equation (8) reduces to the DIS Wilson coefficients Cj → cj and thus fixes the
normalization cj . The choice η = ξ corresponds to DVCS in the conformal limit. The anomalous
dimensions governing the evolution are diagonal and the same as in DIS.

For a general factorization scheme, e.g., the MS scheme, the conformal symmetry breaking
occurs also due to the renormalization of the composite operators and causes the appearance of
non-diagonal anomalous dimensions γjk = δjkγj + γND

jk . This induces a mixing of of both
operators, i.e., GPDs, and Wilson coefficients under evolution. In the kinematical forward limit
(η = 0) the diagonal evolution equations are again obtained, i.e., the DIS case corresponds to
the COPE result. For DVCS, e.g., evaluated in the MS scheme, there appear also conformal
symmetry breaking terms which are not proportional to β, i.e., the non-diagonal terms survive.

The non-diagonal terms of anomalous dimensions encountered in MS scheme can be re-
moved by a finite renormalization [10], i.e, by a specific choice of the factorization scheme
CMSOMS = CMSBB−1OMS = CCSOCS. In this new scheme, called conformal subtrac-
tion (CS) scheme, all non-diagonal terms are ”pushed” to the β proportional part. γCS

jk =
δjkγk+β/g∆jk, Furthermore, since there is an ambiguity in MS → CS rotation matrix, by
judicious choice one can “push” mixing under evolution to NNLO. Hence, in CS scheme, we are
using, the unknown correction ∆jk starts at NNLO and it can be additionally suppressed by the
choice of an appropriate initial condition. Finally, we express our result in CS scheme as

CCS
j =

∞∑

k=j

Ck(αs(Q)) P exp
{∫ µ

Q

dµ′

µ′

[
γj(αs(µ′))δkj +

β

g
∆kj(αs(µ′))

]}
, (9)

with Ck(αs(Q)) obtained from the η = ξ limit of Eq. (8) and using cj(αs). As stated above
the ∆kj mixing term appears at NNLO and is neglected. We take cj and γj calculated to NNLO
order from Refs. [11], and obtain the DVCS prediction to NNLO in the CS scheme.

4 Results

We have used the formalism described in the preceding sections to investigate the size of NNLO
corrections to non-singlet [6] and singlet Compton form factors [7], to obtain complete (non-
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diagonal evolution included) MS NLO predictions [5], and to perform fits, in both MS and CS
schemes, to DVCS and DIS data and extract information about GPDs [5].

One can use a simple Regge-inspired ansatz for GPDs

Hj(η,∆2,Q2
0) =

(
N ′ΣFΣ(∆2)B

(
1 + j − αΣ(0), 8

)

N ′GFG(∆2)B
(
1 + j − αG(0), 6

)
)

+O(η2) , (10)

with (pa is a flavour dependent integer)

αa(∆2) = αa(0) + 0.15∆2 , Fa(∆2) =
j + 1− αa(0)
j + 1− αa(∆2)

(
1− ∆2

Ma
0

2

)−pa
. (11)

In the forward case (∆ = 0) this ansatz is equivalent to the standard building blocks for PDFs:
Σ(x) = N ′Σ x

−αΣ(0) (1−x)7, G(x) = N ′G x
−αG(0) (1−x)5. We have performed the analysis of

radiative corrections with generic parameters and made fits of parameters NΣ, αΣ(0), MΣ
0 , NG,

αG(0), MG
0 . The work on a more realistic η-dependent ansatz is in progress.

We introduce now the quantities that we utilize as a measures of the scheme dependence
and, foremostly, as indicators for the convergence of the perturbation series. It is natural to
employ for this purpose the ratios of Compton form factors, i.e., the corresponding modulus and
phase difference, at order NPLO to the one at order NP−1LO, where P = {0, 1, 2} stands for
LO, NLO, and NNLO order, respectively:

δPK =

∣∣∣HNPLO
∣∣∣

∣∣HNP−1LO
∣∣ − 1 , δPϕ = arg

(
HNPLO

HNP−1LO

)
. (12)

The phase differences are small, and we will not comment on them here further. The NLO
corrections to the moduli in MS and CS schemes have a similar ξ-shape, where MS corrections
are generally larger. The relative NLO and NNLO corrections in CS scheme are depicted in
Fig. 2. From the left panel, showing corrections at the input scale, we realize that the large
negative NLO corrections to the modulus (thick dashed) in the ‘hard’ gluon scenario are shrunk
at NNLO to less than 10% (thick solid), in particular in the small ξ region. In the ‘soft’ gluon
case the NNLO corrections (thin solid) are ±5%. For ξ ∼ 0.5, the corrections are reduced
only unessentially and are around 5% and 10% at both NLO and NNLO level. If evolution is
switched on (right panel), our findings drastically change. For ξ & 5·10−2 NNLO corrections are
stabilized on the level of about 3% at Q2 = 100 GeV2. But they start to grow with decreasing ξ
and reach at ξ ≈ 10−5 the 20% level. As in DIS, this breakdown of perturbation theory at small ξ
obviously stems from evolution and is thus universal, i.e., process independent. The large change
of the scaling prediction within the considered order does not influence the quality of fits, and,
in particular, the possibility of relating DVCS and DIS data. Hence, the problem of treatment
or resummation of these large corrections is relevant primarily to our partonic interpretation of
the nucleon content. As long as we precisely define the treatment of the evolution operator,
perturbative QCD can be employed as a tool for analyzing data also in the small ξ region.

The Mellin-Barnes integral approach offers the possibility for a fast and numerically stable
analysis. Our numerical routine is designed for the purpose of fitting DVCS (and DIS) observ-
ables [12] and testing various GPD ansaetze; an example is presented in Fig. 3.
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Fig. 3: Fit example: differential DVCS cross section versus ∆2 (up,left), ∆2-integrated cross section versus Q2

(up,right) and W (down,left) as well as the DIS structure function F2 at xb = 8× 10−3, 3.2× 10−3, 1.3× 10−3, 4×
10−4 (down,right).

Fourier transform of resulting GPDs for η = 0,

H(x,b) =
∫

d2∆
(2π)2

e−ib·∆H(x, η = 0,∆2 = −∆2) , (13)

can be interpreted in the infinite momentum frame as probability density [13], see Fig. 4b. The
average transversal parton distance squared 〈b2〉 is given by the GPD slope B = 〈b2〉/4, shown
in Fig. 4a. The results confirm the picture, mentioned in the introduction, about the correlation
of transversal and longitudinal degrees of freedom: harder partons are closer to the center.
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Fig. 4: a) Resulting GPD slope B = 〈b2〉/4 at the input scale Q2 = 4 GeV2 and b) 3D picture of gluon GPD (13).

FITTING DVCS AT NLO AND BEYOND

23



5 Summary

GPDs encode a unified description of the proton structure and they are experimentally accessible
via the hard leptoproduction of photon or mesons. We have shown that the representation of
Compton form factors as Mellin-Barnes integrals offers a useful tool in analyzing DVCS: the
inclusion of evolution is simple, numerical treatment is stable and fast. Although the motivation
for this representation originated from manifest conformal symmetry at LO, we have shown here
that this Mellin–Barnes integral representation can be used within the standard MS scheme be-
yond LO. Such a representation can straightforwardly be obtained from the momentum fraction
representation and, therefore, also other GPD related processes, e.g., the hard electroproduction
of mesons, can be given in terms of Mellin–Barnes integrals. This opens a new road for the
‘global’ analysis of experimental data within the perturbative GPD formalism to NLO accuracy.
Furthermore, the use of conformal symmetry enables elegant approach to higher-order radia-
tive corrections to the DVCS amplitude. We have shown that although NLO corrections can
be sizable, and are strongly dependent on the gluonic input, the NNLO corrections are small to
moderate, supporting perturbative framework of DVCS. The observed change in the scale depen-
dence is not so conclusive: similarly as in DIS we encounter large NNLO effects for ξ < 10−3,
which signal a breakdown of naive perturbation series in the evolution operator. Nevertheless,
this breakdown is universal and if we precisely define the treatment of this operator, perturbative
QCD can be employed as a tool for analyzing data even in the small ξ region. Finally, fits to
available DVCS and DIS data work well and give access to transversal distribution of partons.
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K KUMERIČKI, D MÜLLER, K PASSEK-KUMERIČKI
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Exclusive vector meson electroproduction

D.Yu. Ivanov
Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia

Abstract
We discuss exclusive vector meson electroproduction within the QCD
collinear factorization framework. In Bjorken kinematics the ampli-
tude factorizes in a convolution of the nonperturbative meson distri-
bution amplitude and the generalized parton densities with the per-
turbatively calculable hard-scattering amplitudes, which are presently
known to next-to-leading order (NLO). At small xB NLO corrections
are very large. It is related to appearance of BFKL type logarithms in
the hard-scattering amplitudes, that calls for a resummation of these
effects at higher orders. Here we report the first results of such resum-
mation.

1 Introcuction

The process of elastic vector meson electroproduction on a nucleon,

γ∗(q)N(p)→ V (q′)N(p′) , (1)

where V = ρ0, ω, φ, was studied in many fixed target and in HERA collider experiments. On
the theoretical side, the large negative virtuality of the photon, q2 = −Q2, provides a hard
scale for the process which justifies the application of QCD factorization methods that allow
to separate the contributions to the amplitude coming from different scales. The factorization
theorem [1] states that in a scaling limit, Q2 → ∞ and xB = Q2/2(p · q) fixed, a vector meson
is produced in the longitudinally polarized state by the longitudinally polarized photon and that
the amplitude of the process (1) is given by a convolution of the perturbatively calculable hard-
scattering amplitudes C i, the nonperturbative meson distribution amplitude (DA) φV , and the
generalized parton densities (GPDs) H i.

A =
∑

i=q,g

∫ ∫
dx dz H i(x, ξ, t, µF ) Ci(x, z, µF ) φV (z, µF ) , (2)

where ξ = xB/(2− xB) is the skewness variable, t = (p − p′)2 and µF is a factorization
scale. GPDs encode important information on hadron structure, including aspects that cannot
be deduced directly from experiment, like the transverse spatial distribution of partons and their
orbital angular momentum, for more details see [2].

Deeply virtual Compton process (DVCS) provides the theoretically cleanest access to
GPDs. Recently two-loop effects were incorporated into the analysis of DVCS [3]. A theo-
retical description of exclusive meson production is more involved since it includes an additional
nonperturbative quantity, a meson DA. The primary motivation for the strong interest in this pro-
cess (and in the similar process of heavy quarkonium production) is that it can serve to constrain
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the gluon density in a nucleon. Indeed, in vector meson production case the gluon GPD enters
the description already at the leading order (LO) in the strong coupling αs, whereas in DVCS it
appears first at NLO, and, like in inclusive DIS, is accessible only through scaling violation.

2 NLO corrections

The hard-scattering amplitudes for process (1) were calculated at NLO in [4], and for exclusive
heavy quarkonium photoproduction in [5]. The analysis of NLO effects showed that in kine-
matics typical for the HERA collider experiments, xB ∼ 10−3, the NLO corrections are huge
even for really large values of hard scales ∼ 30 GeV2. If the factorization scale is chosen close
to the value of a hard scale, µF ∼ Q, the corrections have opposite signs in comparison to
the Born term. Which may lead to the change of signs of the imaginary and the real parts of
the amplitude within phenomenologically relevant interval of xB . Besides, the factorization and
renormalization scale uncertainties were found being very large.

Recently these findings were confirmed in [6], where very detailed analysis of the cross
sections and the transverse target polarization asymmetries in exclusive meson production was
performed both for small and larger values of xB , typical for fixed-target experiments. For the
fixed target kinematics it seems that NLO corrections start to be under control, though their
values are still large at presently available values of Q2. For the transverse target polarization
asymmetries the situation is better, in some cases.

Going back to small xB , why NLO corrections are large in this case? The inspection of
NLO hard-scattering amplitudes shows that the imaginary part of the amplitude dominates and
that the leading contribution to the NLO correction originates from the broad integration region
ξ � x� 1, where the gluonic part approximates (Nc = 3 is the number of colors)

ImAg ∼
1∫

0

dz φV (z)
z(1− z)

[
Hg(ξ, ξ, t) +

αsNc

π
ln

(
Q2z(1− z)

µ2
F

) 1∫

2ξ

dx

x
Hg(x, ξ, t)

]
. (3)

Given the behavior of the gluon GPD at small x, H g(x, ξ) ∼ xg(x) ∼ const, we see that NLO
correction is parametrically large, ∼ ln(1/ξ), and negative unless one chooses the value of the
factorization scale sufficiently lower than the kinematic scale. For the asymptotic form of meson
DA, φasV (z) = 6z(1−z), the last term in (3) changes the sign at µF = Q

e , for the DA with a more
broad shape this happens at even lower values of µF . Similar, ln(1/ξ) enhanced, contribution
appears also in the quark singlet channel.

The partonic momentum fraction x is related to the Mandelstam energy variable ŝ of the
partonic subprocess x/ξ ∼ ŝ/Q2. The leading part of NLO partonic amplitude (proper normal-
ized) grows as the first power of energy, x ∼ ŝ, whereas at LO partonic amplitude behaves like
a constant at large ŝ. The reason for this difference is the appearance, starting from NLO, of
partonic diagrams with the gluon exchange in the t− channel, see Fig. 1. At LO one has only
diagrams with the quark exchange, both for the gluon and quark channels.

At higher orders the diagrams with gluon t− channel exchange give contributions to the
amplitudes of partonic subprocesses enhanced, for n loops, by αns logn−1 x. In its turn, these
terms inserted in the factorization formula will produce large contributions ∼ αns logn(1/ξ) to
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Fig. 1: NLO diagrams with t− channel gluon exchange; the gluon and the quark GPD contributions.

the process amplitude, where each power of the strong coupling is compensated by the same
power of a large logarithm of energy. It is a natural idea to resum these enhanced at small xB
contributions using the BFKL approach [7].

3 High energy resummation

The central point in this high energy resummation is to perform it consistently, without spoil-
ing the all-order factorization of collinear singularities. Care should be taken of the factoriza-
tion scheme used at the factorization of the process amplitude (2) in terms of GPDs and hard-
scattering amplitudes. The higher order terms of the hard-scattering amplitudes derived within
the high energy approximation (BFKL approach) can be supplemented by the knowledge of
hard-scattering amplitudes calculated exactly at fixed order. Then, one can use them together in
factorization formula (2) without double counting.

For inclusive hard processes, heavy quark production and DIS, the method of such high
energy resummation was elaborated in [8]. It is based on Curci, Furmanski and Petronzio ap-
proach [9] to separation of collinear singularities. The amplitudes on a parton (quark, gluon)
target are considered in D = 4 + 2ε non-integer dimensions. That separates automatically the
leading twist. Collinear singularities appear in this approach as 1/εn poles, these poles are ab-
sorbed into a definition of parton densities. Another essential ingredients of [8] method is an
analysis of Mellin moments, high-energy terms in Mellin moment space N look like singulari-
ties (αs/N)n at N → 0, and a consideration of BFKL equation in D = 4 + 2ε dimensions.

We found1 that this technique may be directly generalized on the analysis of exclusive
non-forward reactions. Below we present the first results of this study.

Like in DIS the imaginary part of the amplitude is given by the sum of quark singlet and
gluon contributions

ImA(ξ, t) =
1
ξ

1∫

ξ

dx

[
D(+)

(
ξ

x

)
H(+)(x, ξ, t) +

1
ξ
Dg

(
ξ

x

)
Hg(x, ξ, t)

]
. (4)

D(+) and Dg are the imaginary parts of the quark and gluon hard-scattering amplitudes. In
difference to forward DIS case the parton densities in (4) depend on both longitudinal momentum

1D.Yu.Ivanov, R. Kirschner and A.Papa, in preparation

D IVANOV

28



fractions. Due to that the Mellin moments of the amplitude do not factorize into the product of
the moments

DN (t) =
1∫
0
dξ ξNImA(ξ, t) = (5)

1∫
0

1∫
0
du dxuN−1xN

[
D(+) (u)H(+)(x, u x, t) + 1

uxD
g (u)Hg(x, u x, t)

]
.

Using polynomiality property of GPDs, in particular for the gluon case
∫ 1

0
dxxnHg(x, η, t) =

n∑

j=0,even

(2η)jAgn+2,j(t) + (2η)n+2 Cgn+2(t) , (6)

one can show that for the integer odd N

DN (t) =
∞∑

k=0

2k
[
D

(+)
N+k−1A

q
N+k+1,k(t) +Dg

N+k−2A
g
N+k+1,k(t)

]
(7)

which is a sum of moment products (not just a product, as in DIS case).

One can analytically continue (7) from the integer oddN into entire complexN plane. The
high energy asymptotic of the amplitude is related with the behavior of DN (t) near unphysical
point N → 0. One can split (7) into a sum of the singular and the regular at N → 0 parts

DN (t) = C
(+)
N q

(+)
N (t) + CgNgN (t) +Dreg

N (t) (8)

The singularities of the sum (7) at N → 0 are due to the k = 0 term only. Therefore

C
(+)
N = D

(+)
N−1, q

(+)
N (t) = AqN+1,0(t), CgN = Dg

N−2, gN (t) = AgN+1,0(t) . (9)

Note that at t→ 0, q(+)
N (t) and gN (t) reduce to the moments of usual parton densities

q
(+)
N (t)→ q

(+)
N =

1∫

0

dxxNq(+)(x) , gN (t)→ gN =
1∫

0

dxxN g(x) . (10)

This consideration shows that the non-forward nature of hard exclusive reactions does not
complicate much their analysis in the high energy limit. Therefore the method used in DIS [8]
may be applied here. The difference between DIS and our case is in the different form of kt
dependent amplitudes for corresponding partonic subprocesses.

Below I will concentrate on the dominant at high energy gluon contribution. The results
will be presented for the process (1) ( assuming for simplicity the asymptotic form of meson DA)
and for the process of heavy quarkonium electroproduction (where the formation of quarkonium
is treated in NRQCD). The amplitude is presented as follows

ImAg ∼ Hg(ξ, ξ) +
1∫

2ξ

dx

x
Hg(x, ξ)

∑

n=1

Cn(L)
ᾱns

(n− 1)!
logn−1 x

ξ
, (11)
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where ᾱs = Ncαs/π, we omitted normalization factors irrelevant for the subsequent discussion,
in the r.h.s Hg(ξ, ξ) represents the Born contribution and the sum stands for the high energy
terms. Cn(L) are polynomials of variable L = log Q2

µ2
F

which we need to calculate.

Note that the Born term belongs to the regular part (in terms of (7)), whereas the high
energy terms behave as (ᾱs/N)n at N → 0. Therefore in the high energy terms one can replace
gluon GPD in (11) by its forward limit, Hg(x, ξ)→ xg(x), but in the Born contribution H g(ξ, ξ)
should be kept different from xg(x).

Omitting all details of the derivation we just present the results. We work in MS scheme.
We define (properly normalized) kt dependent amplitude of the gluon subprocess

hV (k2
t ) =

1∫

0

dz
Q2

k 2
t + z(1− z)Q2

φV (z)
/ 1∫

0

dz
φV (z)
z(1− z) , (12)

then we calculate its Mellin transform

hV (γ) = γ

∞∫

0

dk 2
t

k 2
t

(
k 2
t

Q2

)γ
hV (k2

t ) =
Γ3[1 + γ]Γ[1− γ]

Γ[2 + 2γ]
. (13)

The high energy terms are defined from the expression

CgN ∼ hV (γ)R

(
Q2

µ2
F

)γ
. (14)

The gluon anomalous dimension is determined by the solution of equation 1 = (ᾱs/N)χ(γ),
where χ(γ) is the BFKL eigenfunction, the function R depends on ᾱs/N and is defined in [8].
Expanding Cg

N in a series of the variable y = ᾱs/N one can obtain analytical expressions for the
polynomials Cn(L).

Below we illustrate the values of these polynomials for the case µF = Q

V : 1− 2 y + 4 y2 − 2.39 y3 − 4.09 y4 + . . .

onium : 1− 1.39 y + 2.61 y2 + 0.481 y3 − 4.96 y4 + . . .

FL : 1− 0.33 y + 2.13 y2 + 2.27 y3 + 0.434 y4 + . . .

here the first two lines represent results for the exclusive light vector meson and quarkonium
production respectively, in the third line we show for comparison the results for longitudinal DIS
structure function [8]. We see that the numerical values of C1(0) are negative in all cases, but
for the exclusive reactions its absolute values are about 4 ÷ 6 times larger then in the case of
FL, explaining very large negative NLO corrections found for exclusive meson production. On
the other hand, the values of the second polynomial are positive and large, C2(0) = 4 for the
light vector meson production. This gives a hope that inclusion of these high energy terms in the
analysis may stabilize predictions for exclusive meson production.

To investigate this possibility we perform the following numerical study. We calculate the
amplitude of light vector meson production with (11), where in the high energy terms we use a
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very simple input for the gluon density Hg(x, ξ) ∼ xg(x) ∼ x−0.2, for the Born term we take
Hg(ξ, ξ) = 1.2 ξ g(ξ). Definitely, more realistic input for gluon GPD should be used (especially
for Hg(ξ, ξ)), but at the present stage we just want to clarify the qualitative role of the high
energy terms. In Fig. 2 we present the energy dependence of the amplitude (in arbitrary units)
calculated for two values of photon virtuality Q2 = 10 and 20 GeV2, for the running coupling
we use αs(10) = 0.25 and αs(20) = 0.16, and for the factorization scale µ2

F = Q2/2. The solid
line on Fig. 2 represents the Born contribution, the dashed line – the Born + the first high energy
term, the dotted line – the Born + 2 first high energy terms, the dashed-dotted – the Born + 6
first high energy terms. We see that high energy resummation is convergent fast, the difference

10-4 10-3 10-2 10-1
x_B

1.5
2

3

5

7

10

15
20

30
Im A

10-4 10-3 10-2 10-1
x_B
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2

3

5

7

10

15
Im A

(a) (b)

Fig. 2: The convergence of the high energy resummation: (a) Q2 = 10GeV2, (b) Q2 = 20GeV2.

between the dashed and the dashed-dotted lines is not big for Q2 = 10 GeV2 and is really small
for 20 GeV2 cases. The other observation is that the inclusion of only first high energy term
(dashed line) seems to be a bad approximation. Even for 20 GeV2 case, where the Born and the
resummed results are close to each other, the dashed line is about factor of 3 below.

The dependence of the amplitude on the choice of factorization scale is shown in Fig. 3.
Again, the dashed lines correspond to the Born + the first high energy term, the dashed-dotted
lines – the Born + 6 first high energy terms. The upper dashed and dashed-dotted lines are
for µ2

F = Q2/4, the lower dashed and dashed-dotted lines are for µ2
F = Q2/2. We observe a

sizeable reduction of the factorization scale dependence if the high energy terms are resummed
in comparison to the case when only the first of these terms is taken into account.

4 Summary

Large NLO corrections are found for hard exclusive vector meson production. At intermediate to
larger values of xB , typical for fixed-target experiments, it seems that NLO corrections start to be
under control for large values of Q2, say above 10 GeV2. However, the situation is much worse
for the region of small xB , typical for the HERA collider experiments. Here NLO corrections
are not under control even for such large values of hard scales as 30 GeV2, which prevents the
interpretation of the precise HERA data in terms of GPDs. The problem is related to appearance
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Fig. 3: (a) Q2 = 10GeV2, (b) Q2 = 20GeV2

of BFKL type logarithms in the hard-scattering amplitudes, that calls for a resummation of these
effects at higher orders. Here we present the first results for such a study. The methods used
earlier for forward DIS process may be generalized to the case of nonforward hard exclusive
reactions. We obtained analytical results for the corresponding high energy terms in (11). The
first numerical calculation incorporating the high energy resummation is encouraging.

I am very grateful to the organizers and to Alexander von Humboldt Foundation for the support
of my participation in EDS07 conference. This work is also sponsored in part by grants RFBR-
06-02-16064 and NSh 5362.2006.2.
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Photo and electroproduction of vector mesons: a unified
nonperturbative treatment
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Abstract
We have made a calculation of elastic photo- and electroproduction of
ρ, ω, φ, J/ψ and Υ vector mesons based on a framework in which the
photon and vector meson wave functions and properties of the QCD
vacuum field play prominent roles. No free parameters enter, and a
successful description is made of all available data, with emphasis put
in their general and universal features.

1 Introduction and some results

Our calculation of photo and electroproduction [1] uses a general method for high energy scat-
tering based on the functional integral approach [2] to QCD and on the WKB method, which is
capable of incorporating both the perturbative and nonperturbative aspects. The nonperturbative
input is given by a special model of nonperturbative QCD, called stochastic vacuum model [3,4],
that has been successfully applied in many fields, from hadron spectroscopy to high energy scat-
tering. The energy dependence is based on the two-pomeron model of Donnachie and Land-
shoff [5].

The original approach for the implementation of the dipole treatment of vector meson pro-
duction, which provides the framework for the present work, was developed by the Heidelberg
group [6–8]. This approach calculates the basic loop-loop interaction using the stochastic vac-
uum model [3, 4, 9], which is a genuine nonperturbative treatment that allows connections with
other branches of nonperturbative QCD, especially with the fundamental and striking feature
of confinement. The same approach using the loop-loop amplitude and the stochastic vacuum
model was used consistently by A. Donnachie and H.G. Dosch for calculations of DVCS and
structure functions.

Details of our calculations are given in our recent article [1] and in references given there.
Photon and vector mesons wave functions are written in light cone coordinates and play a fun-
damental role. The vector meson wave functions, written by analogy with the transverse and
longitudinal virtual photon wave functions, have extension parameters determined by their val-
ues at the origin, fixed through the qq̄ electromagnetic coupling fV responsible for their ee+ and
µ−µ+ decays.

Our scheme has a structure similar to other approaches, of mainly nonperturbative nature,
based on the color dipole dynamics, with the assumption that the photon fluctuates into a qq̄ pair,
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which then scatters with the proton, according to a properly built dipole cross section σdipole.
The qq̄ dipole then recombines to form again a photon, or eventually a vector meson, in the
final state. Photons, either real or virtual, enter in a well defined way through their QED wave
functions, and the dipole cross section is built with the necessary ingredients to describe the
observed phenomenology and, as much as posible, to follow QCD prescriptions. The proton
structure gives an impact parameter dependence that allows description of t dependence.

As a whole, these nonperturbative models for γ∗ induced processes, all based in the dipole
picture, are phenomenologically satisfactory. This is not surprising, since it has already been
shown [10] that many features of these processes, particularly theQ2 dependence, are reproduced
by the overlap of the light cone wave functions of photons and mesons folded with the basic r2

behavior of the dipole cross sections.

Our unified quantitative predictions for different kinds of vector mesons cover several
scales of magnitudes in cross sections. This global coverage is exhibited in Fig. 1 showing the
integrated elastic cross sections of electroproduction of all vector mesons, for varied virtuality
Q2 of the incident photon. When plotted against Q2+M2

V , the curves have very regular behavior,
which is solely determined by the overlap of photon and vector meson wave functions.

In Fig. 2 the charge factors squared ê2
V for each kind of meson are extracted, making the

quantities almost universal in a Q2 + M2
V plot. The effective meson charges êV are 1/

√
2 for

the ρ and 1/3
√

2 for the ω meson, while for the φ, ψ and Υ mesons they are the same as the
s, c and b quark charges. However, the universality is only approximate, and our calculation
predicts correctly the observed displacements. The universality is still more interesting when
the factors given by the squared electromagnetic couplings f 2

V are extracted. The residual dis-
placements may be due to radiative corrections in the electromagnetic decays, which modify the
fV couplings. The wave functions a the origin should be evaluated without these corrections
in the decay rates. With appropriate factors f (0)2

V extracted from the cross section values, the
universality should become exact.

Our calculation is free of external parameters, and covers the wide meson spectrum. Fig.
3 shows our prediction for the upsilon case, which is fulfilled accurately by the recent Zeus
(preliminary) measurements. In the other side of the scale, we look at ρmeson electroproduction,
where we also have a good description of the data.

In our work [1], the data on the energy dependence of the integrated cross sections for ρ, φ
and ψ mesons have been presented and compared to the theoretical predictions for each case.
The parameter δ(Q2) of the suggested simple energy dependence

σ(Q2) = Const.×W δ(Q2)

has also been given in each case. This parametrization is an approximation valid in a limited
energy range, since the true energy dependence in our calculation is already determined by the
two-pomeron scheme, but it is considered useful in practice.

We then evaluate δ using the energy range W=20 - 100 GeV, for all values of Q2. The
results are put together in Fig. 4. All curves start at the minimum value 4 × 0.08 at the same
unphysical point Q2 +M2

V = 0 and all are asymptotic to δ = 4× 0.42 as Q2 increases. We then
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Fig. 1: Integrated elastic cross sections for all vector mesons at W=90 GeV, as functions ofQ2 +M2
V . Our theoretical

calculations with the stochastic vacuum model represent well the data, covering several orders of magnitude, without
free parameters. The lines can be parametrized as sum of two terms of form a/(Q2 +M2

V )n.

have the convenient form of parametrization

δ(Q2) = 0.32 + 1.36
(1 +Q2/M2

V )n

A + (1 +Q2/M2
V )n

. (1)

Our model has definite predictions for the t dependence of differential cross sections, with a
curvature in the log plot, shown in Fig. 4 and described by the form

dσ

d|t| =

[
dσ

d|t|

]

t=0

× F (|t|) =

[
dσ

d|t|

]

t=0

× e−b|t|

(1 + a|t|)2
. (2)

As the virtuality Q2 grows, the ranges of the overlap functions decrease, and the electro-
production cross sections of all mesons become flatter, all tending together to the shape charac-
teristic of the Υ meson, with same limiting values a = 4.02 GeV2 and b = 1.60 GeV2 for the
parameters. The limiting shape of the distribution for very large Q2 is illustrated in Fig. 5, where
we see all vector mesons superposed. In the figure we draw the bit of straight line representing
the slope considered as the average for the interval from |t| = 0 to |t| = 0.2 GeV2. As indicated
inside the plots, the calculations of form factors presented in the figures are made for W = 90
GeV. In the second plot presented in Fig. 5 we show the (absence of) dependence of the form
factor on the energy W. Thus we predict that there is no shrinking of the forward peak in dσ/d|t|
as the energy increases. The experimental data are not yet sufficient to test all these predictions.

2 Final remarks

We have shown the predictions for elastic electroproduction processes using two basic ingredi-
ents:
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Fig. 2: Extraction of factors given by the squares of the electric charges of the quarks reduce the cross sections

of the vector mesons nearly to a single quantity, exhibiting an interesting universality. As shown in the right hand

side, the universality is still neater when the extracted factor is the electromagnetic coupling fV of the qq̄ pair to the
electromagnetic current. This coupling is used to fix the value of the vector meson wave function at the origin.

1) the overlaps of photon and meson wave functions, written as packets of quark-antiquark
dipoles, with protons described also as packets of dipoles (in a convenient diquark model for
the nucleon),
2) the interaction of two dipoles described in terms of geometric variables in an impact parameter
representation of the amplitudes based on nonperturbative properties of the QCD gluon field.

These quantities put together and integrated over the distribution of dipoles in initial and
final states lead to a correct description of the data concerning all vector mesons.

In all cases the variations with energy are very well described by the Regge picture, with
soft and hard pomerons coupled to large and small dipoles, respectively.

Each of the different mesons enter in the calculation characterized only by the masses and
charges of its quark contents, and with their normalized wave function individualized only by
the corresponding electromagnetic decay rate (related to the value of the wave function at the
origin).

The specific nonperturbative input is the stochastic vacuum model, which has been suc-
cessfully applied in many fields, from hadron spectroscopy to high energy scattering. The basic
interaction of two dipoles depends only on universal features of the QCD field, which are the
numerical values of the gluon condensate and of the correlation length of the finite range corre-
lations. These two quantities have been determined by lattice investigations and tested indepen-
dently in several instances of phenomenological use of the dipole-dipole interaction.

As has already been pointed out [10], the main features of the Q2 dependence of elec-
troproduction of vector mesons are contained in the overlap integral of photon and meson wave
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electroproduction is shown, compared with the data.

functions.

Our calculation gives a fair overall description of all observables of vector meson produc-
tion: the energy dependence, the Q2 dependence, the ratio of longitudinal to transverse mesons
and the angular distribution. All results were compared to the large amount of HERA data for
ρ, ω, φ, J/ψ and Υ mesons.
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Vector meson electroproduction within GPD approach
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Abstract
We analyze electroproduction of light vector meson at small Bjorken
x within the generalized parton distribution (GPD) approach. Calcula-
tion is based on the modified perturbative approach, where the quark
transverse degrees of freedom in the hard subprocess are considered.
Our results on the cross section are in fair agreement with experiment
from HERMES to HERA energies.

1 Introduction

In this report, we investigate vector mesons electroproduction at small Bjorken x on the basis
of the GPD approach [1, 2]. At large Q2 the leading order amplitude with longitudinal photon
and vector meson polarization (LL amplitude) dominates and factorizes [3] into a hard meson
leptoproduction off partons and GPDs, Fig.1. Other transition amplitudes are suppressed by

���������� 	 ��
�������� 	

� � �� � � 	 � 
�� ��  � 	

� ��
��������

Fig. 1: The handbag diagram for the meson electroproduction off proton.

powers of 1/Q and have singularities [4] in the collinear approximation. This leads to problems
with factorization of these amplitudes.

In this report, we analyse LL amplitude of vector meson electroproduction at large Q2.
In contrast to [1], where the gluon dominated region x ≤ 0.01 was considered, we extend here
our analysis to x ≤ 0.2 [2]. This range covers the energy region from HERMES to HERA
energies. Our model is based on the modified perturbative approach (MPA) [5] which includes
the quark transverse degrees of freedom accompanied by Sudakov suppression. The transverse
quark momentum regularizes the end-point region of the amplitudes. The x ∼ 0.2 range study
requires inclusion of the sea and valence quark GPDs in our analysis. It is shown that in our
model we obtain a fair description of HERMES, H1 and ZEUS data [6–8] for electroproduced ρ
and φ mesons at small x [2].
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2 Leptoproduction of Vector Mesons in the GPD approach

The parton contribution to the photoproduction amplitudes γ∗p→ V pwith positive proton helic-
ity reads as a convolution of the hard subprocess amplitudeHV and unpolarized H i and polarized
H̃i GPDs :

MV
µ′+,µ+ =

e

2
CV

∑

λ

∫
dxHV iµ′λ,µλHi(x, ξ, t), (1)

where i denotes the gluon and quark contribution, µ (µ′) is the helicity of the photon (meson), x
is the momentum fraction of the parton with helicity λ, and the skewness ξ is related to Bjorken-
x by ξ ' x/2. The flavor factors are Cρ = 1/

√
2 and Cφ = −1/3. The polarized GPDs H̃i at

small x are much smaller than the unpolarized GPDsH i and they are unimportant in the analysis
of the cross section.

The subprocess amplitude HV is represented as the contraction of the hard part F which
is calculated perturbatively and the non-perturbative meson wave function φV which depends on
the transverse quark momenta k⊥ in the vector meson

HVµ′λ,µλ =
2παs(µR)√

2Nc

∫ 1

0
dτ

∫
d 2k⊥
16π3

φV (τ, k2
⊥) F±µ′µ. (2)

The wave function is chosen in the simple Gaussian form

φV (k⊥, τ) = 8π2
√

2Nc fV a
2
V exp

[
−a2

V

k 2
⊥
τ τ̄

]
, (3)

which leads after integration over k⊥ to the asymptotic wave function. Here τ̄ = 1 − τ , fV is
the decay coupling constant and the aV parameter determines the value of average transverse
momentum of the quark.

In calculation of the subprocess within the MPA [5] we keep the k2
⊥ terms in the denomi-

nators of the hard amplitudes. The gluonic corrections in hard subprocess are treated in the form
of the Sudakov factors which additionally suppress the end-point integration regions.

The GPD is a complicated function which depends on three variables. We use the double
distribution form [9]

Hi(x, ξ, t) =
∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(β + ξ α− x) fi(β, α, t), (4)

with the distribution function

fi(β, α, t) = hi(β, t)
Γ(2ni + 2)

22ni+1 Γ2(ni + 1)
[(1 − |β|)2 − α2]ni

(1− |β|)2ni+1
. (5)

Here

hg(β, 0) = |β|g(|β|) ng = 2
hqsea(β, 0) = qsea(|β|)sign(β) nsea = 2
hqval(β, 0) = qval(β)Θ(β) nval = 1, (6)
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where g and q are ordinary gluon and quark PDFs.

For the parton distribution the simple Regge ansatz is used

hi(β, t) = eb0tβ−(δi(Q
2)+α′t) (1− β)2ni+1

3∑

j=0

cji β
j/2. (7)

The parameter δi(Q2) is connected with the corresponding Regge trajectory. For example, for
gluon we have

δg(Q2) = αP (0)− 1 = 0.1 + 0.06 ln (Q2/Q2
0), Q2

0 = 4GeV2, (8)

which determines the behavior of the gluon distribution at low x and the energy dependence of
the cross section at high energies. The parameter α′ in (7) is a slope of the Regge trajectory
αi(t) = αi(0) + α′it. The other parameters in (7) are taken from comparison with the CTEQ6M
parameterization [10].

The valence quark sea differs from the strange sea. The simple model is used

Hu
sea = Hd

sea = κsH
s
sea, (9)

which is in correspondence with the CTEQ6 results. The flavor symmetry breaking factor is
chosen in the form

κs = 1 + 0.68/(1 + 0.52 ln (Q2/Q2
0) (10)

which fits well CTEQ6M PDFs.
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Fig. 2: GPDs (a) Hg, (b) xHs
sea, (c) Hu

val vs. x for some values of skewness. GPDs are shown at t = 0 and scale
Q2 = 4GeV2

The model results for gluon and quark GPDs for different values of skewness are shown
in Fig. 1.

VECTOR MESON ELECTROPRODUCTION WITHIN GPD APPROACH

41



3 Longitudinal cross section

Now we have all ingredients to calculate cross sections. Estimations for the vector meson
production are obtained using fρL = 0.209 GeV, aρL = 0.75 GeV−1; fφL = 0.221 GeV;
aφL = 0.7 GeV−1. The value of the diffractive peak slope can be found in [2]. The longitudinal
cross section for the ρ and φ production integrated over t is shown in Fig. 3 at HERA energies.
In this energy range the valence quark effects are unimportant. In Fig. 3a, the cross section of
ρ production is shown together with the individual contributions to the cross section: gluon con-
tribution, the gluon-sea-quark interference, and quark contribution. It can be seen that a typical
contribution of the interference to σL does not exceed 50% with respect to the gluon one. Thus,
the gluon term really gives the predominant contribution to the cross section [11] and we find
good agreement of our results with the H1 and ZEUS experiments [7, 8] at HERA.

The model results for the φ production cross section shown in Fig. 3b are consistent with
the H1 and ZEUS data [7, 8]. In φ production the gluon-sea quark interference contribution to
the cross section does not exceed 25%. Note that the uncertainties in the GPDs provide errors in
the cross section about 25− 35% which are shown in Fig. 3b for φ production. The ρ production
cross section in Fig. 3a has the similar uncertainties. They are of the same order of magnitude as
the gluon-sea interference. The leading twist results which do not consider effects of transverse
quark motion, are presented in Fig. 3b too. One can see that the k2

⊥/Q
2 corrections in the hard

amplitude denominators are extremely important at low Q2. They decrease the cross section by
a factor of about 10 at Q2 ∼ 3GeV2. The role of these corrections at Q2 ∼ 40GeV2 is not so
essential-about 40%.

4 6 8 10 20 40

100

101

102

103

Q2 [GeV2]

σ
 L

(γ
*  p

->
ρ 

p
) 

 [
n

b
]

 

 

4 6 8 10 20 40
10-1

100

101

102

Q2 [GeV2]

σ
 L

(γ
* p

->
φp

) 
 [

n
b

]

 

 

(a) (b)

Fig. 3: (a) Longitudinal cross sections of ρ production at W = 75GeV. Full line cross section, dashed- gluon contri-

bution, dashed-dot - gluon-sea interference, dotted line -sea contribution. (b) Full line- longitudinal cross sections of

φ production atW = 75GeV with error band from CTEQ PDF uncertainties. Dashed line -leading twist results. Data

are from H1 and ZEUS.

Let us discuss the energy dependence of the cross section. At small x where only gluon
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and sea contribute it behaves as
σL ∝W 4δ(Q2), (11)

where the power δ is determined in (8). At larger x the valence quark contribution should play an
important role. In Fig. 4a, we show our results for the ρ- production cross section atQ2 = 4GeV2

in a wide energy range. Together with the gluon contribution, the gluon + sea and interference of
valence quark with gluon + sea plus valence quark contribution to the cross section are shown.
It can be seen that for energies above W ≥ 10GeV the gluon and sea effects well reproduce the
cross section. At HERMES energies W ∼ 5GeV the valence quarks contribution is important.
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Fig. 4: (a) Longitudinal cross sections of ρ production at Q2 = 4GeV2 as a function of W . Full line cross section,

dashed- gluon contribution, dashed-dot - gluon+sea, dashed dot dotted- (gluon+sea)-valence interference plus valence

contribution. (b) The ratio of φ/ρ cross sections via Q2. Full line- W = 75GeV, dashed line -W = 5GeV. Data are

from H1 and ZEUS and HERMES.

For ρ production the interference of valence quarks with gluons and sea contribution give of about
40% contribution to the cross section at W ∼ 5GeV. At COMPASS energies W ∼ 10GeV the
valence quarks give only about 10% contribution to the cross section. Thus, COMPASS physics
is very close to asymptotic HERA energies.

The ratio of the φ/ρ cross sections at HERA energies W = 75GeV is shown in Fig. 4b. It
is obvious that if the quark sea does not contribute (or sea is symmetric), this ratio is determined
by the flavor factors in (1) and should be equal to σ(φ)/σ(ρ) = 2/9. The HERA data show a
strong deviation of this ratio from 2/9 value. In our model, this violation at HERA energies and
low Q2 finds a natural explanation by the flavor symmetry breaking factor (10) effect. At high
Q2 the κs factor goes to 1 and the ratio of the cross section is close to the σ(φ)/σ(ρ) = 2/9 limit.
Thus, we can conclude that the Q2 dependence of the σ(φ)/σ(ρ) ratio is completely determined
by the flavor symmetry breaking factor κs. It cannot be explained if one does not consider the
quark sea contribution. At HERMES energies the valence quarks contribution in ρ production
gives an additional suppression the of σ(φ)/σ(ρ) ratio -see Fig. 4b.
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4 Conclusion or Summary

We have analyzed electroproduction of light mesons at small Bjorken-x in the handbag model
where the process amplitudes are factorized into the GPDs and a partonic subprocess. The sub-
process was calculated [2] within the modified perturbative approach where the transverse mo-
menta of the quark and antiquark as well as Sudakov corrections were taken into account. These
effects suppress the contributions from the end-point regions where one of the partons entering
into the meson wave function becomes soft and factorization breaks down in the collinear ap-
proximation. It is found that the GPD approach gives a fine description of the longitudinal cross
section for light meson production. The power corrections ∼ k2

⊥/Q
2 in propagators of the hard

amplitude play an extremely important role at low Q2. Inclusion of these corrections gives a
possibility to describe experimental data properly.

The gluonic contribution plays an essential role for all energies W > 5GeV in vector
meson electroproduction. The gluon-sea interference is about 30(50)% for φ (ρ) production.
Valence quarks contribute only for W < 10GeV. For the ρ production at HERMES energies
W ∼ 5GeV, valence quarks give about 40% effect in the cross section. At COMPASS W ∼
10GeV their contribution is about 10% only. The flavor symmetry breaking of the sea naturally
explain the deviation of the σ(φ)/σ(ρ) ratio from the asymptotic limit equal to 2/9 at HERA
energies at low Q2.

Thus, we can conclude that in different energy ranges, information about quark and gluon
GPDs can be extracted from the cross section of the vector meson electroproduction. This reac-
tion at small x and large Q2 is an excellent tool to study the gluon and quark GPDs.

This work is supported in part by the Russian Foundation for Basic Research, Grant 06-
02-16215 and by the Heisenberg-Landau program.
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Abstract
We discuss two aspects of the color dipole picture of high energy
photon-proton scattering. First we present bounds on various ratios
of deep inelastic structure functions resulting from the dipole picture
that, together with the measured data, can be used to restrict the kine-
matical range of its applicability. The second issue that we address is
the choice of energy variable in the dipole-proton cross section.

1 The dipole picture of high energy photon-proton scattering

The color dipole picture of high energy photon-proton scattering (or more generally photon-
hadron scattering) [1, 2] has been a very popular and successful framework for the analysis of
structure function data measured at HERA. In the dipole picture the photon-proton scattering
is viewed as a two-step process. In the first step the real or virtual photon splits into a quark-
antiquark pair – a color dipole – of size r = |r| in the two-dimensional transverse plane of
the reaction. The probability for this splitting to happen is encoded in the so-called photon
wave function ψ

(q)
T,L(α, r, Q), where Q2 is the photon virtuality, α denotes the fraction of the

longitudinal momentum of the photon that is carried by the quark, and q indicates the quark
flavor. In leading order in the electromagnetic and strong coupling constants αem and αs the
squared photon wave functions for transversely (T ) and longitudinally (L) polarized photons are
given by

∣∣∣ψ(q)
T (α, r, Q)

∣∣∣
2

=
3

2π2
αemQ

2
q

{[
α2 + (1− α)2

]
ε2q [K1(εqr)]2 +m2

q [K0(εqr)]2
}

(1)

and ∣∣∣ψ(q)
L (α, r, Q)

∣∣∣
2

=
6
π2

αemQ
2
qQ

2[α(1 − α)]2[K0(εqr)]2 , (2)

respectively. Here mq is the quark mass for flavor q, Qq the corresponding electric charge, and

εq =
√
α(1 − α)Q2 +m2

q . K0,1 denote modfied Bessel functions, and we have summed over the
polarizations of the quark and antiquark. Integrating over the longitudinal momentum fraction α
we obtain a density for the photon wave function,

w
(q)
T,L(r,Q2) =

∫ 1

0
dα
∣∣∣ψ(q)
T,L(α, r, Q)

∣∣∣
2
. (3)

†speaker
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It gives the probability that a highly energetic, transversely or longitudinally polarized photon of
virtuality Q2 splits into a quark-antiquark dipole of flavor q and size r.

In the second step of the reaction, the color dipole of size r scatters off the proton. Here
the dipole is assumed to consist of an on-shell quark and antiquark and is treated as a hadron-like
state. The second step is expressed in terms of the dipole-proton cross section σ̂ (q)(r,W 2) which
naturally depends on the quark flavor, the size of the dipole, and on the c.m.s. energy W of this
subprocess. The two steps of the photon-proton reaction are then connected by integrating over
the size and orientation of the intermediate dipole state and by summing over quark flavors to
obtain the total γ(∗)p cross section,

σT,L(W 2, Q2) =
∑

q

∫
d2r w

(q)
T,L(r,Q2) σ̂(q)(r,W 2) . (4)

In general, the dipole cross section σ̂ cannot be calculated from first principles. Instead,
one uses models for σ̂ that implement certain features like saturation etc., and then fits the param-
eters of these models to measured data for the total structure function F2, given for W 2 � Q2

and W 2 � m2
p by F2(W,Q2) = Q2[σT (W 2, Q2) + σL(W 2, Q2)]/(4π2αem).

The dipole picture is not exact. Its derivation from a genuinely nonperturbative formulation
of photon-proton scattering – or, in other words, its foundations in quantum field theory – have
been studied in [3, 4]. As a key result of those papers the assumptions and approximations are
spelled out in detail which are necessary to arrive at the usual dipole picture outlined above.
In particular it was possible to identify correction terms which are potentially large in certain
kinematical regions. As with any approximate formula it is important to determine as precisely
as possible its range of applicability – in the case of the dipole picture the kinematical range in
which potential corrections to the formulae given above are small. We will address this issue in
the next two sections.

Note that the energy variable in the dipole-proton cross section σ̂ is W 2. However, many
popular models for σ̂ use Bjorken-x, x = Q2/(W 2 + Q2), instead. We will discuss the choice
of energy variable in section 4 below.

2 Bound on R = σL/σT

The densities wT,L are obviously non-negative (see (3)), and the same holds for the dipole cross
sections σ̂(q), since they are supposed to describe the physical scattering process of a dipole on
a proton. We notice that in the formula (4) for the cross sections σL and σT the corresponding
densities w(q)

L and w(q)
T are convoluted with the same dipole cross section σ̂(q). Based on these

observations one can derive bounds on the ratio R = σL/σT [4, 5] from the dipole picture. The
ratio of two integrals with non-negative integrands cannot be smaller (larger) than the minimum
(maximum) of the ratio of the integrands. Applied to the cross sections σL and σT of (4) this
implies

min
q,r

w
(q)
L (r,Q2)

w
(q)
T (r,Q2)

≤ R(W 2, Q2) ≤ max
q,r

w
(q)
L (r,Q2)

w
(q)
T (r,Q2)

. (5)

Note that here the dipole cross sections σ̂(q) drop out. Consequently, these bounds depend only
on the well-known wave functions for longitudinally and transversely polarized photons. Let us
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Fig. 1: Comparison of experimental data for R = σL/σT in the region x < 0.05 with the bound (6) resulting from

the dipole picture. Full points correspond to data with x < 0.01, open points are data with 0.01 < x ≤ 0.05.

point out that these bounds on R are independent of the choice of energy variable (W 2 or x)
in the dipole cross section σ̂. Evaluating the bounds (4) we find that the lower bound is trivial
(R ≥ 0), and the upper bound has the numerical value

R(W 2, Q2) ≤ 0.37248 . (6)

This bound has to be satisfied in the kinematical region in which the dipole picture is applicable.
A violation of the bound in some kinematical region, on the other hand, would indicate that the
dipole picture cannot be used there.

The bound (6) is confronted with the experimental measurements of R in Fig. 1, where
only data points with x < 0.05 are included. The data have rather large error bars and seem
to respect the bound. However, in the kinematical region of Q2 < 2 GeV2 the data appear to
come very close to the bound – a situation that could hardly be accomodated with a realistic
dipole cross section σ̂. The application of the dipole picture in this interesting region (in which
possible saturation effects are expected to become manifest) might therefore be questionable.
Unfortunately, there are no HERA data on R available which could clarify this important point.
For a detailed discussion and references to the corresponding experimental publications see [4,5].

3 Bounds on ratios of F2 at different Q2

In analogy to the derivation of the bound on R discussed above one can also obtain bounds
on other ratios of deep inelastic structure functions. We can for example consider the ratio of
structure functions F2 taken at the same energy W but at different photon virtualities Q2. In [5,6]
it was shown that for such a ratio one can derive the inequalities

Q2
1

Q2
2

min
q,r

w
(q)
T (r,Q2

1) + w
(q)
L (r,Q2

1)

w
(q)
T (r,Q2

2) + w
(q)
L (r,Q2

2)
≤ F2(W,Q2

1)
F2(W,Q2

2)
≤ Q2

1

Q2
2

max
q,r

w
(q)
T (r,Q2

1) + w
(q)
L (r,Q2

1)

w
(q)
T (r,Q2

2) + w
(q)
L (r,Q2

2)
.

(7)
Note that for these bounds to be valid it is essential that the energy variable in the dipole cross
section σ̂ is indeed W 2, in particular, σ̂ must not depend on Q2. These bounds are independent
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2) for Q2
2 = 10 GeV2 and the corresponding fit to HERA data for

three different values of W . Data in the shaded region cannot be described in the usual dipole picture.

of any other assumptions about the dipole cross section σ̂, and are in fact given in terms of the
photon wave functions only. They also do not depend on the energy W .

In this case both the upper and the lower bound are non-trivial. Both bounds are shown
in Fig. 2 for the choice Q2

2 = 10 GeV2. In the dipole picture the shaded area is excluded. Also
in that Figure we show the corresponding HERA data for three different energies W . More pre-
cisely, we show the ratios resulting from the ALLM97 fit [7] to the data. Within the experimental
errors this fit can be regarded as a substitute of the data and is more convenient to use for a
comparison with our bounds. (Note that we use this fit only within the kinematical range of the
actual data.) As can be seen in the Figure the data violate the bound (7) at large Q2 while the
bound is respected at low Q2. We can therefore obtain a maximal photon virtuality Q2

max beyond
which the dipole picture breaks down. (In order to obtain an optimal value we have also varied
the reference scale Q2

2.) The W -dependence of this maximal Q2 is shown as the dashed line in
Fig. 3. As expected, the dipole picture can be used up to higher Q2 for larger values of W .

In [6] we have considered correlated ratios of F2-structure functions taken at the same
energy W but at three different photon virtualities Q2

i . It turns out that we can derive bounds
on these correlated ratios from the dipole picture which are stronger than the bound discussed
above. These bounds can be obtained from elementary geometrical considerations, but space
limitations prevent us from presenting them here. We refer the interested reader to [6] for a
detailed description. Using those methods we can show, for instance, that F2(W,Q2

1)/F2(W,Q2
3)

is restricted to a certain range that in turn depends on the value of F2(W,Q2
2)/F2(W,Q2

3). Also
these correlated bounds do not involve any model assumptions about the dipole cross section
σ̂ and are entirely given in terms of the photon wave functions. By confronting the correlated
bounds with the ALLM97 fit to HERA data we have been able to restrict even further the range
in Q2 allowed by the dipole picture. More precisely, we have obtained a Q2

max up to which the
three values Q2

i can be chosen arbitrarily without giving rise to a violation of the bound by the
corresponding data. In Fig. 3 the W -dependence of this Q2

max is shown as the solid line. The
correlated bounds give a stronger restriction on the kinematical range in which the dipole picture
can be used as compared to the bound on the plain ratios (7).
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4 The energy variable in the dipole cross section

Let us finally turn to the choice of energy variable in the dipole cross section σ̂. Recall that the
photon wave function describes the probability that a photon of virtuality Q2 splits into a dipole
of size r. Clearly, for a given Q2 dipoles of all possible sizes r can emerge, with probabilities
given by (1), (2) and (3). It is therefore not possible to extract Q2 from the dipole size r. Let us
further recall that the second step of the scattering process in the dipole picture is the scattering
of the dipole of size r on the proton. This dipole is fully characterized by r (and – less relevant
here – its longitudinal momentum, α and the spin orientations). The dipole-proton cross section
σ̂, understood as an actual scattering process of its own, can only depend on the properties of
the initial state, namely the dipole and the proton. In particular, it cannot depend on the photon
virtuality Q2. Hence σ̂ cannot be a function of Bjorken-x which can only be calculated with the
knowledge of Q2. For a more formal presentation of this argument see [4].

It is an interesting observation, on the other hand, that in the recent past almost all phe-
nomenologically successful models for the dipole cross section use x as its energy variable. The
most prominent example is the Golec-Biernat-Wüsthoff (GBW) model [8], for further references
see [3, 4]. It is often argued that the probability distribution of dipole sizes has a maximum at
r ' C/Q (where C ' 2.4), and that therefore one can effectively replace the dipole size r in σ̂
by its most likely value. The value Q2 in x is then interpreted as corresponding to this most likely
dipole size r,Q = C/r. In Fig. 4 we have inverted this procedure for the case of the GBW model,
that is we have reconstructed a W - but not Q2-dependent σ̂ from its x-dependence. Here we plot
again the ratio F2(W,Q2

1)/F2(W,Q2
2), with the choice W = 60 GeV and Q2

2 = 10 GeV2, in
order to compare with the bound (7). The effect of replacing Q → C/r turns out to be sizable,
especially at large Q2. The modified model by construction respects the bound (7), while the
original GBW model strongly violates it at large Q2. The considerable difference between the
two arises because the peak of the distribution of dipole sizes is actually rather broad, such that
using only its maximum value is in fact not a good approximation.
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Fig. 4: Ratios of structure functions for the GBW model [8] (x-dependent dipole cross section, dashed line) and for a

modification of the model with a W -dependent dipole cross section (dotted line) in comparison with the bounds (7).

Strictly speaking, the use of x instead of W in the dipole cross section is incorrect in the
dipole picture. Phrased positively, it is actually a step beyond the dipole picture to use an x-
dependent dipole cross section σ̂. The better agreement of the x-dependent models of the dipole
cross section with the data seems to indicate that some important corrections to the dipole picture
are effectively taken into account by using x as the energy variable. In our opinion it would be
very interesting to identify and to understand these additional contributions.

5 Conclusions

The dipole picture of high energy photon-proton scattering is only an approximation. We have
derived various bounds on ratios of structure functions from the dipole picture, and have used
these bounds to restrict the kinematical range of applicability of the dipole picture. One should
analyse the data in the framework of the dipole picture only within this allowed range if one
wants to arrive at firm conclusions. Further, we have discussed the choice of energy variable in
models of the dipole cross section. We have pointed out that this issue is more delicate than has
previously been assumed and certainly deserves to be studied in more detail.
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What is Measured in Hard Exclusive Electroproduction?

J.T. Londergan†and A.P. Szczepaniak
Department of Physics and Nuclear Theory Center
Indiana University, Bloomington, IN 47405, USA

Abstract
We examine the relation between amplitudes measured in exclusive
lepto-production and the quark content of the nucleon. We show that
in the limit of high energy and small t, the natural interpretation of
amplitudes measured in these hard exclusive processes is in terms of
the quark content of the meson cloud and not the target itself. In this
regime, Regge amplitudes will make a significant contribution to these
exclusive amplitudes. This leads to violation of QCD scaling.

1 Theoretical Analysis of Exclusive Electroproduction

Recently there has been much interest in hard exclusive reactions. This followed from the proof
of factorization by Collins et al. [1] for exclusive lepto-production. The proof guarantees that
under certain conditions, the exclusive amplitude can be factorized into a hard term calculable
from QCD and a soft term that ideally should be universal. This latter contribution has typically
been parameterized by generalized parton distributions or GPDs [2–4]. This is analogous to
the case of deep inelastic scattering (DIS), where inclusive cross sections can be parameterized
in terms of universal parton distribution functions (PDFs) that are related to quark probabilities
in the nucleon. The only difference is that in hard exclusive processes the amplitude typically
requires an integral over the GPDs.

From duality we know that it is in principle possible to use any channel to describe the
scattering amplitude. In DIS it is known that the s-channel representation is generally the most
efficient way to characterize these reactions. The only exception to this occurs at very small
Bjorken xBJ → 0. Except in this small-x regime, DIS amplitudes can be related to the intrinsic
quark structure of the nucleon. At very small x, amplitudes associated with t-channel processes
will become important; as xBJ → 0 the structure function evolves to represent ladders of partons
originating from t-channel meson exchanges, and Regge exchange makes an important contribu-
tion in this regime.

Once it was realized that Regge exchange may play a significant role in exclusive electro-
production, attempts have been made to incorporate Regge effects using analogies with DIS, i.e
to restrict Regge contributions in exclusive electroproduction reactions to low-xBJ so that scaling
is not otherwise modified [5–8]. It had not been proven that Regge contributions should only con-
tribute to exclusive amplitudes in this domain. We will investigate the question of whether Regge
effects should be substantial in hard exclusive processes and if so, in what kinematic regime they
will be important. Rather surprisingly, we find that, at high energies when Q2 is large and t
small, Regge effects will be significant. This implies that in this region, hard exclusive processes
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will be more sensitive to the structure of exchanged mesons than they are to the intrinsic quark
structure of the nucleon.

We first investigated this question by examining hard exclusive processes in a t-channel
formalism, as was reported in a recent paper [9]. Consider a general hard exclusive amplitude

a∗(q) +N(p)→ b(q′) +N(p′) . (1)

In exclusive electroproduction a∗(q) is a virtual photon with momentum q, where −q2 = Q2. In
Eq. (1), N(p), N(p′) represent the initial and final nucleons with momenta p and p′, respectively.
In the Bjorken limit we have p2 = p′2 = m2

N � Q2, and b(q′) denotes a final photon or meson
with momentum q′ satisfying 0 ≤ q′2 ∼ m2

N � Q2. As is well known, DIS cross sections are
proportional to the imaginary part of the forward virtual Compton amplitude; this is a special
case of Eq. (1) when p′ = p and q′ = q.

In Ref. [9] we examined the contribution to this exclusive amplitude arising from exchange
of a particle of spin J in the t-channel. For simplicity we ignored spin and other internal degrees
of freedom and assumed only scalar currents. The hadronic contribution to the cross section is
determined from the hadronic tensor,

T (Q2, ν, t, q′2) =
∫
d4zei

q+q′
2
z〈p′|T

[
j(
z

2
)j(−z

2
)
]
|p〉. (2)

In Eq. (2) T is a function of four independent Lorentz scalars with ν = p·q/mN = Q2/(2xBJmN ),
t = (p′−p)2 = (q−q′)2, and j(z) = φ†(z)φ(z) represents a (scalar) quark current in the Heisen-
berg picture which couples to the external fields representing the a and b particles in Eq. (1).

In the limit of high energy the contribution to the hadronic tensor from t-channel exchange
of a spin-J meson is proportional to

TJ =
βlJ (t)βuJ (q2, q′2, t)

t−M2
J

J∑

λ=−J

[
(p′ + p)µ1

2
· · · (p

′ + p)µJ

2
ελµ1···µJ (p′ − p)

]

×
[

(q′ + q)ν1

2
· · · (q

′ + q)νJ

2
ε∗λν1···νJ (p′ − p)

]
.

(3)

In Eq. (3), ε is the spin-J polarization vector, and β lJ and βuJ are the residue functions at the
lower and upper vertex, respectively. This is shown schematically in Fig. 1. In the Bjorken limit,
s→ Q2(1− xBJ )/xBJ and the amplitude reduces to

TJ =
βlJ(t)βuJ (q2, q′2, t)

t−M2
J

(
Q2

2xBJ

)J
. (4)

The key question is how the upper residue function depends on the large variables (Q2 and
−q′2 = Q2 in the case of inclusive processes, and Q2 for the exclusive amplitudes). It is well
known that for kinematics relevant to inclusive scattering, the upper residue function behaves as
(1/Q2)J+1, modulo logarithmic corrections, so that the amplitude scales, Q2TJ ∝ (1/xBJ )J ,

J LONDERGAN, A.P SZCZEPANIAK

52



= Σ
J,n

+m +m∆
2

q’ = 

p p’

2
∆ +k

2
+k

2
J,nβu

βJ,n
(t)l

q = −
∆ _

_ ∆_

2(q ,q’,t)

−

2
_

Fig. 1: t-channel meson contribution to the hadronic tensor for exclusive lepto-production. The amplitude is summed

over all spins J that can contribute, and depends on the product of the residue functions β at the upper and lower

vertices.

as expected [10–13]. Summing over all spins leads to the Regge behavior, Q2T =
∑
J TJ ∝

(1/xBJ )α(0). In the small xBJ → 0 limit in DIS, the leading Regge trajectory with α(0) > 0 will
dominate the behavior of the hadronic tensor, while all daughter trajectories with αn(0) < α(0)
are subleading at very small x. For finite xBJ , however, daughter Regge trajectories are no longer
suppressed, and as a result the Regge description becomes ineffective while the s-channel parton
model description becomes natural.

The situation is quite different for exclusive electroproduction. This can be shown by
writing the contribution of a t-channel spin J exchange in terms of the two-current correlation
in the exchanged meson. This can be expanded in terms of a covariant Bethe-Salpeter amplitude
for the exchanged meson, represented in terms of the spectral density gJn. The spectral density is
related to the parton distribution amplitude in a meson and can in principle be constrained from
electromagnetic data [14] and QCD asymptotics [15]. In the Bjorken limit, using the Feynman
parametrization for the quark propagators and ignoring small terms we showed that the upper
vertex function could be written [9]

βuJn =
∫ 1

−1
dx

∫
dµ2gJn(x, µ2)

∫ 1

0
dα

αJ
[
−α

(
q′2+q2

2 + x q
′2−q2

2

)
+ µ2

]n+J−1
.

(5)

For inclusive amplitudes when q′2 = q2 = −Q2, the x disappears from the denominator and
the integration over α is dominated by α ∼ µ2/Q2. As a result, the entire integral is of order
(µ2/Q2)J+1, as we argued earlier.

For exclusive amplitudes however where q ′2 ∼ 0, the integrand of Eq. (5) is dominated by
the region 1−x = O(µ2/Q2), and finite α. The endpoint behavior of the distribution amplitudes
gnJ is spin independent, and for leading-twist amplitudes gJn(x → 1) ∼ (1 − x). This leads to
a J -independent suppression of the upper vertex with Q2, βuJn ∼ O(µ4/Q4) independent of the
spin of the exchanged meson. Upon summing over all spins from a single trajectory one finds
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that for small t the hadronic tensor is proportional to (Q2/xBJ )α(t). Thus, in the Bjorken limit
exclusive lepto-production should be dominated by a single leading Regge trajectory for all xBJ ,
and not just for xBJ → 0. In this regime hard exclusive processes probe the nucleon’s meson
cloud rather than its intrinsic quark properties.

Since this result was rather surprising, we repeated the derivation of hard exclusive am-
plitudes in an s-channel framework [16], where we analyzed the “handbag” diagrams used in
extracting GPDs. We obtained the same results, namely that in the region of high energy and
small t, Regge effects will make sizeable contributions to hard exclusive amplitudes. We showed
that the DVCS formalism is ill-defined in the presence of Regge behavior in the parton-nucleon
amplitude. This has the following consequences for hard exclusive processes.

1. The breakdown of collinear factorization in these processes means that the soft amplitudes
are not universal, but are process-dependent amplitudes that we call Regge Exclusive Am-
plitudes.

2. The validity of QCD factorization for exclusive lepto-production will require, in addition
to a hard scale Q2, a sizeable value of t.

3. In the region of small t Regge effects will make substantial contributions to DVCS and
exclusive meson lepto-production.

4. Exclusive lepto-production processes will show violation of QCD scaling arguments. These
scaling violations will persist regardless of the magnitude of Q2, in contradiction to expec-
tations of QCD scaling.

5. In the region of small t hard exclusive amplitudes will exhibit aQ2 behavior (Q2/xBJ )α(t)

characteristic of hadronic Regge amplitudes. These amplitudes should be well approxi-
mated by the contribution from the leading Regge trajectory.

2 Experimental Support for Regge Exchange

Recently a Hall A Collaboration at Jefferson Laboratory has carried out a test of scaling in
DVCS reactions [17]. The data appear to be in very good agreement with the Q2-independent
DVCS amplitude predicted by QCD [18], however the available Q2 window is quite small, from
1.5 − 2.5 GeV2 and within the published experimental errors one cannot rule out a power-like
dependence of the amplitude, A ∝ (Q2)α, with α as large as 0.25. Even more surprising, ”stan-
dard” Regge-exchange models have proved successful in describing a variety of differential cross
sections [19,20], in the kinematic range where scaling would be expected based on comparisons
with DIS. Our calculations show that the success of the Regge picture is to be expected, and is
not accidental.

A recent experimental analysis of ω electroproduction at Jefferson Laboratory [19] showed
that their data was in good agreement with predictions from standard Regge phenomenology,
while showing large uncertainties with analyses based on models of GPDs [21]. Though our
results were derived in the Bjorken limit with s/|t| � 1, the JLab data corresponds to energies
of a few GeV and values up to |t| ∼ 2.7. In Fig. 2 we compare our predictions with exclusive
meson electroproduction data. QCD scaling arguments predict that the reduced π+ cross section
should fall off at fixed xBJ as 1/Q2. We predict a behavior (Q2)2α−1 with 0 < α < 1. Fitting
π+ data from HERMES [22] in the range 0.26 < xBJ < 0.8 gives α = 0.31 ± 0.2. Similarly
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for ω electroproduction cross section from the CLAS collaboration [19] we find α = 0.34±0.24
for the range 0.52 < xBJ < 0.58.

We see that for both DVCS and exclusive meson electroproduction, not only are scal-
ing violations observed, but the additional Q2 dependence is softer than predicted by scaling,
and is in agreement with our predicted factor of (Q2)α where 0 < α < 1. At this point it is
difficult to compare the Regge exponents α obtained from the fit with total cross-section data,
since the electroproduction data corresponds to different values of t. This issue warrants further
phenomenological study.

In conclusion, we have shown that the Regge nature of parton-nucleon amplitudes gener-
ates divergences in GPDs at low t. In this region we predict sizeable effects due to scattering from
the meson cloud in the nucleon, while at sufficiently large t the dominant effect will come from
scattering of quarks in the nucleon. An important remaining question is how one can disentangle
scattering off the meson cloud from effects of nucleon tomography.

Some of the work here was done in collaboration with F. Llanes-Estrada. The authors
would like to thank S. Brodsky, J-M. Laget, W. Melnitchouk, D. Mueller, A. Radyushkin, M.
Strikman and C. Weiss for useful comments and discussions. JTL was supported by NSF contract
PHY-0555232 and APS by DOE contract DE-FG0287ER40365.
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A Regge-pole model for DVCS
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Abstract
A simple, calculable Regge-pole model for deeply virtual Compton
scattering (DVCS) is presented and confronted with the experimental
data from HERA.

1 Introduction

Interest in deeply virtual Compton scattering (DVCS) ep → eγp to large extent is triggered by
the prospects to use it as a tool in studies of Generalized Parton Distributions (GPD) [1, 2].

At HERA the DVCS cross-section has been measured [3,4], in diffractive ep interactions,
as a function of Q2, W and t that are respectively the photon virtuality, the invariant mass of the
γ∗p system and the squared 4-momentum transferred at the proton vertex; the diagram in Fig. 1a
shows the production of a real photon at HERA.

γ∗(q1)

p(p1)

e+(k1)

p(p2)

γ(q2)

e+(k2)

IP(r), f(r)

p(p1)

γ∗(q1)

p(p2)

γ(q2)

V2(t)

V1(Q
2, t)

1

Fig. 1: a) Diagram of a DVCS event at HERA; b) DVCS amplitude in a Regge-factorized form.

The vertex can be considered as a function of the invariants [Q2, q1 · r] or [t, q1 · r]. This
does not mean that the variables cannot appear separately but it could also happen that q1 · r
become a scaling variable, and consequently the vertex will finally depend on q1 · r only. It
depends on the dynamics of the process and, for the moment, we prefer to keep t, apart from Q2,
as the second independent variable.
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The interplay of theQ2- and t-dependences in the DVCS amplitude was recently discussed
in Ref. [5, 6], where the existence of a new, universal variable z was suggested. The basic idea
is that Q2 and t, both having the meaning of the squared mass of a virtual particle (photon or
Reggeon), should be treated by means of a variable, defined as

z = q2
1 + t = −Q2 + t, (1)

in the same way as the vector meson mass squared is added to the squared photon virtuality,
giving Q̃2 = Q2 +M2

V in the case of vector meson electroproduction.

In this talk, based on our recent publication [6], we examine an explicit model for DVCS
with Q2- and t-dependences determined by the γ∗Pγ vertex. We suggest the use of the new
variable defined in Eq. 1 with its possible generalization to vector meson electroproduction,

z = t− (Q2 +M2
V ) = t− Q̃2 (2)

or virtual photon (lepton pair) electroproduction,

z = t− (Q2
1 +Q2

2), (3)

where Q2
2 = −q2

2 . However, contrary to Ref. [5], here we introduce the new variable only in the
upper, γ∗Pγ vertex, to which the photons couple.

In the next Section we introduce the model. Its viability is supported by the correct
photoproduction- (Q2 = 0) and DIS- (Q2 > 0 and t→ 0) limits and by the fits to the data.

2 The model

According to Fig. 1b, this DVCS amplitude can be written as

A(s, t,Q2)γ∗p→γp = −A0V1(t,Q2)V2(t)(−is/s0)α(t), (4)

where A0 is a normalization factor, V1(t,Q2) is the γ∗Pγ vertex, V2(t) is the pPp vertex and
α(t) is the exchanged Pomeron trajectory, which we assume to be logarithmic:

α(t) = α(0) − α1 ln(1− α2t). (5)

(Here we consider only the helicity conserving amplitude.)

Such a trajectory is nearly linear for small |t|, thus reproducing the forward cone of the
differential cross section, while its logarithmic asymptotics provides for the large-angle scaling
behavior, typical of hard collisions at small distances, with power-law fall-off in |t|, obeying
quark counting rules. We are referring to the dominant Pomeron contribution plus a secondary
trajectory, e.g. the f -Reggeon. Although we are aware of the importance of this subleading
contribution at HERA energies, nevertheless we cannot afford the duplication of the number of
free parameters, therefore we include it effectively by rescaling the parameters. Ultimately, the
Pomeron and the f -Reggeon have the same functional form, differing only by the values of their
parameters.
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For convenience, and following the arguments based on duality (see Ref. [8] and references
therein), the t dependence of the pPp vertex is introduced via the α(t) trajectory: V2(t) = ebα(t)

where b is a parameter. A generalization of this concept will be applied also to the upper, γ ∗Pγ
vertex by introducing the trajectory

β(z) = α(0) − α1 ln(1− α2z), (6)

where the value of the parameter α2 may be different in α(t) and β(z) (a relevant check will be
possible when more data will be available). Hence the scattering amplitude (6), with the correct
signature, becomes

A(s, t,Q2)γ∗p→γp = −A0e
bα(t)ebβ(z)(−is/s0)α(t) = −A0e

(b+L)α(t)+bβ(z) , (7)

where L ≡ ln(−is/s0).

From Eq. (7) the slope of the forward cone is

B(s,Q2, t) =
d

dt
ln |A|2 = 2

[
b+ ln

(
s

s0

)]
α′

1− α2t
+ 2b

α′

1− α2z
, (8)

which, in the forward limit, t = 0 reduces to

B(s,Q2) = 2
[
b+ ln

(
s

s0

)]
α′ + 2b

α′

1 + α2Q2
. (9)

Thus, the slope shows shrinkage in s and antishrinkage in Q2.

3 Photoproduction- and DIS limits

In the Q2 → 0 limit the Eq. (7) becomes

A(s, t) = −A0e
2bα(t)(−is/s0)α(t), (10)

where we recognize a typical Regge-behaved photoproduction (or, for Q2 → m2
H , on-shell

hadronic (H)) amplitude. The related deep inelastic scattering structure function is recovered by
setting Q2

2 = Q2
1 = Q2 and t = 0, to get a typical elastic virtual forward Compton scattering

amplitude:

A(s,Q2) = −A0e
b(α(0)−α1 ln(1+α2Q2))e(b+ln(−is/s0))α(0) ∝ −(1 + α2Q

2)−α1(−is/s0)α(0).
(11)

For not too large Q2 the contribution from longitudinal photons is small (it vanishes for
Q2 = 0). Moreover, at high energies, typical of the HERA collider, the amplitude is dominated
by the helicity conserving Pomeron exchange and, since the final photon is real and transverse,
the initial one is also transverse - to the extent that helicity is conserved. Hence the relevant
structure function is F1 that, at leading order, is related to F2 by the Callan-Gross relation.
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For t = 0 (with x ≈ Q2/s, valid for large s), the structure function assumes the form:

F2(s,Q2) ≈ (1− x)Q2

παe
=A(s,Q2)/s, (12)

where αe is the electromagnetic coupling constant and the normalization is σt(s) = 4π
s =A(s,Q2).

It has the correct (required by gauge invariance) Q2 → 0 limit and obeys Bjorken scaling at large
enough s and Q2.

The model fails at large Q2, where Bjorken scaling is known to be badly violated, and
Regge behavior should be replaced by (or appended with) the DGLAP evolution, as shown,
for example, in Ref. [10]. An explicit model interpolating between Regge behavior at small- and
intermediate Q2 and the approximate solution of the DGLAP equation at large Q2 was developed
in Ref. [11]. In any case, a ”global fit” to DVCS and DIS data would require also the inclusion
of both the longitudinal and transverse photons.

4 Fits to the ep→ eγp data; DIS

A standard procedure for the fit to the HERA data on DVCS [3, 4] based on Eq. (7) has been
performed in [6].

To avoid the introduction of too many parameters, given the limited number of experimen-
tal data points, we used a single Reggeon term, as already discussed in Sec. 2, which can be
treated as an effective Reggeon. The parameters α(0), α1 and α′ have been fixed to 1.25, 1.0 and
0.38 GeV−2, respectively and the values of the fitted parameters A0 and b, described in Eq. (7)
are listed in Table 1. The value of α′ has been determined in an exploratory fit with this parameter
left free to vary between 0.2 and 0.4 GeV−2.

The ZEUS measurements have been rescaled to the W and Q2 values of the H1 measure-
ments. The mean value of |t| has been fixed to 0.17 GeV2 according with the H1 measurements
of the differential cross-section in the range (0.1-0.8)GeV2 for H1 [3] taking into account the
value 6.02GeV−2 for the slope B as determined by the experiment.

parameter σDV CS vs Q2 σDV CS vs t σDV CS vs W
|A0|2 0.08 ± 0.01 0.11 ± 0.24 0.06 ± 0.01

b 0.93 ± 0.05 1.04 ± 0.91 1.08 ± 0.10
χ2/ndof 0.57 0.15 1.15

Table 1: The values of the fitted parameters quoted in Eq. (7).
The results of the fits to the HERA data on DVCS are shown in Fig. 2. The cross-section

σ(γ∗p→ γp) as a function of Q2 and W =
√
s are presented respectively in Fig. 2a and Fig. 2b.

The differential cross-section dσ(γ∗p→ γp)/dt, given by

dσ

dt
(s, t,Q2) =

π

s2
|A(s, t,Q2)|2, (13)

is presented in Fig. 2c.

The quality of the fits is satisfactory; in particular our model fits rather well the cross-
sections as a function of Q2 and the cross-section differential in t. Although the present HERA
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Fig. 2: The γ∗p → γp cross section as a function of Q2 (a), of W (b) and the cross section differential in
t (c) measured by the H1 and ZEUS experiments [3, 4].

data on DVCS are well within the “soft” region, the model potentially is applicable for much
higher values of |t|, dominated by hard scattering.

5 Conclusions and discussion

The model may have two-fold applications. On one hand, it can be used by experimentalists as
a guide. The fits to the data could be improved, when more data are available, by accounting
for the Pomeron and f -Reggeon contributions separately as well as by using expressions for
Regge trajectories which take into account analyticity and unitarity. On the other hand, it can
be used to study various extreme regimes of the scattering amplitude in all the three variables it
depends on. For that purpose, however, the transition from Regge behavior to QCD evolution at
large Q2 should be accounted for. A formula interpolating between the two regimes (Regge pole
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and asymptotic QCD evolution) was proposed in Ref. [11] for t = 0 only. Its generalization to
non zero t values is possible by applying the ideas and the model presented in this paper. The
applicability of the model in both soft and hard domains can be used to learn about the transition
between perturbative (QCD) and non-perturbative (Regge poles) dynamics.

Independently of the pragmatic use of this model as a instrument to guide experimentalists,
given its explicit form, it can be regarded also as an explicit realization of the corresponding
principle of exclusive-inclusive connection in various kinematical limits.

Last but not least, the simple and feasible model of DVCS presented in this paper can
be used to study general parton distributions (GPD). The presence of the Regge phase in our
model can be used for restoring the correct phase of the amplitude, for which the interference
experiments (with Bethe-Heitler radiation) are designed.
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Abstract

We present experimental evidences for the existence of a semi-hard
scale in light hadrons. This includes the suppression of gluon radiation
that is seen in high mass hadron diffraction; the weak energy depen-
dence of hadronic total cross sections; the small value of the Pomeron
trajectory slope measured in photoproduction of J/Ψ; shortage of glu-
ons in the proton revealed by an unusual behavior of the proton struc-
ture function in the soft limit. All these observations suggest that glu-
ons in hadrons are located within spots of a small size relative to the
confinement radius.

1 Introduction

There is growing theoretical and experimental support leading towards the existence of a non-
perturbative scale smaller than the usual 1/ΛQCD ∼ 1 fm, and which is related to the gluonic
degrees of freedom. First, an analysis of hadronic matrix elements of the gluonic contribution
to the energy momentum tensor, using the QCD sum rules approach, gives a value of 0.3 fm for
the radius of the corresponding form factor [1]. From the lattice side, numerical simulations of
the gluon two point correlation function turn out a value of also 0.2 − 0.3 fm for the correlation
length [2], and the energy of the QCD string appears concentrated in a tube of radius 0.3 fm in the
transverse direction [3]. On the other side, it has been shown that the instanton radius peaks ap-
proximately at 1/3 fm [4]. Furthermore, high statistics data for diffractive gluon bremsstrahlung
in hadronic collisions is difficult to explain unless gluons in the proton have transverse momenta
as high as about 0.7 GeV [5]. This has been confirmed by studies of diffractive parton distribu-
tions, which concluded that they have a rather small transverse size [6]. What actually happens
is that the smallness of the gluon clouds slows down Gribov diffusion of the gluons in transverse
plane, and this results in a small slope of the Pomeron trajectory in hard reactions [7], in agree-
ment with data. More arguments in favor of small gluonic spots coming from DIS can be found
in [8]. Some of these results have been corroborated by recent studies of the spatial distribution
of gluons in the transverse direction at small x [9]. Here we overview the available experimental
evidences for the presence of a semihard scale in hadronic structure.

† speaker
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2 Gluon radiation is suppressed

If gluons in hadrons are located within small spots of radius r0, they have enlarged transverse
momenta qT ∼ 1/r0. Such gluons cannot be resolved by soft interactions and be shaken off,
which means that the bremsstrahlung cross section should be suppressed compared to perturba-
tive estimates.

However, in the case of soft inelastic collisions followed by multiparticle production the
events with or without gluon radiation look alike. In both cases the produced particles build a
plateau in rapidity, and then it is difficult to find any definite signature of the radiated gluons.

Diffraction offers an exclusive possibility to identify gluon radiation. A high-energy
hadron can dissociate diffractively either via excitation of the valence quark skeleton, or by radi-
ating gluons. These two mechanisms are characterized by different dependence on the effective
mass, MX , of the excitation,

dσ(hp→ Xp)
dM2

X

=





1
M3
X

excitation of the quark skeleton
1
M2
X

diffractive gluon bremsstrahlung
(1)

The MX -dependence at large MX correlates with the spin of the slowest particle produced in the
excitation. Only a vector particle, i.e. a gluon, can provide the 1/M 2

X dependence.

Thus, one can single out the cross section of diffractive gluon radiation from the large
mass tail of the MX -distribution. An analysis [10] of diffractive data shows that gluon radiation
is amazingly weak. In order to understand that one can interpret diffraction in terms of the
Pomeron-proton total cross section, as is shown in Fig. 1. If we treat the Pomeron like a gluonic

p

σPp

tot

P

p

p p

X

2

P P

p p

p p p
Fig. 1: The cross section of diffractive excitation of a proton expressed in terms of the total Pomeron-proton cross

section.

dipole, one may expect a cross section 9/4 times larger than for a q̄q dipole. Comparing with the
pion-proton cross section, say 25 mb, one arrives at the estimate of about 50 mb. However, data
suggest quite a smaller value, about 2 mb. A straightforward explanation for such a dramatic
disagreement would be a much smaller size of the gluonic dipole (Pomeron) compared to the
quark-antiquark dipole (pion). Thus, one concludes that gluons should be located within small
spots in the proton.

Although it is not quite rigorous, one might try to estimate the diffractive radiation cross
section perturbatively, and in this case the result exceeds data by more than an order of magnitude.
To reduce the cross section down to the observed value one should assume that the mean quark-
gluon separation is as small as r0 = 0.3 fm [5]. With such a modified quark-gluon light-cone
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distribution function, the effective triple-Pomeron coupling has the form [5],

G3IP(0) ≡ (1− xF )αIP(0) dσsd(pp→ pX)
dxF dp2

T

∣∣∣∣∣
pT=0

=
81αsσ0

(16π)2
ln

[
2(r2

0 +R2
0)2

R2
0(2r2

0 +R2
0)

]
. (2)

Here we assume that 1 � 1 − xF � s0/s, where s0 ∼ 1 GeV2. The energy dependent
parameters σ0(s) and R0(s) controlling the shape of the universal dipole cross section [11] are
defined in [5]. With r0 = 0.3 fm, the triple-Pomeron coupling eq. (2) agrees with the result of
the triple-Regge analysis [10] of single diffractive data.

3 Energy dependence of hadronic cross sections is weak

It is well known that hadronic cross sections rise with energy approximately as sε, where the
exponent is quite small, ε ≈ 0.1. What is the origin of this small number? We do not expect any
small parameters in the soft regime of strong interactions.

This problem is closely related to the topic of the previous section. In fact, the energy
dependence is driven by gluon radiation which turns out to be suppressed. Before we saw a
manifestation of this effect in diffraction, now in the total inelastic cross section.

Without gluon radiation the geometric cross section of two hadrons would be constant,
since their transverse size is Lorentz invariant, i.e. is energy independent. The phase space for
one gluon radiation is proportional to ln(s), so multigluon radiation leads to powers of ln(s) in
the cross section. The calculations performed in [12] confirm this. The hadronic cross section
was found to have the following structure,

σtot = σ0 + σ1

(
s

s0

)∆

, (3)

where σ0 is the energy independent term related to hadronic collisions without gluon radiation.
The second term in (3) is the contribution of gluon bremsstrahlung to the total cross section. Here
the parameter σ1 is expected to be small due to the smallness of the gluonic spots. Indeed, it was
found in [12] that σ1 = 27C r2

0/4, where factor C ≈ 2.4 is related to the behavior of the dipole-
proton cross section, calculated in Born approximation at small separations, σ(rT ) = Cr2

T at
rT → 0.

The energy dependence of the second term in (3) was found to be rather steep, ∆ =
4αs/3π = 0.17. This exponent seems to be too large compared to the experimentally measured
ε ≈ 0.1. There is, however, no contradiction due to the presence of the large energy independent
term in (3). Approximating the cross section (3) by a simple power dependence on energy, the
effective exponent reads,

ε =
∆

1 + σ0/σ1 (s/s0)−∆
(4)

So, one should expect a growing steepness of the energy dependence for the total cross section.
One can estimate the value of r0 demanding the effective exponent to be ε ≈ 0.1 in the energy
range of fixed target experiments, say at s ∼ 1000 GeV2. With σ0 = 40 mb found in [12] one
gets r0 = 0.3 fm.
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Thus, the observed slow rise of the total hadronic cross sections provides another evidence
for the existence of small gluonic spots with transverse size r0 ∼ 0.3 fm.

One may expect a steeper energy dependence for heavier flavors. Indeed, for J/Ψ-proton
scattering σ0 is so small, that ε ≈ ∆. Indeed, data for J/Ψ photoproduction from HERA [13]
show that ε ≈ 0.2. One should be careful, however, interpreting the data within the vector
dominance model [14], and remember that Eq. (3) was derived assuming that r0 is much smaller
than the hadronic size, otherwise interferences should be included.

4 Diffractive cone shrinks with energy slowly

The prediction of a shrinkage of the diffraction cone has been one of the first achievements of the
Regge theory. Indeed, data show that the elastic slope in hadronic collisions rises with energy as,
Bel(s) = B0 + 2α′IP ln(s/s0), where α′IP ≈ 0.25 GeV−2. This is about four times smaller than
in binary processes mediated by other Reggeons, α′IR ≈ 1 GeV−2. Why?

The diffractive cone shrinkage is usually related to Gribov diffusion of gluons in the trans-
verse plane. If each ”step” in impact parameters, ∆b2 = r2

0 , is small, the diffusion should proceed
slowly. Indeed, a rather small value of the Pomeron trajectory slope was predicted in [12],

α′IP =
1
2

dBel
d ln(s/s0)

=
αs
3π

r2
0 = 0.1 GeV−2 . (5)

This seems to be too small, in strong contradiction with value 0.25 GeV−2 known from data for
the elastic slope. One may wonder, why the same model [12] which predicts (5) describes well
data for elastic slope, as is demonstrated in Fig. 2. The relatively large value of α ′IP, turns out
to result from unitarity saturation. Indeed, the elastic differential cross section (actually the am-
plitude) Fourier transformed to impact parameter representation (see details in [12]) demonstrate
unitarity saturation at small impact parameters. In spite of the observed rise of the total cross
section with energy, there is no room for further growth at small impact parameters, only the
amplitudes of peripheral collisions rise with energy. This leads to a rising with energy radius of
interaction directly related to the elastic slope. Thus, a substantial part of the observed energy
dependence of the elastic slope and of the effective α′eff = 0.25 GeV−2 is related to saturation
of the unitarity bound. How to disentangle the two effects?

To get rid of unitarity corrections one can consider the interaction of a small dipole with a
proton. For example photoproduction of a heavy quarkonium [7], or highQ2 electroproduction of
ρ. Then, the elastic amplitude is too small to be affected by unitarity (absorptive) corrections, and
the energy dependence of the slope must be solely due to the rise of the gluon clouds, i.e. Gribov
diffusion. This expectation of [12] was nicely confirmed in elastic photoproduction γ + p →
J/Ψ+pmeasured by the ZEUS experiment [13] which found α′IP = 0.115±0.018 GeV−2. The
data and fit are depicted in Fig. 3

5 There is a shortage of gluons at low scale

As far as gluons are located within small spots, it is difficult to resolve them at low scale, Q2 <
4/r2

0 . With poor resolution the proton looks like a 3-quark system containing no gluons. At
the same time, no changes happen at higher Q2 which resolve distances much smaller than the
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good agreement with (5).

size of gluonic spots. In this regime the gluon density is rising toward smaller x unless related
values of Q2 become too low to resolve the spots. This explains the ZEUS data [15] depicted in
Fig. 4 for logarithmic Q2 derivative of the structure function. This derivative suddenly drops at
Q2 below few GeV2 showing that parton distributions are frozen below this scale, no evolution
happens due to lack of gluons.

Summarizing, a comprehensive list of experimental evidences for existence of two scales
in the hadronic structure is currently available. Many of them directly indicate a small gluonic
spot structure of light hadrons.

The full size paper on the “Two Scales of Hadron Structure” is to be found in
arXiv.org/abs/0708.3636.
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Abstract
The exclusive process e+ e− → e+ e− ρ0

L ρ
0
L allows to study various

dynamics and factorization properties of perturbative QCD. At moder-
ate energy, we demonstrate how collinear QCD factorization emerges,
involving generalized distribution amplitudes (GDA) and transition dis-
tribution amplitudes (TDA). At higher energies, in the Regge limit of
QCD, we show that it offers a promising probe of the BFKL resumma-
tion effects to be studied at the International Linear Collider (ILC).

1 Introduction: Exclusive processes at high energy QCD

1.1 Motivation
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ρL(k1)

ρL(k2)

Figure 1: Amplitude for
e+ e− → e+ e− ρ0

L ρ
0
L.

Since a decade, there has been much progress in experimental and theo-
retical understanding of hard exclusive processes, including Deeply Vir-
tual Compton Scattering (involving Generalized Parton Distributions)
and γγ scattering in fixed target e±p (HERMES, JLab, ...) experiments
and at colliders, such as e±p (H1, ZEUS) or e+e− (LEP, Belle, BaBar,
BEPC). Meanwhile, the hard Pomeron [1] concept has been developped
and tested at inclusive (total cross-section), semi-inclusive (diffraction,
forward jets, ...) and exclusive (meson production) level, for colliders at very large energy: e±p
(HERA), pp̄ (Tevatron) and e+e− (LEP, ILC). Here we focus on

γ∗γ∗ → ρ0
Lρ

0
L (1)

with both γ∗ hard, through e+e− → e+e−ρ0
Lρ

0
L with double tagged outoing leptons (Fig.1). It is

a beautiful theoretical laboratory for investigating different dynamics (collinear, multiregge) and
factorization properties of high energy QCD: it allows a perturbative study of GPD-like objects
at moderate s and of the hard Pomeron at asymptotic s.

1.2 From DIS to GDA and TDA in collinear factorization
Deep Inelastic Scattering, as an inclusive process, gives access to the forward amplitude through
the optical theorem. Structure functions can be written as convolution of (hard) Coefficient Func-
tions with (soft) Parton Distributions. Deeply Virtual Compton Scattering and meson electropro-
duction on a hadron γ∗h → γ h, h′ h, as exclusive processes, give access to the full ampli-
tude,which is a convolution, for −t� s, of a (hard) CF with a (soft) Generalized Parton Distri-
bution [2,3]. Extensions were made from GPDs. First [2,4], the crossed process γ ∗ γ → hh′ can
be factorized, for s� −t, as a convolution of a (hard) CF with a (soft) Generalized Distribution

† speaker
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Figure 2: γ∗(Q1)γ∗(Q2) → ρ0
L(k1)ρ0

L(k2)
with collinear factorization in qq̄ρ vertices.

Amplitude describing the correlator between two
quark fields and a two hadron state. Second [5],
starting from meson electroproduction and per-
forming t ↔ u crossing, and then allowing the
initial and the final hadron to differ, we write the
amplitude for the process γ∗ h → h”h′ as a con-
volution of a (hard) CF with a (soft) Transition Dis-
tribution Amplitude describing the h → h′ transition and with a (soft) Distribution Amplitude
(describing qq̄h” vertex).

We will rely on collinear factorization for our process (1) at each qq̄ρ vertex only. At high
Q2
i , each of the two quarks making the ρ mesons are almost collinear, flying in the light cone

directions p1 and p2 (used as Sudakov vectors), and their momentum read `i ∼ zi ki and ˜̀
i ∼

z̄i ki . The amplitude M is factorized as a convolution of a hard part MH with two ρ0
L DAs (see

Fig.2), defined as matrix elements of non local quarks fields correlator on the light cone1 2

〈ρ0
L(k)|q̄(x)γµq(0)|0〉 =

fρ√
2
kµ

1∫

0

dz eiz(kx)φ(z) , for q = u, d .

2 Computation at fixed W 2

2.1 Direct calculation
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Figure 3: Diagrams contributing to MH for γ∗L.

We compute [6] the amplitude M following the
Brodsky, Lepage approach [7]. At Born order
(quark exchange) and in the forward case for sim-
plicity, the amplitude M reads3,

M=T µ νεµ(q1)εν(q2) , T µ ν =
1

2
gµ νT TαβgT αβ+

(
pµ1 +

Q2
1

s
pµ2

)(
pν2 +

Q2
2

s
pν1

)
4

s2
Tαβp2α p1β .

In the case of longitudinally polarized photons, their polarization vectors read, with s ≡ 2 p1 ·p2,

ε‖(q1) =
1

Q1
q1 +

2Q1

s
p2 and ε‖(q2) =

1

Q2
q2 +

2Q2

s
p1 . (2)

Due to QED gauge invariance, the first terms in RHS of (2) do not contribute. In the forward case
discussed here, the number of diagrams then reduces to 4, as illustrated in Fig.3. They result into

Tαβp2α p1 β = −
s2f2

ρCF e
2g2(Q2

u +Q2
d)

8NcQ2
1Q

2
2

1∫

0

dz1 dz2 φ(z1)φ(z2)

×
{

(1− Q2
1
s )(1 − Q2

2
s )

(z1 + z̄1
Q2

2
s )(z2 + z̄2

Q2
1
s )

+
(1− Q2

1
s )(1− Q2

2
s )

(z̄1 + z1
Q2

2
s )(z̄2 + z2

Q2
1
s )

+
1

z2z̄1
+

1

z1z̄2

}
. (3)

1We limit ourselves to longitudinally polarized mesons to avoid potential end-point singularities.
2φ(z) = 6z(1 − z) (1 +

P∞
n=1 a2nC

3/2
2n (2z − 1)) .

3gµ νT = gµν − p
µ
1 p
ν
2 +pν1p

µ
2

p1.p2
.
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For transversally polarized photons, no simplification occurs and the 12 diagrams give

TαβgT αβ = −e
2(Q2

u +Q2
d) g

2 CF f
2
ρ

4Nc s

1∫

0

dz1 dz2 φ(z1)φ(z2)

{
2

(
1− Q2

2

s

)(
1− Q2

1

s

)

×
[

1

(z2 + z̄2
Q2

1
s )2(z1 + z̄1

Q2
2
s )2

+
1

(z̄2 + z2
Q2

1
s )2(z̄1 + z1

Q2
2
s )2

]
+

(
1

z̄2 z1
− 1

z̄1 z2

)

×
[

1

1− Q2
2
s

(
1

z̄2 + z2
Q2

1
s

− 1

z2 + z̄2
Q2

1
s

)
− 1

1− Q2
1
s

(
1

z̄1 + z1
Q2

2
s

− 1

z1 + z̄1
Q2

2
s

)]}
. (4)

The zi integrations have no end-point singularity (Q2
i are non-zero and DAs vanishes at zi = 0).

2.2 Interpretation in terms of QCD Factorization
2.2.1 GDA for a transverse photon in the limit Λ2

QCD �W 2 �Max(Q2
1, Q

2
2)

When W 2 is smaller than the highest photon virtuality, the direct calculation (4) simplifies in4

TαβgT αβ ≈
C

W 2

1∫

0

dz1 dz2

(
1

z̄1 + z1
Q2

2
s

− 1

z1 + z̄1
Q2

2
s

) (
1

z̄2 z1
− 1

z̄1 z2

)
φ(z1)φ(z2)
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Figure 4: Factorisation of the amplitude in terms of a GDA.

showing that the hard amplitude
MH can be factorized as a con-
volution between a hard coeffi-
cient function TH and aGDAH ,
itself perturbatively computable
(Fig.4), extending the results of
[8]. This is proven at Born order by computing perturbatively the GDA from its definition

〈ρ0
L(k1) ρ0

L(k2)|q̄(−α n/2) /n exp

[
ig

α
2∫
−α

2

dy nν A
ν(y)

]
q(α n/2)|0〉

=
1∫
0

dz e−i(2z−1)α(nP )/2Φρ0
Lρ

0
L(z, ζ,W 2) (forQ1 > Q2, P ∼ p1 and n ∼ p2)
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Figure 5: GDA Kinematics.

with the kinematics fixed according to Fig.5. W 2 being hard, the
GDA can be factorized into Hard part ⊗ DA DA (see Fig.6), as

ΦρLρL(z, ζ ≈ 1,W 2)=−
f2
ρ g

2 CF

2NcW 2

1∫

0

dz2 φ(z)φ(z2)

[
1

zz̄2
− 1

z̄z2

]
.

4In this example W2

Q2
1

= s
Q2

1

“
1− Q2

1
s

”“
1 − Q2

2
s

”
≈ 1 − Q2

1
s
� 1; we denote C =

e2(Q2
u+Q2

d) g2 CF f
2
ρ

4Nc
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Figure 6: Perturbative GDA factorization.
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Figure 7: Hard part TH at lowest order.

In forward kinematics, the QCD Wilson line (last term in
Fig.6) vanishes. The Born order hard part is (see Fig.7)

TH(z) = −4 e2 NcQ
2
q

(
1

z̄ + z
Q2

2
s

− 1

z + z̄
Q2

2
s

)
.

2.2.2 TDA for longitudinal photon in the limit Q2
1 � Q2

2 (or Q2
1 � Q2

2)
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Figure 8: TDA kinematics.

The amplitude M = T αβp2α p1 β (3) can be interpreted in this limit
as a convolution M = TDA⊗ CF ⊗DA, according to

Tαβp2αp1β = −iC
2

1∫

−1

dx

1∫

0

dz1

[
1

z̄1(x− ξ) +
1

z1(x+ ξ)

]
φ(z1)

×Nc

[
Θ(1 ≥ x ≥ ξ)φ

(
x− ξ
1− ξ

)
−Θ(−ξ ≥ x ≥ −1)φ

(
1 + x

1− ξ

)]
,

the TDA being defined through the usual GPD kinematics (see Fig.8), with n1 = (1 + ξ)p1 and
n2 = p2

1+ξ , defining x, ξ as momentum fraction along n2. This factorisation (see Fig.9a) is proven
at Born order by computing perturbatively the TDA γ∗ → ρ0

L defined as

∫
dz−

2πs
eix(n2.z) 〈ρqL(k2)|q̄(−z/2) /n1 exp{−ieQq

−z/2∫

z/2

dyµA
µ(y)}q(z/2)|γ∗(q2)〉

=
eQq fρ

n+
2

1

Q2
2

εν(q2)

(
(1 + ξ)nν2 +

Q2
2

s(1 + ξ)
nν1

)
T (x, ξ, tmin) ,

where the QED Wilson line is explicitly indicated (QCD Wilson line gives no contribution).
Since Q2

2 hard, the TDA can be factorized (see Fig.9b) as

T (x, ξ, tmin) ≡ Nc

[
Θ(1 ≥ x ≥ ξ)φ

(
x− ξ
1− ξ

)
−Θ(−ξ ≥ x ≥ −1)φ

(
1 + x

1− ξ

)]
.
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Figure 9: a: Factorization of the amplitude in terms of a TDA. b: Perturbative TDA factorization.
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Figure 10: Hard part TH at lowest order.

The Hard term reads, at Born order (see Fig.10),

TH(z1, x) = −i fρ g2 eQq
CF φ(z1)

2NcQ2
1

εµ(q1)

×
(

2ξ n2µ+
1

1 + ξ
n1µ

)[
1

z1(x+ ξ − iε) +
1

z̄1(x− ξ + iε)

]
,

3 Computation at large W 2

The dynamics of QCD in the perturbative Regge limit [9] is governed by gluons. BFKL en-
hancement effects are expected to be important at large rapidity. The exclusive process (1) tests
this limit [10–12], for both Q2

i hard and of the same order (to suppress collinear dynamics à la
DGLAP [13] and ERBL [14]), giving access to the full non-forward Pomeron structure, in rela-
tion with saturation studies, where a full impact parameter picture is needed. Increasing sγ∗γ∗
for fixed values Q2

1 and Q2
2 causes transition from the linear to non-linear (saturated) regime.
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Figure 11: γ∗L,T γ
∗
L,T → ρ0

L ρ
0
L (a,b,c) and e+e− → e+e−ρ0

L ρ
0
L (d) differential cross-sections.

When sγ∗γ∗ � −t,Q2
1, Q

2
2, we rely on the impact representation which reads, at Born order,

M = is

∫
d2 k

(2π)4k2 (r − k)2
J γ∗L,T (q1)→ρ0

L(k1)(k, r − k) J γ∗L,T (q2)→ρ0
L(k2)(−k,−r + k)

where the impact factors J γ∗L,T are rational functions of the transverse momenta (k, r). The 2-d

integration is treated analytically, relying on conformal transformations in the transverse momen-
tum plane. The integrations over momentum fractions z1 and z2 (hidden in J ) are performed
numerically. We use Q1Q2 as a scale for αS . As displayed in Fig.11a,b,c, cross-sections are
strongly peaked at small Q2 and small t, and longitudinally polarized photons dominates. The
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non-forward Born order cross-section for e+e− → e+e−ρ0
L ρ

0
L is obtained with the help of the

equivalent photon approximation. Defining yi as the longitudinal momentum fractions of the
bremsstrahlung photons, one finds that σe

+e−→e+e−ρLρL gets its main contribution from the low
y and Q2 region, which is the very forward region. At ILC,

√
se+e− = 500 GeV, with 125 fb−1

per year. The measurement seems feasible since each detector design includes a very forward
electromagnetic calorimeter for luminosity measurement, with tagging angle for outgoing lep-
tons down to 5 mrad. In Fig.11d, we display our results within the Large Detector Concept. We
obtain σtot = 34.1 fb and 4.3 103 events per year. The LL BFKL enhancement is enormous
but not trustable, since it is well known that NLL BFKL is far below LL. Work to implement
resummed LL BFKL effects [15] is in progress, with results in accordance with the NLL based
one [16]. The obtained enhancement is less dramatic (∼ 5) than with LL BFKL, but still visible.
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Low Q2 and High y Inclusive Cross Section Measurements from the
HERA Experiments ZEUS and H1

Jan Kretzschmar1†,
1 DESY Zeuthen, Plantanenallee 6, 15738 Zeuthen, Germany

Abstract
An overview of inclusive cross section measurements from the HERA
experiments covering the lowQ2 domain,0.2GeV2 < Q2 < 150GeV2,
is presented. The emphasis is put on new experimental results obtained
at lowest values ofQ2 < 10GeV2 and highy > 0.6. Furthermore fu-
ture prospects for measurements of the structure functionsF2 andFL

are shortly discussed.

1 Introduction

The HERA collider facility in Hamburg, Germany, is a unique tool for lepton-proton scattering
at highest energies. It consists of two accelerators: one for protons, which are accelerated up to
920 GeV beam energy, and one for electrons or positrons, which are accelerated to27.6 GeV.
For the two colliding beam experiments H1 and ZEUS this is equivalent to a maximal centre of
mass energy of

√
s = 320 GeV. At the end of June 2007 the data taking has finished after afinal

period of running at lowered proton beam energies ofEp = 460 GeV andEp = 575 GeV.

In Deep Inelastic Scattering (DIS) of leptons off nucleons the substructure of the nucleons
was discovered and DIS continues to be the tool for exploringthe substructure of the nucleons
with high precision. The kinematics of the scattering are described in terms of the Lorentz
invariant quantities: the Bjorken scaling variablex, the inelasticityy, and the virtualityQ2,
which are related byQ2 = xys. Figure 1 shows the kinematic(x,Q2)-plane, where the HERA
experiments and the fixed target experiments have made measurements of the proton structure.
Q2 values of up to50000 GeV2 andx values down to10−6 are reached at HERA.

One of the most fundamental measurements to be performed is that of the inclusive cross
section for the reactionep → e′X, which can be expressed at lowQ2 in the form

d2σe±p
NC

dxdQ2
=

2πα2Y+

xQ4

(
F2(x,Q2)− y2

Y+
FL(x,Q2)

)
=

2πα2Y+

xQ4
· σr , (1)

with Y+ = 1 + (1− y)2 and the structure functionsF2 andFL. Usually the data are presented in
the form of the reduced cross sectionσr, which is defined to exclude the kinematic factor.

In the following, three parts of the phase space are discussed in more detail, which are as
well marked in figure 1

• In theBulk Low Q2 domain, defined as10GeV2 < Q2 < 150GeV2, the cross section is
dominated by the contribution of the structure functionF2. Here also the highest precision

†talk presented at EDS07 on behalf of the H1 and ZEUS Collaborations
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Fig. 1: Kinematic plane in(x,Q2), where measurements of the proton structure functionF2 have been performed by

the HERA collider and fixed target experiments, respectively.

is reached. In QCD fits, also including data at largerQ2 andx, the Parton Distribution
functions (PDFs) and the strong coupling constantαs can be determined. The evolution of
the PDFs withQ2 can be described using the DGLAP equations.

• In the very low Q2 domain, 0.2GeV2 < Q2 < 10GeV2, the transition to the non-
perturbative regime is covered. Here the strong couplingαs becomes large and perturbative
QCD calculations are not applicable.

• Thehigh y > 0.6 domain is sensitive to the influence of the longitudinal structure function
FL, which provides an independent access to the gluon density.

For data taken at different centre of mass energies the kinematic plane is shifted allowing the
direct measurement ofFL.

2 The Low Q2 Bulk Domain

The domain10GeV2 < Q2 < 150GeV2 is interesting because the experimental precision is
high and a hard scale is present, so perturbative QCD calculations are applicable. The structure
function F2(x,Q2) has been measured with very high accuracy by both H1 [1] and ZEUS [2].
Figure 2 gives an example of the progress made with the HERA collider: from the very first
data and the discovery of the strong rise ofF2 towards lowx to the currently reached2 − 3%
precision. QCD fits using this data have been performed by theHERA collaborations [3] as well
as other authors to exploit this data.

For the future a new measurement by H1 is expected with reduced systematic uncertainties.
A further improvement may be achieved by combining data fromZEUS and H1 to obtain a final
word of the HERA experiments on the structure functionF2 with best precision. First preliminary
results have been presented [4].
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Fig. 2: Measurement of the proton structure functionF2 at Q2 = 15 GeV2 with the very first HERA data (left) and

with much improved precision (right).

3 The Lowest Q2 Region

As the virtuality of the exchanged photon becomes smaller,Q2 → 0, the transition is made to
the non-perturbative QCD regime. From a theoretical and experimental point of view this is both
interesting and challenging. Experimentally specialisedtechniques have to be employed to detect
scattered leptons at very small angles:

• Both H1 and ZEUS have used events with tagged Initial State Radiation [5], which extends
the accessible phase space to lowerQ2. Recent H1 measurements are using untagged ISR
events for the same purpose [6].

• The lowest values ofQ2, down to0.045GeV2, were reached by ZEUS using a special low
angle calorimeter and tracker called BPT [7].

• Recently H1 has presented new results which are based on datausing a minimum bias
trigger setup and an improved tracking of the scattered lepton using the Backward Silicon
Tracker (BST). A part of the data was taken with a shifted vertex position to enhance the
acceptance for lowerQ2 values down to0.2GeV2 [6].

The new H1 analysis achieves a very good control of the energyof the scattered lepton.
The reconstruction of the event kinematics is done mostly independent of the hadronic final state
using the BST. The precision is further improved by combining three data sets.

Including these new results, the HERA measurement in this kinematic domain is com-
pleted with very good precision of typically a few%. The results, expressed as the effective
photon-proton cross sectionσeff

γ∗p = 4π2α/(Q2(1− x)) · σr, are given in figure 3.

4 The High y Region

The analysis in the highy > 0.6 region is experimentally especially difficult, as the energy of
the scattered leptonE′

e is small. Therefore the scattered lepton is difficult to identify and the
background posed by photoproduction (γp) events is high. On the other hand, the results are
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Fig. 3: ZEUS and H1 measurements in the transition regionQ2 ∼ 1 GeV2.

particularly interesting, as the cross section at highy is influenced by both structure functionsF2

andFL. The experimental problems are similar to the ones posed by adirect measurement of
FL.

Both ZEUS and H1 have released new preliminary cross sectionmeasurements at highy.
The techniques used to cope with the large background are different:

• ZEUS can study theγp background in detail using events with the scattered leptontagged
in a special calorimeter. The measurement uses a Monte Carlomodel for the subtraction.
The preliminary analysis reaches down toE′

e = 5 GeV and up toy = 0.8 [8].

• In the H1 analysis the background is determined directly from data using the charge of the
scattered lepton track. This enables a cross section measurement without the use ofγp
Monte Carlo models. The analysis can go to very low energies of E′

e = 3.3 GeV, which
corresponds toy = 0.9 [9].

The H1 measurement makes use of a large data set of96 pb−1 and improves the uncertainty
by a factor of 2 w.r.t the previous publication. The cross section together with measurements at
lowery is shown in figure 4. The results of the ZEUS measurements are shown there as well. For
ZEUS it represents the first measurement at highy and the full accessibleQ2 range is covered.
An extension to higher values ofQ2 was meanwhile presented by H1 [10].
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Fig. 4: New measurements of the inclusive DIS cross section at highy by H1 and ZEUS

5 The Direct FL Measurement

The program of HERA structure function measurements would not be complete without a direct
measurement of the longitudinal structure functionFL. To disentangle the contributions to the
inclusive cross section, measurements at different centreof mass energies

√
s are needed. There-

fore, for the last 3 months of its operation time HERA was operated at reduced proton beam
energiesEp = 460 GeV andEp = 575 GeV. The luminosity accumulated was approximately
L460 ≈ 13 pb−1 andL575 ≈ 7 pb−1, respectively, see also figure 5.

The measurement principle with the systematical and statistical uncertainties, as expected
for the H1 measurement, is also illustrated in figure 5. It is performed using the inclusive cross
sections at a fixed set of(x,Q2) for all three centre of mass energies, which lie according to
equation 1 on a straight line as a function ofy2/Y+. The extrapolation toy → 0 givesF2, while
the slope determinesFL.

6 Conclusion

While the experimental phase of the HERA experiments is over, the data still has a lot of potential
for precise inclusive cross section measurements at lowQ2. Recently new and improved results
were presented for lowestQ2 and in the highy domain.

For the future, improved determinations of the structure functionF2 can expected due to
new analyses and the combination of available H1 and ZEUS data. The longitudinal structure
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function will be measured for the first time directly using the data from the successful HERA
running at lowered centre of mass energy.

With extended and more precise measurements at hand, we willbe able to test the theory of
strong interaction QCD and improve our knowledge about the structure of the proton. Eventually
this also will lead to precise input for measurements at the upcoming Large Hadron Collider.
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Status of Deeply Inelastic Parton Distributions

Johannes Blümlein
DESY, Platanenallee 6, D-15738 Zeuthen, Germany

Abstract
A brief review on the status of unpolarized parton densities and
the determination of the QCD scale ΛQCD from deep-inelastic
scattering data is presented.

1 Introduction

Deeply inelastic lepton–nucleon scattering provides a clean way to extract the parton
densities of the nucleons together with the QCD scale ΛQCD. The exact determination of
the parton densities is decisive for the understanding of the scattering cross sections at
hadron colliders as LHC [1]. The main goal of the investigation is the measurement of
the leading twist distributions. In the large x region higher twist effects are measurable
as well [2,3]. 1 During the last years the determination of moments of parton distribution
functions [5] and the QCD scale [6,7] within lattice-QCD calculations became more and
more precise. A comparison of these results and the measurement of the corresponding
quantities from precision data using higher order perturbation theory will provide highly
non-trivial tests of Quantum Chromodynamics. On the perturbative side, the running of
αs(Q

2) is known to 4–loop orders [8] while the anomalous dimensions and the massless
Wilson coefficients were calculated to 3–loop order [9, 10]. The heavy flavor Wilson
coefficients are known to 2–loop order only [11–13]. A first coefficient contributing
at 3–loop order was calculated recently [14]. Due to this the QCD analysis of deeply
inelastic structure functions in l±N scattering may be performed for flavor non–singlet
combinations to O(α3

s) and to a very good approximation even to O(α4
s), cf. [3]. In the

flavor singlet case, strictly speaking, the analysis cannot be performed to 3-loop order,
since the corresponding heavy flavor Wilson coefficients are not known yet. It can be
performed in an approximation to 3–loop order, describing the heavy flavor contributions
to 2–loop order, which induces a remaining theoretical error. In the present paper we
concentrate on the case of unpolarized deep-inelastic scattering. A recent overview on
the status of polarized parton densities was given in [15]. The paper is organized as
follows. In section 2 we summarize main aspects of QCD analyses and discuss recent
progress in measuring unpolarized parton distribution functions. Section 3 summarizes
determinations of ΛQCD in deeply inelastic scattering and in Section 4 we discuss future
perspectives.

1Similarly, one may hope to find higher twist effects in the region of small x in the future [4].
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2 QCD Analysis of Unpolarized Structure Functions

In case of light–cone dominance the deeply inelastic structure functions at twist–2 are
described by a Mellin convolution of the bare parton densities and the hard scattering
cross sections, which are both infinite, but are renormalized to finite parton densities and
Wilson coefficients by absorbing the ultraviolet singularities of the latter into the former :

Fj(x,Q
2) = f̂i(x, µ

2)⊗ σij
(
αs,

Q2

µ2
, x

)
(1)

↑ barepdf ↑ sub− systemcross − sect.

= f̂i(x, µ
2)⊗ Γik

(
αs(R

2),
M2

µ2
,
M2

R2

)

︸ ︷︷ ︸
finite pdf≡fk

⊗Ck
j

(
αs(R

2),
Q2

µ2
,
M2

R2
, x

)

︸ ︷︷ ︸
finite Wilson coefficient

The scale evolution of the structure functions is described by the Symanzik-Callan equa-
tions for the ultraviolet singularities [16], and likewise for the renormalized parton den-
sities and Wilson coefficients,

[
M

∂

∂M
+ β(g)

∂

∂g
− 2γψ(g)

]
Fi(N) = 0 (2)

[
M

∂

∂M
+ β(g)

∂

∂g
+ γNκ (g)− 2γψ(g)

]
fk(N) = 0 (3)

[
M

∂

∂M
+ β(g)

∂

∂g
− γNκ (g)

]
Ck
j (N) = 0 . (4)

Here the Wilson coefficients contain as well the heavy quark degrees of freedom, while
the parton distributions can only be defined for strictly massless partons in the respective
kinematic region, i.e. for collinear particles. Clearly for Q2 / m2

H heavy quarks cannot
be treated as partons. It is known for long [17] that the heavy quark contributions have
quite different scaling violations if compared to light partons for a very large range in
Q2.

The solution of the evolution equations is easiest being performed in Mellin space.
Here the corresponding evolution equations can be solved to all orders in the coupling
constant analytically, cf. e.g. [18]. The solution has to be continued analytically from
even values of the Mellin moment N → N ∈ C. This requires the continuation
of harmonic sums [19] representing the higher order anomalous dimensions and light
flavor Wilson coefficients [20] and that of heavy flavor Wilson coefficients [12]. At
every loop order and expansion depth in the dimensional regularization parameter ε a
uniform maximal number of basis elements is needed to construct the respective single–
scale quantities. To 3–loop orders 14 basic Mellin transforms are sufficient [21]. The
structure of this representation is characterized by meromorphic functions in the complex
N plane, the perturbative part of it obeys nested recursions z → z − 1 and can be
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constructed analytically starting from the respective asymptotic representation in the
region |z| → ∞, cf. [22]. The expression for the structure functions used in the χ2-
minimization can be easily obtained by a single fast numeric contour integral around the
singularities of the problem. To keep the evolution code fast all relations expressing the
evolution kernels can be stored in large arrays during the initialization of the code, while
in the minimization procedure only the parameters of the parton distribution functions
are varied along with ΛQCD. The procedure can be systematically generalized including
resummations, e.g. in the small–x region [18]. These effects, however, were found to
be non-dominant in the region of HERA data. Initially large effects are likely canceled
by sub-leading terms almost completely, as being the case for all quantities calculated
in fixed orders up to O(α3

s). Usually three sub-leading terms (series) are required to
obtain the correct result, cf. [18]. We will therefore not include effects of this kind in the
present analysis, see [23] for a survey. Other recent analyses also find only small small
x effects [24] in the evolution of F2(x,Q2) in the region x ' 10−4 currently probed at
HERA.
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Figure 1: The NNLO valence quark distributions, [3], compared to other analyses and
perturbative stability of the fit comparing different higher order corrections.

A flavor non–singlet analysis of the deep-inelastic world data was carried out re-
cently in [3]. This analysis primarily aimed on measuring αs(M2

Z) widely free of gluonic
effects. Due to the fact that the O(α3

s) Wilson coefficients dominate the scaling viola-
tions at the 4–loop level and the effect of the splitting function is rather minor only, as
estimated by a Padé-approximation, the analysis is effectively of 4–loop order. We ac-
counted for a ± 100% error in the estimated 4-loop anomalous dimension. Comparison
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with the second moment of the non-singlet 4–loop anomalous dimension [25] showed
agreement within better than 20 % well confirming our error treatment. In Figure 1 the
fit results are shown for the valence quarks and compared to other analyses [26,27] (left
figures). The right figures show the convergence of the analysis from leading order (LO)
to 4-loop order (NNNLO).

In Ref. [3] also a model-independent extraction of higher twist-contributions in the
large x region was performed. Here it is essential to describe the leading twist contri-
butions as accurately as possible, since the leading twist Wilson coefficients are large in
the large x region.

The light sea quark densities are known at lower precision if compared to that of
the valence quarks. Here still more data are required. The distribution x(u − d)(x,Q2)
can be obtained from Drell–Yan data. In a recent analysis [27] improved sea quark
distributions x(u ± d) were obtained, see Figure 2a. The 3–loop corrections lower the
theory error to the level of the experimental accuracy. A recent determination of the
strange quark density was performed by the CTEQ collaboration [28], see Figure 2b.
This distribution is about half the value of that of the up and down sea quarks.
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Figure 2: Uncertainty of x(u+ d) distribution [27] (left). The light flavor distributions for
Q2 = 1.69GeV2, Ref. [28].

The correct determination of the gluon density is of central importance since many
scattering processes at LHC are gluon induced. The gluon distribution is rapidly growing
as x → 0 with rising values of Q2. This expectation is confirmed by different analyses
[27, 29, 30]. As an example we show the results of the recent analysis [29] in Figure 3a,
where a rising behaviour is found down to scales of Q2 = 2 GeV2. In contrast to
this MSTW [31] find a gluon distribution which is turning to lower values in the region
x ≈ 10−3 for scalesQ2 = 5 GeV2 and lower, contrary to the results found in [27,29,30].
The value of αs(M2

Z) in [31] 0.1191 ± 0.002 ± 0.003 comes out larger than that in

J BLÜMLEIN

84



[3,27,29], αs(M2
Z) = 0.1142± 0.0021; 0.1128± 0.0015; 0.112. In [30] a determination

of αs is not undertaken, since the different data sets used in the fit bear too different
systematics to allow this, which was outlined in [32] in detail. The analysis in [26]
differs from that in [27] due to the inclusion of jet data from Tevatron, which are known
to require a larger value of αs(M2

Z).
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Figure 3 : Gluon momentum distribution at NLO [29, 30] (left) and at NNLO [26, 27] (right).
The measurement of FL(x,Q2) can help to clarify this question. A recent analysis

[33] shows very good agreement with the current measurements [34], which are partly
still preliminary. The question of the correct value of the gluon distribution function
should be clarified soon.

3 ΛQCD and αs(M2
Z)

A summary on different measurements of αs(M2
Z) from l±N scattering data in NLO,

NNLO, and NNNLO is given in Figure 4, see also [35]. Present analyses are carried
out at the 3-loop level based on the anomalous dimensions [9] and Wilson coefficients
[36]. If the analysis is restricted to deeply inelastic data the values of αs(M2

Z) come
out somewhat lower as the world average [37]. The convergence of the perturbative
extraction of αs(M2

Z) out of the deeply–inelastic world data [3] is illustrated comparing
the central values from NLO to NNNLO :

αs(M
2
Z) = 0.1148→ 0.1134→ 0.1142± 0.0021. (5)

The change from the N2LO to the N3LO value is found deeply inside the current exper-
imental error. The N3LO value corresponds to

ΛMS,Nf=4
QCD = 234 ± 26 MeV. (6)

STATUS OF DEEPLY INEALSTIC PARTON DISTRIBUTIONS

85



0.1

0.105

0.11

0.115

0.12

0.125

0.13

C
T

E
Q

6
M

R
ST

03
A

02
Z

E
U

S
H

1
B

C
D

M
S

SY
01

(e
p)

SY
01

(ν
N

)
B

B
G

M
R

ST
03

A
06

SY
01

(e
p)

SY
01

(ν
N

)
B

B
G

B
B

G B
B

SM
C

A
B

FR

α s(
M

Z2 )
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scattering: from NLO to NNNLO, Ref. [3].

ΛMS
QCD was measured also in two recent lattice simulations based on two active

flavors (Nf = 2). These investigations paid special attention to non-perturbative renor-
malization and kept the systematic errors as small as possible.

Λlatt
Nf=2 = 245± 16± 16 MeV [6], Λlatt

Nf=2 = 261± 17± 26 MeV [7] . (7)

A direct comparison with the case Nf = 4 in the above data analyses is not yet possible.
However, the difference between the earlier Nf = 0 and the present result in ΛQCD

amounts to O(10 MeV) only. We have to wait and see what is obtained for Nf = 4 in
coming analyses.

4 Future Perspectives

Most of the data taken at HERA still have to be analyzed to extract the final data of
F2,L(x,Q2), FQQ

2 (x,Q2), and other structure functions. The analysis of these measure-
ments will be mandatory for the final precision determination of the parton distribution
functions in the small x region, in particular for the gluon and sea quark distribution
functions. Important information on the large x behaviour of the valence quark densities
will be obtained from JLAB [38]. Currently our knowledge of the individual light flavor
sea quark distributions is still rather limited. Here, the measurement of the Drell-Yan
process and W± and Z–production at LHC will add in significant further information.
That far signs of non-linear gluon evolution were not found in deeply inelastic scatter-
ing, unlike suggested by earlier theoretical expectations [4]. As the scale at which these
effects come into operation cannot be determined pertubatively one has to search for
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those effects at still smaller values of x using suitable scattering cross sections at LHC in
the near future. After the completion of the HERA programme still inclusive measure-
ments at much higher luminosity are required to determine some of the parton densities
at higher precision. For a more detailed measurement of the sea quark distributions
deuteron targets are required at high luminosity [39]. Here a programme like foreseen
for the EIC [40] can contribute essentially. The flavor contents of the sea-distribution
can be analysed in great detail at high luminosity neutrino factories operating at higher
energies [41]. The results of both these facilities will be instrumental to explore distri-
butions, which are more difficult to access, such as the polarized distribution functions,
the transversity distribution, as well as the twist–3 and higher twist correlation functions
to perform further rather non-trivial tests of QCD also in this area. Various of these
observables can be accessed at high precision in lattice calculations in the near future.
In this way ab-initio predictions at the one side can be compared to precision data ana-
lyzed within perturbation theory to higher orders on the other side. It is therefore highly
desirable, that these facilities [40, 41] are built in the future.
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[14] I. Bierenbaum, J. Blümlein and S. Klein, arXiv:0710.3348 [hep-ph], Acta Phys. Pol. B in print; and
in preparation.

[15] J. Blümlein, arXiv:0708.1474 [hep-ph].

[16] K. Symanzik, Commun. Math. Phys. 18 (1970) 227;
C. G. Callan, Phys. Rev. D 2 (1970) 1541.

[17] E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, Rev. Mod. Phys. 56 (1984) 579
[Addendum-ibid. 58 (1986) 1065].
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Diffractive PDFs

Paul Laycock on behalf of the H1 and ZEUS collaborations
Institute University of Liverpool

Abstract
Results are presented of the inclusive diffractive DIS cross-section and
the data are used to test the proton vertex factorisation hypothesis. This
hypothesis having been shown to be a good approximation to the data,
the diffractive PDFs resulting from a NLO QCD fit to the inclusive
data, which uses this approximation, are shown. The diffractive di-
jet cross-section in DIS is measured and compared to the predictions
based on these DPDFs and reasonable agreement is found, further sup-
porting the factorisation ansatz. Finally, the diffractive dijet and inclu-
sive data are fit simultaneously resulting in diffractive PDFs that have
similar precision in both the quark-singlet and gluon components.

1 Inclusive Diffractive DIS at HERA

A schematic diagram for the inclusive diffractive DIS process ep → eXp at HERA is shown in
figure 1. It has been shown by Collins [1] that the diffractive DIS process factorises; shown in
figure 1 is an additional assumption that the proton vertex dynamics factorise from the vertex of
the hard scatter - proton vertex factorisation. The kinematic variables used to describe inclusive
DIS are:

Q2 = −q2 = −(k − k′)2, x =
Q2

2p · q , y =
p · q
p · k . (1)

Here Q2 is the virtuality of the exchange boson, x is the Bjorken scaling variable and y is the in-
elasticity. They are defined in terms of k and k ′, the four-momenta of the incoming and outgoing
electrons, respectively, and the four-momentum of the incoming proton p. In addition to these
standard DIS variables and the Mandelstam variables (t, s) the kinematic variables xIP and β are
useful in describing the diffractive DIS interaction. They are defined as:

β =
Q2

Q2 +M2
X − t

, xIP =
Q2 +M2

X − t
Q2 +W 2 −M2

p

=
x

β
(2)

where MX is the invariant mass of the hadronic system X , Mp is the mass of the proton and
W 2 = (q + p)2 is the square of the centre of mass of the photon-proton system. xIP is the
fractional momentum of the proton carried by the diffractive exchange and β is the fractional
momentum of the struck parton with respect to the diffractive exchange. The data are then
discussed in terms of a reduced cross-section, σD(3)

r (β,Q2, xIP ), defined as:

d3σep→eXp
dβdQ2dxIP

=
4πα2

em

βQ4

(
1− y +

y2

2

)
σD(3)
r (β,Q2, xIP ). (3)
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Fig. 1: (top) A schematic illustration of the NC diffractive DIS process ep→ eXp at HERA. The dotted line indicates

where the diagram can be divided under the assumption of proton vertex factorisation. The inclusive diffractive DIS

cross section as measured by the H1 collaboration (bottom).
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Q2 dependence of the xIP dependence of the data. The proton vertex factorisation hypothesis is a valid approximation

within the precision of the data.

1.1 Experimental Methods
The inclusive diffractive DIS process is ideally measured by tagging the final state proton, e.g.
[2], but such an experimental method suffers from low detector acceptance. In addition to this
proton tagging method, both the H1 and ZEUS experiments use the topology of the hadronic
final state to select diffractive events [3–5]; shown in figure 1 are the high statistics results of H1
using the large rapidity gap method.

If, as shown in figure 2, the ratio of the two methods, tagged to non-tagged, is taken as
a function of the kinematic variables and if the Q2 dependence of αIP (0) (the xIP dependence
of the data) is studied it can be seen that, within the current experimental precision, the proton
vertex factorisation hypothesis is a valid approximation of the data.

1.2 Inclusive diffractive DIS PDFs
Given the validity of the proton vertex factorisation ansatz, a NLO QCD fit using the proton
vertex factorisation approximation is performed to the inclusive data [3], producing the diffractive
PDFs shown in figure 3. Also shown in figure 3 are the individual contributions of both the quark
and gluon driven terms to the logarithmic Q2 derivative of the inclusive cross section. At high
β, sensitivity to the gluon is all but lost. The result is an ambiguous gluon at high momentum
fractions z, as seen by the comparison of Fits A and B, which give a similar χ2 fit probability.
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2 Diffractive Dijets in DIS

Shown in figure 4 is a schematic diagram for the diffractive dijets in DIS process at HERA. As-
suming that this diagram dominates the production mechanism, this process should provide a
sensitive tool with which to probe the diffractive gluon and test the predictions obtained from fits
to inclusive diffractive data. Figure 4 shows a comparison of a measurement made by ZEUS of
the diffractive dijet cross section in DIS [6] compared to the predictions of both fits to the H1
inclusive data. The prediction of Fit B is favoured. For more comparisons, see the talk on “Fac-
torisation breaking in diffraction, including leading baryons” by A. Bonato in these proceedings.
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Fig. 4: A schematic diagram for the diffractive dijets in DIS process (left). The diffractive dijets in DIS data compared

to the results of both fits to the inclusive data (right).
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2.1 Combined fit of inclusive and dijet data
The diffractive dijet data has been used in combination with the inclusive data to fully constrain
both the quark-singlet and gluon terms in a combined NLO QCD fit [7]. The resulting fit is
shown compared to the diffractive dijet data in figure 5; it is worth noting that the difference
in the description of the inclusive data, when compared to the inclusive-only fit, is negligible.
Finally, the diffractive PDFs resulting from the combined fit are shown in figure 6. The gluon
and quark components have similar good precision across the whole phase space and in particular
the gluon is well constrained at large momentum fractions z.
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Fig. 5: The diffractive dijet data compared to a combined NLO QCD fit of the same diffractive dijet data and the

inclusive data.

3 Conclusion

Results have been presented of the inclusive diffractive DIS cross-section and the data were
used to test the proton vertex factorisation hypothesis. Within the current limit of experimental
precision, the proton vertex factorisation hypothesis is seen to be a good approximation of the
data. Following this, NLO QCD fits of the inclusive data were shown, with the observation that
the gluon is not well constrained by the inclusive data alone at large momentum fractions. This
was seen to be a direct consequence of the dominance of the quark-driven contributions to the
logarithmic Q2 derivative of the cross section at large momentum fractions.
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The diffractive dijet cross-section in DIS has been measured and compared to the predic-
tions based on these inclusive DPDFs and reasonable agreement was found, further supporting
the factorisation ansatz. Finally, the result of a simultaneous fit to both the diffractive dijet and
inclusive data produced diffractive PDFs that have similar precision in both the quark-singlet and
gluon components. In particular, the gluon resulting from this combined fit is well constrained at
large momentum fractions.
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Fig. 6: The DPDFs resulting from the combined fit to the inclusive and dijet diffractive DIS data.
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Factorisation breaking in diffraction

A. Bonato, on behalf of the H1 and ZEUS collaborations
DESY / Universität Hamburg

Abstract
Diffractive and leading neutron production contribute to a significative
part of the ep interaction at the HERA collider. In the theoretical mod-
els that describe these set of events some factorisation properties of
the cross sections are either expected or postulated. The test of such
factorisations from the H1 and ZEUS collaborations is presented here.

1 Introduction

At the ep collider HERA the internal structure of the proton can be probed by the photon, γ ∗,
emitted by the electron. In diffractive interactions the outgoing proton stays intact or in a low-
mass resonant state [1]. These specific events contribute significantly to the total cross section
and can be modelled via the emission from the proton of a diffractive colour-singlet exchange
that subsequently is probed by the γ. The outgoing protons are accompanied by the presence
of a Large Rapidity Gap (LRG), a large angular region in the direction of the scattered proton
without hadronic activity [2, 3]. In recent years, perturbative QCD (pQCD) was shown to be a
valuable tool to describe this subset of events, given the presence of a hard scale that allows the
use of perturbative analysis [1,3,4]. In the case of deep inelastic scattering (DIS), high values of
the virtuality of the photon, Q2, emitted by the electron that probes the proton internal structure
provide such a hard scale. When the photon exchanged is almost real (i.e. for the kinematic
regime Q2 ∼ 0 GeV 2 known as photoproduction, γp) a hard scale can still be obtained by
producing jets with a high transverse energy, ET , or quarks with a heavy mass.

It has been proven for diffractive DIS that the cross section can be factorised into two
parts, universal parton distribution functions (dPDFs) and process-dependent coefficients that
can be calculated in pQCD [5]. In spite of its theoretical proof in DIS, QCD factorisation in
diffraction has been shown to fail in pp̄ collisions at the TeVatron accelerator [6]. The Next-
To-Leading (NLO) order pQCD calculations using dPDFs extracted at HERA overestimated the
data by roughly a factor of ten. Such a data suppression is due to soft rescatterings between
spectator partons present in the protons that may spoil the LRG used for tagging the event as
diffractive (Rapidity Gap Survival probability). Phenomenological models are able to describe
this suppression and predict that a similar effect should be seen at HERA in diffractive γp when
the low-virtuality photon exhibits a hadronic behaviour (resolved photon) [7, 8]. No suppression
is expected in DIS nor in the subset of γp events where the photon couples directly to a quark in
the hard subprocess (direct photon).

The test of this theorem is important for proving that diffractive processes can be described
by means of pQCD. Furthermore the study of diffractive final states is useful for constraining the
dPDFs that are extracted from inclusive diffractive data and have large uncertainties, especially
the gluon densities. Such a combined fit has been published recently by the H1 collaboration [9].

96



2 QCD Factorisation in diffraction

The most suited final states for testing the QCD factorisation in diffraction are the production of
dijets and heavy quarks. The appealing features of these processes are

• presence of a hard scale that allows the use of pQCD;
• sensitivity to the gluon content of the diffractive exchange via the boson-gluon fusion

(BGF) production process.

The NLO prediction can be compared to the measurement of the cross section in order to
observe any suppression of the data relative to the theory. The relevant variables in these analyses
are the virtuality of the γ, Q2, the energy of the γ − p centre-of-mass, W and the fractional
longitudinal momentum lost by the proton, xIP . In the dijets analyses the variable zobs

IP is defined
as the fraction of the diffractive exchange momentum carried by the parton entering the hard
subprocess and is therefore the variable most sensitive to the dPDFs. In the γp case the variable
xγ is introduced; it describes the fraction of photon momentum entering in the hard subprocess
and is therefore a good discriminant between direct- (i.e. xγ ' 1) and resolved-photon (i.e. xγ
significantly lower than 1).

New results in diffractive dijet production in DIS have become available from the ZEUS
and H1 collaboration at the time of writing [9–11]. The measurement performed by the H1 col-
laboration of the zobs

IP dependence of the differential cross section can be seen in Fig. 1. The ex-
perimental data are compared to NLO predictions using two different available dPDFs. The data
favour in particular the H1 2006 fit B even tough the theoretical uncertainties are large. ZEUS
observes similar agreement between measured data and theoretical prediction. Additionally, the
calculation using the MRW2006 fit [4] provides a good description of the data, very similar to
the one using the H1 2006 fit B. This agreement supports the QCD factorisation statement in the
DIS regime.

In Fig. 2, the differential cross section as a function of xγ is presented for dijets in diffrac-
tive photoproduction for H1 and ZEUS respectively [12, 13]. The interpretation of the pp̄ data
suggests a suppression in the low xγ region where the photon behaves like a hadron. The H1
measurement sees a global suppression of a factor 2, independently of xγ while ZEUS doesn’t
see any significant overestimation of the NLO compared to the data. The differences in these re-
sults can be partially addressed in the uncertainties on the theoretical calculations. The different
kinematic regions covered by the two analyses can also be due to the different outcome of the
analyses. For instance, in the ZEUS case, the higher cut on the jet transverse energy suppresses
the resolved photon contribution.

Results from the H1 Collaboration for diffractive D∗ production in DIS are shown in Fig. 3
[14]. The cross section is presented as a function of the variable β, that here plays the role of z obs

IP

in the dijet case. The measurement is compared to both the central values of a NLO calculation
using different dPDFs and to previous measurements. A consistent picture can be observed
where measurements and theoretical predictions agree, again supporting QCD factorisation in
diffractive DIS.

The production of D∗ in γp was measured recently by both H1 and ZEUS [14, 15]. The
ZEUS measurement of the differential cross section for such a process as a function of xIP is
presented in Fig. 4. The NLO predictions based on different dPDFs are compared to the data

FACTORISATION BREAKING IN DIFFRACTION
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Fig. 1: H1 measurement of the single differential cross section as a function of zobs
IP . The data are shown as dots. The

internal error bars represent the statistical uncertainty, the outer error bars the sum in quadrature of the statistical and

uncorrelated systematic uncertainties. The hatched area shows the correlated systematic uncertainty. The measured

points are compared to the NLO prediction using the (left) ”H1 2006 fit A” and (right) ”H1 2006 fit B” dPDFs.

The dark shaded band surrounding the theoretical curve represents the uncertainty coming from the dPDFs and the

hadronisation corrections. The lighter shaded band is the sum in quadrature of the dPDFs uncertainty and the scale

uncertainty.

and exhibit a good agreement. Such a consistency can be explained by the fact that the charm
content in the resolved photon is limited and therefore D∗ can be produced only via BGF, i.e.
direct-photon processes where QCD factorisation is expected to hold.

3 Vertex factorisation in leading neutron production

The production of leading baryons is a significant fraction of the events observed at HERA. A
recent ZEUS publication presented measurements where an outgoing neutron carrying a fraction
xL = En

Ep
of the initial p energy was detected by means of a dedicated forward instrumentation

[16]. The models for the production of leading neutron at HERA largely use the One-Pion
Exchange (OPE) approximation for describing such a process. The relevance of this production
mechanism is more important at high values of xL. The limiting fragmentation hypothesis is
commonly used in this context. It states that, in the high energy limit, the production of particles
in the proton-target fragmentation region is independent of the nature of the incident particle,
i.e. the lepton variables Q2 and W . Factorisation tests involve comparing semi-inclusive rates,
normalised to their total cross sections, to study whether particle production from a given target
is independent of the lepton variables.

The vertex factorisation can be broken by rescattering effects that occur between the lead-
ing neutron and the γ. In that case the neutron kinematics may change towards lower xL and
higher pT, migrating consequently outside the detector acceptance. In Fig. 5 the ratio ρ is shown
as a function of xL. This variable is defined as the ratio of two normalised differential cross
section measured in two distinct Q2 regions. If the vertex factorisation holds, ρ is equal to
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Fig. 2: Differential cross section for dijet production in diffractive γp as a function of xγ measured by (left) H1 and

(right) ZEUS. In both plots the data are shown as dots, the statistical uncertainty as the internal error bars, the sum in

quadrature of the statistical and uncorrelated systematic uncertainties as outer error bars and the shaded band shows
the correlated systematic uncertainty.

unity. Otherwise the enhanced rescattering in the low Q2 region would lower this ratio. As seen
in the plot this ratio is significantly lower than 1, meaning that vertex factorisation is violated.
Two different models for this absorption process are compared to the data. The D’Alesio-Pirner
model [17] implements absorption effects via rescattering between the leading neutron and the
γ, in a fashion similar to the QCD factorisation breaking described in Sect. 2. When the γ has
a low virtuality its transverse size is larger and the probability that the leading neutron scatters
over it is increased. The NSZ model [18] describes absorption employing the optical theorem
together with multi-Pomeron exchanges . The two predictions are also presented after correct-
ing for the different W dependence of the pion cross section in DIS and γp cross sections. The
D’Alesio-Pirner model describes well both normalisation and shape of the measurement while
the NSZ one does not have a steep enough rise as a function of xL.

4 Conclusions

Many factorisation mechanisms are used in describing the production of leading baryons. The
experimental test of them is an important step in order to build a robust theory for explaining
these processes. A key tool for a QCD-motivated description of diffraction is the QCD factorisa-
tion theorem. Analyses performed by the H1 and the ZEUS collaborations show that this ansatz
is valid in the DIS regime, although large theoretical uncertainties affect the power of the test.
In the γp regime, the situation is still unclear and some discrepancies between the conclusions
of the two experiments are observed. The vertex factorisation used in many phenomenological
models for describing the leading neutron production has been shown by ZEUS to be broken
in γp processes. It is interesting to notice that the model that best describes this vertex factori-
sation breaking implements the same rescattering effects that affects the QCD factorisation in
diffraction.
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Abstract
We make predictions for the diffractive longitudinal structure function
FDL to be measured at HERA, based on the DGLAP fits of diffrac-
tive parton distributions with an additional twist–4 term. This term
describes the diffractive qq̄ production from longitudinal photons and
significantly changes predictions for FD

L obtained in the pure DGLAP
analysis.

1 Introduction

We are interested in diffractive deep inelastic scattering (DDIS) at HERA which provides a very
interesting example of processes with a clear interplay between hard and soft aspects of QCD
interactions. In addition to the scattered electron and proton a diffractive system forms, which
is well separated in rapidity from the scattered proton. The most important observation made
at HERA is that diffractive processes in DIS are not rare, they constitute up to 15% of all deep
inelastic events [1–4].

After the integration over the proton azimuthal angle, the DDIS cross section depends on
two diffractive structure functions, FD

2 and FDL . They depend on four variables: Bjorken-x,
photon virtuality Q2 and two additional variables

xIP =
Q2 +M2 − t
Q2 +W 2

, t = (p− p′)2 , (1)

where M is mass of the diffractive system, W is center-of-mass energy of the gamma-proton
system and p, p′ are incident and scattered proton momenta.

In our analysis the diffractive structure functions are given by the decomposition into the
leading and higher twist contributions

FD2,L = F
D(tw2)
2,L + F

D(tw4)
L + . . . . (2)

In the Bjorken limit, the leading twist–2 part depends logarithmically on Q2 while the twist–4
part is suppressed by an additional power of 1/Q2. However, this contribution plays an especially
important role in DDIS since it dominates over the twist–2 for small diffractive masses M 2 �
Q2. Thus, it cannot be neglected. Physically, the twist–4 contribution is given by the diffractively
produced qq̄ pair from longitudinally polarized virtual photons. The effect of this contribution,
is particularly important for the longitudinal diffractive structure function F D

L which is supposed
to be measured in the last runs of HERA.

† speaker
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2 Twist–2 contribution

The leading twist–2 part of the diffractive structure functions is given in terms of diffractive
parton distributions (DPD) through the standard collinear factorization formulae [5–8]. In the
next-to-leading logarithmic approximation we have

F
D(tw2)
2 (x,Q2, xIP , t) = SD +

αs
2π

{
CS2 ⊗ SD + CG2 ⊗GD

}
(3)

F
D(tw2)
L (x,Q2, xIP , t) =

αs
2π

{
CSL ⊗ SD + CGL ⊗GD

}
(4)

where αs is the strong coupling constant and CS,G
2,L are coefficients functions known from inclu-

sive DIS [9, 10]. The integral convolution is performed for the longitudinal momentum fraction
and reads

(C ⊗ F )(β) =
∫ 1

β
dz C (β/z)F (z) . (5)

Notice that in the leading order, when terms proportional to αs are neglected, FD(tw2)
L = 0. The

functions SD and GD are built from diffractive quark and gluon distributions, qfD and gD:

SD(x,Q2, xIP , t) =
Nf∑

f=1

e2
f β

{
qfD(β,Q2, xIP , t) + qfD(β,Q2, xIP , t)

}
(6)

and
GD(x,Q2, xIP , t) = βgD(β,Q2, xIP , t) . (7)

From these equations we see that the new variable β, given by the formula

β =
x

xIP
=

Q2

M2 +Q2
, (8)

plays the role of the Bjorken variable in DDIS.

The DPD evolve with Q2 with the DGALP evolution equations [11] for which (xIP , t) are
external parameters. In this analysis we assume Regge factorization for these variables:

qfD(β,Q2, xIP , t) = fIP (xIP , t) q
f
IP (β,Q2) (9)

gD(β,Q2, xIP , t) = fIP (xIP , t) gIP (β,Q2) . (10)

The motivation for such a factorization is a model of diffractive interactions with pomeron ex-
change [12]. In this model fIP is the pomeron flux

fIP (xIP , t) = N
F 2
IP (t)
8π2

x
1−2αIP (t)
IP , (11)

where αIP (t) = αIP (0) + α′IP t is the pomeron Regge trajectory and

F 2
IP (t) = F 2

IP (0) e−BD |t| (12)

DIFFRACTIVE STRUCTURE FUNCTION FDL FROM FITS WITH HIGHER TWIST
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Fig. 1: Twist-4 contribution from longitudinally polarized photons. Two gluons here model the pomeron exchange

which is later unitarized and effectively described by the dipole cross section, see the text below.

is a formfactor which describes the pomeron coupling to the proton. Following [7] we set
F 2
IP (0) = 54.4 GeV−2 and BD = 5.5 GeV−2 from HERA data. In addition, α′IP = 0.25 GeV−2

and αIP (0) is fitted to data. The quark distributions are flavour independent and are given by a
singlet quark distribution ΣIP (β,Q2):

qfIP (β,Q2) = qfIP (β,Q2) ≡ 1
2Nf

ΣIP (β,Q2) , (13)

whereNf is the number of active flavours. We fit the distributions ΣIP (β) andGIP (β) at an initial
scale Q2

0 = 1.5 GeV2 to diffractive data from HERA, using the DGLAP evolution equations in
the next-to-leading order approximation. We also include the charm quark contribution into the
analysis [13].

3 Twist–4 contribution

This contribution describes the qq diffractive production from the longitudinally polarized virtual
photons, see Fig. 1. Although formally suppressed by 1/Q2, it dominates over the vanishing
twist–2 contribution for small diffractive masses M 2 � Q2 (β → 1) [14–16]. This is why it
cannot be neglected in the analysis of diffractive data in DIS.

We used the following form of the twist–4 contribution which has to be added to F D(tw2)
2

and FD(tw2)
L [17]:

F
D(tw4)
Lqq̄ =

3
∑
f e

2
f

16π4xIP
e−BD |t|

β3

(1− β)4

Q2(1−β)
4 β∫

0

dk2 k2/Q2

√
1− 4β

1− β
k2

Q2

φ2
0 (14)
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with

φ0 = k2

∞∫

0

dr r K0

(√
β

1− β kr
)
J0(kr) σ̂(xIP , r) , (15)

where K0 and J0 are Bessel functions. Strictly speaking, formula (14) contains all powers of
1/Q2 but the twist–4 part proportional to 1/Q2 dominates. The function σ̂(xIP , r) in eq. (15) is
the dipole-proton cross section which describes the diffractive interaction of the quark or gluon
dipole with the proton. Following [18] we choose

σ̂(xIP , r) = σ0 {1− exp (−r2Q2
s(xIP ))} (16)

where Q2
s(xIP ) = Q2

0 x
−λ
IP is the saturation scale which brings the energy dependence of the

twist–4 contribution. The three parameters of the dipole cross section: σ0, Q
2
0 and λ, are taken

from [18]. This form of the dipole cross section provides a successful description of the inclusive
and diffractive data from HERA. We also consider a reggeon contribution, described in detail
in [13], which improves a fit quality through a better xIP−dependence.

4 Fit results

In our analysis we use diffractive data on FD
2 (or the reduced cross section σDr ) from H1 [3, 4]

and ZEUS [1, 2]. These data were obtained in different kinematical regions and using different
methods of their analysis, thus we decided to analyse them separately. In all cases we find a good
fit quality. A full discussion of the fit details is given in [13].

For each data set we performed two fits: without twist–4 (pure DGLAP fits) and with
twist–4 added. Thus we obtained two sets of diffractive paton distributions which allow us to
make predictions for the longitudinal structure function F D

L . The diffractive parton distributions
(DPD) from the analysis of H1 data are shown in Fig. 2. They are given in terms of the pomeron
parton distributions which can be multiplied by the pomeron flux f(xIP , t) to obtain the DPD.

We see that the singlet quark distributions from the two fits are practically the same while
the gluon distributions are different. The gluon from the fit with twist–4 is stronger peaked near
β ≈ 1 than in the twist–2 fit. This rather surprising result can be understood by looking at the
logarithmic slope ∂FD

2 /∂ lnQ2 for fixed β. In the leading logarithmic approximation we have
from the DGLAP equations

∂FD2
∂ lnQ2

∼ ∂ΣIP

∂ lnQ2
= Pqq ⊗ ΣIP + PqG ⊗GIP − ΣIP

∫
Pqq (17)

where the negative term sums virtual corrections. For large β, the measured slope is negative
which means that the virtual term must dominate over the positive ones. The addition of the
twist–4 contribution to FD

2 contributes a negative value to the slope which has to be compensated
by a larger gluon distribution.

In Fig. 3, we show the diffractive structure functions resulting from the determined parton
distributions. As expected, FD

2 is practically the same in both fits. However, the FD
L curves are

significantly different due to the twist–4 contribution (shown as the dotted lines), present in the
twist–(2+4) fit. Let us emphasise that both sets of curves were found in fits which well describe

DIFFRACTIVE STRUCTURE FUNCTION FDL FROM FITS WITH HIGHER TWIST

105



PPD (H1)

solid:  tw-2 fit

dashed: tw-2+4 fitsi
ng

le
t

solid:  tw-2 fit

dashed: tw-2+4 fitsi
ng

le
t

gl
uo

n

Q
2 =3

.5
 G

eV
2

gl
uo

n

Q
2 =3

.5
 G

eV
2

Q
2 =1

0 
G

eV
2

Q
2 =1

0 
G

eV
2

ββ

Q
2 =2

0 
G

eV
2

β

Q
2 =2

0 
G

eV
2

β

0

0.2

0.4

0.2 0.4 0.6 0.8 1

0

1

2

3

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.2 0.4 0.6 0.8 1

0

1

2

3

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.2 0.4 0.6 0.8 1
0

1

2

3

0.2 0.4 0.6 0.8 1

Fig. 2: Pomeron parton distributions: quark singlet (left) and gluon (right) from the H1 data. Solid lines: twist–2 fit;

dashed lines: fit with twist–4.

the existing data, especially in the region of β where twist–4 is important. Thus, an independent
measurement of FDL in this region would be an important confirmation of the QCD approach to
diffraction.

The importance of the twist–4 contribution for FD
L at large β is also shown in Fig. 4 where

we present our predictions based on the analysis of the H1 data. The solid curve gives F D
L

from the pure DGLAP fit while the dashed curves are predictions of the fits with the twist–4
contribution from [16]. The upper curve corresponds to the fit with the original normalization of
twist-4 while for the lower curve twist–4 was multiplied by 0.5. Thus, the band reflects the scale
of our uncertainty. Let us emphasise that in all three cases shown in this figure, we found a good
description of the data. Giving the size of the effect, we conclude that the planned measurements
at HERA will have a chance to directly confirm the QCD mechanism of DIS diffraction. A
similar analysis performed for the diffractive ZEUS data leads to the same conclusion, see [16]
for details.
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Fig. 3: Diffractive structure functions FD2 (left) and FDL (right) from fits to the H1 data for xIP = 10−3 . Solid lines:

twist–2 fit; dashed lines: twist–(2+4) fit; dotted lines: twist–4 contribution.

5 Summary

We performed an analysis of the diffractive data from HERA determining diffractive parton dis-
tributions. In addition to the standard twist–2 formulae, we also considered a twist–4 contribu-
tion, suppressed by an additional power of 1/Q2 but dominating in the region of large β. This
contribution comes from the qq diffractive production from longitudinally polarized virtual pho-
tons and dominates for M 2 � Q2.

The twist–4 contribution leads to the diffractive gluon distribution which is more strongly
peaked at β ≈ 1 than the gluon distribution from the pure twist–2 fits. The main impact of this
contribution is on the longitudinal diffractive structure function, which is significantly bigger
than FDL from the twist–2 analysis in the region of β > 0.6. Thus, an independent measurement
of FDL in this region at HERA could provide an additional confirmation of the QCD mechanism
of diffractive interactions in DIS.
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Predictions for diffractive FL
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Fig. 4: Predictions for FDL for xIP = 10−3 from fits to H1 data. The solid line: FDL from twist–2 fit; dashed lines:

FDL from fit with twist–4 from [16] – original curve (upper) and multiplied by 0.5 (lower).
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Abstract
We consider the role of the perturbative Pomeron-to-parton splitting in
the formation of the diffractive parton distributions.

Diffractive deep-inelastic scattering (DDIS), γ∗p → X + p, is characterised by a large
rapidity gap (LRG) between the cluster X of outgoing hadrons and the slightly deflected proton,
understood to be due to ‘Pomeron’ exchange. Let the momenta of the incoming proton, the
outgoing proton, and the photon be labelled p, p′ and q respectively; see Fig. 1(a). Then the
basic kinematic variables in DDIS are the photon virtuality, Q2 = −q2, the Bjorken-x variable,
xB = Q2/(2p · q), the squared momentum transfer, t = (p − p′)2, the fraction of the proton’s
light-cone momentum transferred through the LRG, xP = 1− p′+/p+, and β ≡ xB/xP.

It is common to perform analyses of DDIS data based on two levels of factorisation. First
the t-integrated diffractive structure function F

D(3)
2 may be written as the convolution of the

usual coefficient functions C2,a as in DIS with diffractive parton distribution functions (DPDFs)
aD [1]:

F
D(3)
2 (xP, β,Q2) =

∑

a=q,g

β

∫ 1

β

dz
z2

C2,a

(
β

z

)
aD(xP, z, µ2

F ), (1)

with the factorisation scale µF usually taken to be Q. The DPDFs aD = zqD or zgD satisfy
DGLAP evolution in µF . The convolution variable z ∈ [β, 1] is the fraction of the Pomeron’s
light-cone momentum carried by the parton entering the hard subprocess. At leading-order (LO)
the coefficient functions are C2,q(x) = e2

q δ(1 − x) and C2,g(x) = 0. The collinear factorisation
theorem (1) applies when µF is made very large; it is correct up to power-suppressed corrections.
In the second stage, Regge factorisation is usually assumed, such that the diffractive parton den-
sities aD are written as the product of the Pomeron flux factor fP =

∫
dt exp(BP t) x

1−2αP(t)
P

and the Pomeron parton densities aP = zqP or zgP, that is,

aD(xP, z, µ2
F ) = fP(xP) aP(z, µ2

F ). (2)

The Pomeron trajectory is αP(t) = αP(0) + α′P t. For simplicity, we omit the contribution of
secondary Reggeons to the right-hand side of (2). Such an approach says nothing about the
mechanism for diffraction: information about the diffractive exchange (‘Pomeron’) needs to be
parameterised at the input scale µ0 and fitted to the data.

† speaker
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Fig. 1: (a) The perturbative resolved Pomeron contribution, which is the basis of the perturbative QCD approach, (b)

the perturbative direct Pomeron contribution, and (c) the non-perturbative resolved Pomeron diagram, which accounts

for the contribution from low scales, µ < µ0.

An alternative way to describe DDIS is to consider the heavy photon transition to qq̄ or
effective (qq̄)g dipoles, which then interact with the target proton via two-gluon exchange [2,3];
the case of the qq̄ dipole is shown in Fig. 1(b). Here the Pomeron is modelled by the t-channel
colour-singlet pair of gluons and we have an explicit form of the Pomeron parton distributions
aP(z, µ2) given at the initial virtuality µ2 = k2

t /(1 − z) fixed by the transverse momentum kt
of the outgoing components of the dipole. Such an approach relies on the existence of a large
saturation scale Q2

S & 1 GeV2 [4] to act as an infrared cutoff and suppress the contribution from
large dipole sizes, thereby justifying the use of perturbative QCD for the whole F D(3)

2 . However,
more sophisticated dipole models [5] now give a lower Q2

S . 0.5 GeV2 in the HERA kinematic
regime, therefore significant non-perturbative contributions to inclusive DDIS are to be expected.

The two theoretical frameworks are essentially contradictory: the Regge factorisation ap-
proach is motivated by ‘soft’ Pomeron exchange, whereas the two-gluon exchange approach is
motivated by perturbative QCD. Nevertheless, a ‘doublethink’ mentality exists whereby the two
approaches are both commonly applied separately in the description of data, often within the
same paper, with few attempts made to reconcile them.

The two approaches can be combined [6–8] by generalising the γ∗ → qq̄ and γ∗ → qq̄g
transitions to an arbitrary number of parton emissions in the final state, as shown in the upper
half of Fig. 1(a). The perturbative Pomeron is described by a parton ladder ending in a pair of t-
channel gluons or sea-quarks; the former is shown in the lower half of Fig. 1(a). The virtualities
of the t-channel partons are strongly ordered as required by DGLAP evolution: µ2

0 � . . . �
µ2 � . . .� µ2

F . The scale µ2 at which the Pomeron-to-parton splitting occurs can vary between
µ2

0 ∼ 1 GeV2 and µ2
F . For µ < µ0, the representation of the Pomeron as a perturbative parton

ladder is no longer valid, and instead, in the lack of a precise theory of non-perturbative QCD,
we appeal to Regge theory where the ‘soft’ Pomeron is treated as an effective Regge pole with

DIFFRACTIVE PARTON DISTRIBUTIONS: THE ROLE OF THE PERTURBATIVE POMERON

111



intercept αP(0) ' 1.08; see Fig. 1(c).

The probability to find an appropriate pair of t-channel gluons with transverse momentum
lt, integrated over lt, is given by the usual gluon distribution of the proton obtained from the
global parton analyses, xPg(xP, µ2), where µ2 = k2

t /(1 − z) is the virtuality of the first t-
channel parton in the upper part of the diagram. The emitted parton at the edge of the LRG in
Fig. 1(a) has rapidity ηmax and transverse momentum kt and carries a fraction (1 − z) of the
Pomeron’s light-cone momentum. For inclusive DDIS we must integrate over kt, accounting for
the components of the Pomeron wave function of different sizes ∼ 1/kt, which translates to an
integral over µ of the form

aD(xP, z, µ2
F ) =

µ2
F∫

µ2
0

dµ2

µ2

1
xP

[
Rg

αS(µ2)
µ

xPg(xP, µ2)
]2

aP(z, µ2
F ;µ2). (3)

The term fP(xP;µ2) ≡ [. . .]2/xP plays the role of the Pomeron flux in (2). Rg is the skewed
factor which accounts for the fact that in the lower parts of Fig. 1(a,b) we deal not with the
diagonal but with the skewed (or generalised) parton distributions. For low values of xP � 1
this skewed factor is given by the Shuvaev prescription [9]. The notation aP(z, µ2

F ;µ2) for the
Pomeron parton densities means that they are DGLAP-evolved from an initial scale µ2 up to the
factorisation scale µ2

F .

At first sight, the integral (3) appears to be concentrated in the infrared region of low µ.
However, for DDIS we consider very small xP values. In this domain, the gluon distribution
of the proton has a large anomalous dimension. Asymptotically, as xP → 0, BFKL predicts
xPg(xP, µ2) ∼ (µ2)0.5 for fixed αS [10]. In this case the integral (3) takes the logarithmic form,
and we cannot neglect the contribution from large scales µ.

By differentiating (3) with respect to ln(µ2
F ), the evolution equation now reads [7]

∂aD(xP, z, µ2)
∂ lnµ2

=
∑

a′=q,g

Pa,a′ ⊗ a′D +
∑

P=G,S,GS

Pa,P(z)fP(xP;µ2) . (4)

Here the first term, involving the usual parton-to-parton splitting functions, Pa,a′ , arises from
DGLAP evolution in the upper parts of Fig. 1(a,c). The second (inhomogeneous) term, involving
the Pomeron-to-parton splitting functions, Pa,P(z) ≡ aP(z, µ2;µ2), arises from the transition
from the two t-channel partons (that is, the Pomeron) to a single t-channel parton in Fig. 1(a).
The notation P = G,S,GS denotes whether the uppermost two t-channel partons are gluons
(P = G) or sea-quarks (P = S)1 , while the interference term is denoted by P = GS. The
LO Pomeron-to-parton splitting functions, Pa,P, were calculated in [7], where the perturbative
Pomeron flux factors, fP(xP;µ2), are also given.

Simultaneously, we need to add in (1) the direct Pomeron–photon interaction described
by the coefficient function C2,P = CT,P + CL,P corresponding to the hard subprocess shown in

1Note that besides the two-gluon exchange we also account for the qq̄ t-channel colour-singlet state, since even at
very small xP the sea-quark contribution does not die out. Moreover, the skewed factor Rq for the qq̄ t-channel state
is more than three times larger than that for the gluons [9].
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Fig. 2: The breakdown of the resolved Pomeron contribution for µ > 1 GeV to the total FD(3)
2 as a function of µ2
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2). The integral over ln(µ2) is shown by the numbers in parentheses in the

legend. Also shown are the integrated contributions from the the resolved Pomeron with µ < 1 GeV and the direct

Pomeron with µ > 1 GeV. The secondary Reggeon contributions are negligible for the values of xP chosen here.

Fig. 1(b):
F

D(3)
2 =

∑

a=q,g

C2,a ⊗ aD +
∑

P=G,S,GS

C2,P. (5)

For the LO CT,P the light-quark contributions in the limit µ2 � Q2 are subtracted since they
are already included in the first term of (5) via the inhomogeneous evolution of the DPDFs. This
subtraction defines a choice of factorisation scheme. There is no such subtraction for the LO
CL,P, which are purely higher-twist, or for the heavy quark contributions since we work in the
fixed flavour-number scheme (FFNS).

Thus, we see from (4) and (5) that the diffractive structure function is analogous to the
photon structure function, where there are both resolved and direct components and where the
photon PDFs also satisfy an inhomogeneous evolution equation.

As usual the evolution starts from some not-too-small scale µ0 and all the contributions,
both perturbative and non-perturbative, coming from µ ≤ µ0 are parameterised in terms of the
Regge factorisation as some input which should be fitted to the data. Note that inclusion of the
inhomogeneous term in (4) and the direct Pomeron coefficient function in (5) does not add any
new free parameters to the description of the DPDFs. The LO Pomeron-to-parton splitting func-
tions are known [7] and at next-to-leading order (NLO) they can be calculated unambiguously.
The numerical results [8] presented below were obtained by fitting the H1 LRG data [11] with
MX > 2 GeV and Q2 ≥ 8.5 GeV2, adding statistical and systematic experimental errors in
quadrature, and taking the input distributions at µ2

0 = 2 GeV2, which gave a χ2/d.o.f. of 0.84.

From Fig. 2 we see that integrating the perturbative contributions to F D(3)
2 starting from

µ = 1 GeV we collect up to a third of the whole diffractive structure function F D(3)
2 . Of course,

the numerous corrections (higher order αS corrections, power corrections, etc.) are not negligible
at such low scales as µ ∼ 1 GeV. Nevertheless, this fact indicates that an important part of the
diffractive parton densities comes from the relatively small size components of the ‘Pomeron’.
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the usual DGLAP terms start becoming important for β & 0.4. The peak at β = Q2/(Q2 + 4m2
c) ' 0.51 is due to

the threshold for charm production from the direct Pomeron–photon interaction.

That is why fitting the DDIS data in terms of the Regge factorisation one needs the effective
Pomeron intercept αP(0) ' 1.12 larger than that (αP(0) ' 1.08) measured in the purely soft
hadron–hadron scattering.

In Fig. 3 we show the breakdown of the different contributions to the slope ∂F D(3)
2 /∂ lnQ2.

As it is seen, the inhomogeneous term in the evolution equation is fairly large and starts becoming
important for β & 0.4. Note that the direct Pomeron contribution at large β, mostly the twist-four
F

D(3)
L , only gives an important contribution to the total F D(3)

2 for β & 0.9, but the contribution
to the Q2 slope starts becoming important at moderate β. Therefore, it is not possible to avoid
the presence of this contribution by simply excluding data points with β > 0.8 from the fit, as is
done in the H1 2006 analysis [11]. In the analysis of inclusive DDIS data, the diffractive gluon
density is mainly determined by the derivative ∂F D(3)

2 /∂ lnQ2. The presence of these additional
positive contributions to the Q2 slope at large β apart from the usual DGLAP contribution means
that a smaller gluon density is required for z & 0.4 compared to the H1 2006 Fit A performed in
the usual Regge factorisation framework [11]; see Fig. 4.

In our analysis we account for the twist-four F D(3)
L contribution coming from the direct

Pomeron–photon fusion, that is, from the last term in (5) corresponding to Fig. 1(b). This con-
tribution, which goes to a constant value as β → 1, was calculated in [2, 3] and turns out to be
numerically appreciable. For the coupling to massless quarks, this contribution to (5) takes the
form [7]

CL,P =
∫ Q2

4β

µ2
0

dµ2 1/Q2

√
1− 4βµ2/Q2

fP(xP;µ2) F PL(β). (6)
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MY is the mass of the proton dissociative system.

Differentiating with respect to ln(Q2) gives a positive term from the integrand evaluated at µ2 =
Q2/(4β), analogous to the inhomogeneous term in the evolution equation, in addition to the
negative term proportional to −1/Q2 obtained from taking the derivative of the integrand.

A recent analysis [12] includes the twist-four F D(3)
L contribution from all kt in addition

to the usual Regge factorisation formulae of (1) and (2). It is found that the twist-four F D(3)
L

term gives a negative contribution to the Q2 slope, such that a larger gluon distribution at high
z is needed than in the usual Regge factorisation approach. However, the contribution from
µ2 = k2

t /(1− β) < µ2
0 is already included in the input Pomeron PDFs taken at a scale µ2

0 = 1.5
GeV2, so some double-counting is involved. Moreover, the DGLAP evolution is not accounted
for in the dipole cross section, and the inhomogeneous term in the evolution equation of the
DPDFs is neglected. The future measurement of F D(3)

L [13] will provide an important check of
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the calculations of the twist-four component.

The smaller diffractive gluon density at high z found in our analysis, compared to the H1
2006 Fit A, is preferred by the data on inclusive diffractive dijet production, γ ∗p→ dijetX ′+ p,
where at LO the dijet system originates from the outgoing qq̄ pair in Fig. 1(a,c) and the rest of
the hadronic system X ′ originates from the other outgoing partons in Fig. 1(a,c). However, the
data still tend to be slightly overestimated [14]. This can also be seen in Fig. 4 where the ‘MRW
2006’ gluon at high z is smaller than the ‘H1 2006 Fit A’ gluon, but larger than the ‘H1 2007
Jets’ gluon obtained from a combined fit, within the Regge factorisation framework, to inclusive
DDIS and inclusive diffractive dijet data [15]. The χ2 for the 190 inclusive DDIS points increases
from 158 (H1 2006 Fit A) to 169 (H1 2007 Jets fit) on inclusion of the dijet data. Therefore, the
gluon density determined indirectly from the inclusive DDIS data, under the assumption of pure
DGLAP evolution, is different from the gluon density preferred by the dijet data. The apparent
tension between the inclusive DDIS and dijet data in the Regge factorisation approach is partly
alleviated by the inclusion of the perturbative Pomeron terms.

Note that in the ‘MRW 2006’ analysis [8] the parton distributions of the proton, represent-
ing the lower parton ladders in Fig. 1(a,b), were taken from a NLO global fit. However, since
the Pomeron-to-parton splitting is only calculated at LO, it may be more appropriate to take the
inclusive parton distributions from a LO fit, where the gluon density is much larger at small x
and does not take a valence-like form at low scales. In this case, the inhomogeneous term in the
evolution equation, and the other direct Pomeron contributions, would be enhanced, leading to
an even smaller diffractive gluon density at high z. Note that even if LO DGLAP evolution is
used in the lower parton ladders of Fig. 1(a,b), NLO DGLAP evolution may still be used for the
evolution of the Pomeron PDFs in the upper parts of Fig. 1(a,c).

A more direct way to observe the perturbative Pomeron contribution to DDIS is to study
the transverse momenta of secondaries in the ‘Pomeron fragmentation’ region, at the edge of the
LRG, as in Ref. [16]. In contrast with the Regge factorisation of Fig. 1(c), where the transverse
momentum distribution of the partons inside a Reggeon is assumed to have an exponential form
with a rather low mean value of intrinsic kt, in the perturbative case of Fig. 1(a) the kt-distribution
of the lowest jet in Fig.1(a) obeys a power law, given by the integrand of (3). Therefore we expect
a larger kt of the secondaries with the long power-like tail.

So far, measurements of inclusive diffractive dijets at HERA have primarily been made in
the kinematic region of small β ≡ xB/xP where the resolved Pomeron mechanism of Fig. 1(a,c)
gives the dominant contribution, and the contribution from exclusive diffractive dijets, Fig. 1(b),
is negligible. However, a first measurement has been made of dijets in DDIS with a cut on
β > 0.45 in order to enhance the contribution from exclusive diffractive dijets, γ ∗p→ dijet + p
[17]. Within the HERA kinematic domain the sea-quark component of the Pomeron is quite
important (see Fig. 2). This statement can be checked by observing the diffractive high-ET dijet
distributions in the exclusive γ(∗)p → dijet + p process. At LO we expect the ratio of cross
sections for high-ET dijets produced via the two-gluon (gg) and qq̄ t-channel exchange to be [7]

(dσγ
∗p
T /dET )

∣∣∣
P=G

(dσγ
∗p
T /dET )

∣∣∣
P=S

=
81
4

[
α(1− α)Q2

E2
T + α(1 − α)Q2

Rg xPg(xP, µ2)
Rq xPS(xP, µ2)

]2

, (7)
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where α is the photon’s light-cone momentum fraction carried by the high-ET jet, and the scale
µ2 = α(1 − α)Q2 + E2

T . Therefore, measurements of exclusive diffractive dijets at large ET in
photoproduction would probe the presence of the qq̄ t-channel exchange. However, it remains to
be seen whether a measurement of exclusive diffractive dijets is feasible without imposing a cut
on β.

In summary, we have shown how to obtain universal diffractive parton densities aD which
can be used in the description of different diffractive processes. We emphasise that the pertur-
bative QCD contribution originated by the inhomogeneous (last) term in (4) is not small and,
starting from a relatively low scale µ0 = 1 GeV, may generate up to a third of the diffractive par-
ton densities. Simultaneously, an account of this inhomogeneous term, and the twist-four F D(3)

L

contribution, leads to a lower diffractive gluon density at high z in comparison to that obtained
using the Regge factorisation hypothesis. The presence of the perturbative (large scale) contri-
butions reveals itself in larger transverse momenta (with a power-like tail) of the secondaries
observed in the ‘Pomeron fragmentation’ region. The colour singlet sea-quark pair exchange is
an important component of the perturbative Pomeron, which plays the dominant role in exclusive
diffractive dijet production with E2

T � Q2. Parameterisations for the DPDFs and the diffractive
structure functions are made publically available.2
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Multiple Interactions in H1 and ZEUS
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Abstract
Multi-parton interactions (MPIs) and the underlying event are believed
to contribute to the hadronic energy flow in hadron-hadron collisions
and possibly even lepton-hadron collisions. Two measurements are
presented here, each of which may be sensitive to MPIs. Both were
conducted at the HERA electron-proton collider: a three- and four-jet
analysis in photoproduction and a mini-jet analysis in deep-inelastic
scattering (DIS) made by the ZEUS and H1 collaborations, respec-
tively.

1 Introduction

The underlying event is a generic term for all energy flow not associated with the primary process,
however, defining what constitutes the primary process is non-trivial. As a working definition,
the primary process may be thought of as the idealised parton-parton interactions that would
occur if the beams were simply sources of quasi-free partons. The primary interactions would be
completely insensitive to the incoming particles (beyond their PDFs) and beam remnants. The
underlying event, then, is everything else that can affect the primary process and contributes to
the event. Thus, effects like secondary remnant-remnant interactions and multiple-scattering,
as a primary parton re-scatters off the remnants, may contribute to the underlying event. Both
contributions will be referred to as multi-parton interactions (MPIs).

Remnant-remnant interactions are only possible following a hadron-hadron-like collision
since it is the composite nature of hadrons that leads to there being remnants. Multiple-scattering,
however, only requires one of the incoming particles to be a hadron so may also be present in
lepton-hadron interactions. Remnant-remnant interactions, in particular, may occur at a scale
hard enough to generate additional jets and so constitute a potential source of multi-jets in the
final state.

The electron-proton (ep) collisions at HERA [1], with a centre-of-mass energy,
√
s =

318 GeV, may be mediated by either direct or resolved photons. In a direct collision, the pho-
ton interacts as a point-like particle whereas in a resolved event, the photon fluctuates into a
partonic system prior to interacting. The four-vector of the exchanged photon is denoted by q.
In events with a virtuality, Q2 ≤ 1 GeV2, where Q2 = −q2, which is a positive quantity at
HERA, the photon is long-lived with respect to the characteristic interaction time. Such events
are referred to as photoproduction events and the exchanged photon may fluctuate into a par-
tonic system. In higher Q2, deep-inelastic scattering (DIS) collisions, the resolved behaviour
of the photon is suppressed and direct interactions dominate. Thus, both remnant-remnant and
multiple-scattering may be present in a photoproduction sample, whereas the former is expected
to be suppressed with increasing Q2. The underlying event has been studied before at HERA in
photoproduction collisions [2] but not in DIS.
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Fig. 1: Measured cross section as a function of (a)M3j and (b)M4j (solid circles). The inner and outer error bars and

the shaded band represent the statistical, the statistical plus systematic and the calorimeter energy scale uncertainties,

respectively.

2 Three- and four-jet events in photoproduction

2.1 Introduction
Multi-jet events may be produced by primary processes beyond leading order (LO) in the strong
coupling constant, αs, or, as described above, by the overlay of a hard remnant-remnant interac-
tion onto a LO primary process. Moreover, even soft MPIs may affect the distribution of multi-jet
events by adding to or redistributing the energy flow generated by a beyond-LO primary process.
More specifically, the lowest order primary process capable of generating an n-jet direct pho-
toproduction event, in the absence of a hard MPI, is O(ααn−1

s ), where α is the fine structure
constant.

The multi-jet analysis by the ZEUS collaboration looked at photoproduction events (Q2 <
1 GeV2) that contained at least three (or four) jets with transverse energies, E jet

T ≥ 6 GeV, in
the pseudorapidity range, |ηjet| ≤ 2.4, and in the kinematic region 0.2 ≤ y ≤ 0.85, where y
is the inelasticity. These events were studied in two regions defined in terms of invariant n-jet
mass, Mnj , as 25 ≤Mnj < 50 GeV and Mnj ≥ 50 GeV, and the cross sections were measured
differentially.

To assess the influence of MPIs in each of the four samples, that will be referred to as the
three- or four-jet, high- or low-mass samples, the data were compared to predictions from two
Monte Carlo (MC) programs, HERWIG 6.505 [3] and PYTHIA 6.206 [4] both with and without
simulated MPIs. The MPIs in HERWIG were simulated using a separate program called JIMMY

4.0 [5], which is an impact parameter model. The MPIs in PYTHIA were generated according to
the so-called “simple model” [4], available via an internal PYTHIA routine.

MULTIPLE INTERACTIONS IN H1 AND ZEUS

119



In addition, the three-jet cross sections were compared to the O(αα2
s) perturbative quan-

tum chromodynamics (pQCD) prediction by Klasen, Kleinwort and Kramer [6]. This was, at the
time, the highest order prediction available in photoproduction. It is only LO for the three-jet
process and so could not be compared with the four-jet data.

2.2 Results
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Fig. 2: (a) Measured three-jet cross section as a function of

M3j in compared with an O(αα2
s) prediction, corrected for

hadronisation and MPI effects. (b) The hadronisation and MPI

corrections as a function of M3j . (c) The ratio of the M3j

cross section divided by theory. The theoretical uncertainty is

represented by the dashed bands.

The three- and four-jet cross sections are
given as a function of Mnj in Fig. 1. In
general, both cross sections decrease expo-
nentially with increasing Mnj . Also shown
in Fig. 1 are the HERWIG and PYTHIA

predictions with and without MPIs, nor-
malised to the high-mass region (Mnj ≥
50 GeV). Both models without MPIs fail to
describe the Mnj dependence of the cross
section and significantly underestimate the
low mass data. The discrepancy is larger
in the four-jet case. With the inclusion
of MPIs, both scaled MC predictions give
a reasonably good description of the data
over the full Mnj ranges.

It is noted that the predicted influ-
ence of MPIs in the samples is highly sen-
sitive to the tunable parameters within the
models. The PYTHIA model was run us-
ing its default setting whereas the JIMMY

model was tuned to the data shown [7].

Figure 2 shows an O(αα2
s) predic-

tion, corrected for hadronisation effects and
MPIs, compared to the measured dσ/dM3j

cross section. The hadronisation and MPI
corrections, including their estimated un-
certainties, are given in Fig. 2b. The hadro-
nisation corrections are constant in M3j ,
while the MPI corrections increase signif-
icantly towards low M3j . The theoretical
uncertainties on both the MPI corrections and the pQCD predictions are large. The magnitude
and shape of the calculation is consistent with the data within the large theoretical uncertainties.
This is best seen in the data over theory ratio shown in Fig. 2c. The level of consistency between
data and theory would be far worse at low M3j if it were not for the large MPI corrections.
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3 Mini-jets in DIS

3.1 Introduction
Although the presence of MPIs in photoproduction is far from universally accepted, their pres-
ence in DIS is even less so.

Investigation at HERA into low-x hard scattering, where x is the Björken scaling variable,
identifies the large contribution from diffractive events. Such events are described, in part, by
the exchange of pomerons. In a pQCD framework, the pomerons may be described by sums of
gluon ladders. With this description, applying the AKG cutting rules [8] (slicing through multiple
ladders, i.e. pomerons) highlights the potential importance of MPIs in DIS [9]. It is, therefore,
interesting to see if evidence of such a phenomenon can be identified within the data.

The H1 collaboration looked at DIS events with 5 ≤ Q2 ≤ 100 GeV2 and 0.1 ≤ y ≤ 0.7,
that contained at least one jet, defined using the kT clustering algorithm [10] in the hadronic
centre-of-mass (HCM) frame, with E jet

T ≥ 5 GeV in both the HCM and laboratory frames. Four
regions in azimuthal angle, φ, were then defined with respect to the highest E jet

T, jet in the HCM
frame, as depicted in Fig. 3. This “leading-jet” was required to have −1.7 ≤ η jet ≤ 2.79 in the
laboratory frame and the hadronic system was required to have an invariant mass,W ≥ 200 GeV.
Finally, the average multiplicity, 〈Nminijet〉, of so-called mini-jets, with Emini

T ≥ 3 GeV, was
measured in each of the four φ regions. A possible signature of MPIs would be an inflated value
of 〈Nminijet〉, most noticeably, in the less populated, high- and low-activity transverse regions.

3.2 Results

Fig. 3: Definition of the four azimuthal regions

used in the mini-jet analysis in DIS.

To ascertain whether the measured values of
〈Nminijet〉 were indeed large, the results were com-
pared to the predictions of three MC models, RAP-
GAP [11], ARIADNE, based on the colour dipole
model (CDM) [12], and PYTHIA. The latter model
was ran with and without simulated MPIs, whereas
the previous two did not include MPIs. These data
can be seen in Fig. 4 as a function of the transverse
momentum of the leading-jet in the HCM frame, la-
belled P ∗T,1j on the figure, and in three Q2 bins.

The toward-region data are reasonably well de-
scribed by all four MC models. The RAPGAP and
PYTHIA models marginally underestimate 〈Nminijet〉
at low-P ∗T,1j in the lowest Q2 bin. The PYTHIA de-
scription is improved by the introduction of MPIs.

The away-region is well described by CDM and RAPGAP models but PYTHIA significantly
over-estimates 〈Nminijet〉 at low-P ∗T,1j in all three Q2 bins, although more so at high-Q2. The
PYTHIA model predicts the away-region to be the least sensitive to MPIs.

The 〈Nminijet〉 values, in the low- and high-activity regions, tend to be underestimated
by all of the models that do not include MPIs, in all P ∗T,1j and Q2 bins. The underestimation
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Fig. 4: The 〈Nminijet〉 data, in all four azimuthal regions, as a function of P ∗T,1j in three Q2 bins. Also shown are the

predictions from four MC models.

of the data is more pronounced at low-Q2 and low-P ∗T,1j . The introduction of MPIs into the
PYTHIA model certainly aids the description of the low-Q2 data, however, the affect of the MPIs
diminishes rapidly with Q2 and the high-Q2 data is still underestimated.

Conclusions, similar to those made using the PYTHIA model, were drawn from compar-
isons with the HERWIG model (not shown). The analysis was also performed on a subsample of
the data in which a second jet, with P ∗T,1j ≥ 5 GeV, was observed in the away-region. Again, the
results were similar and not shown.

4 Conclusions

Effects have been observed in both photoproduction and DIS ep data that are suggestive of an
MPI contribution. More specifically, the ZEUS collaboration observed that the three- and four-jet
photoproduction cross sections are larger at low M3j(4j) than is predicted by two parton shower
MC models, and in the three-jet case, a LO pQCD calculation. This behavior is expected if MPIs
contribute to the data and two independent MPI models correctly account for the differences
between the MC without MPIs and the data. However, the prediction of MPI models are highly
tunable and the accuracy of the description of multi-jet final states by LO matrix element plus
parton shower MC models is not assured.

The H1 collaboration have observed a larger average mini-jet multiplicity in DIS events
than was predicted by both parton shower and colour dipole model MC models. In this case,
MPIs, as predicted by the PYTHIA model, improved the description of the data at low-Q2, al-
though were not predicted to influence the data at higher virtualities.
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Abstract
We discuss the diffractive photo- and electroproduction of a single neu-
tral pion at high energies where it can occur due to odderon exchange.
We show that this process is dynamically suppressed as a consequence
of chiral symmetry. Our result reconciles earlier theoretical expecta-
tions with the non-observation of this reaction at HERA.

1 Diffractive neutral pion production as a probe of the odderon

In this talk we want to present the main results of our study [1] of diffractive production of a
single neutral pion in photon-proton scattering at high energy,

γ(∗)(q) + p(p) −→ π0(q′) +X(p′) , (1)

where the photon can be real or virtual, andX can be any diffractively produced hadronic system.
For simplicity we will in the following assume that X is a proton, but our considerations can also
be applied to other states X , for example for X = N ∗ or X = n+ π+ [1]. Since the photon and
the neutral pion have opposite C-parity the object exchanged in this reaction must be odd under
charge conjugation, and hence at high energy must be an odderon (O), see Figure 1. (Note that
we draw the incoming particles to the right.)

The odderon, the C = −1 partner of the pomeron, was introduced in [2], for a general
review see [3]. It has since been studied in great detail especially from a theoretical point of
view. But experimentally the odderon remains an elusive object. Some weak evidence for its
existence has only been seen in elastic scattering at the ISR where the pp and pp̄ differential
cross sections show a difference at around |t| ∼ 1.3 GeV2 [4], for a recent discussion see [5].
There, however, the odderon is only one among many contributions and hence difficult to pin
down. In recent years it has been realized that the chances to observe the odderon are better in
exclusive processes in which the odderon essentially gives the only contribution. As an important
example of this strategy the reaction (1) has been proposed and discussed in [6].

A detailed analysis based on a nonperturbative model of QCD dynamics performed in [7]
led to the prediction

σ(γp→ π0N∗) ≈ 300 nb , (2)

while the subsequent experimental search at HERA [8] did not find a signal and resulted in the
upper bound

σ(γp→ π0N∗) < 49 nb . (3)
†speaker
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γ(∗)(q)π0(q′)

p(p)X(p′)
{

O

Fig. 1: Diffractive photo- or electroproduction of a π0 due to odderon exchange.

Possible causes for the failure of the prediction of [7] were discussed in [9]. Since the reaction
(1) has the largest phase space of all processes in which hadrons are diffractively produced a
strong dynamical suppression appeared necessary in order to provide a likely reason. In [1] we
have found that the approximate chiral symmetry of QCD indeed induces a strong suppression.

2 PCAC

Let us define a quark field operator describing up and down type quarks, ψ(x) = (u(x), d(x))T ,
and the associated triplet of axial vector currents (a = 1, 2, 3)

Aaµ(x) = ψ̄(x)γµγ5
τa

2
ψ(x). (4)

The well-known PCAC relation states that the divergence of this axial vector current is related to
a correctly normalised pion field operator φa by

∂λA
aλ(x) =

fπm
2
π√

2
φa(x) , (5)

where fπ ≈ 130 MeV is the pion decay constant, see for example [10]. Let us now consider
along with diffractive pion production the corresponding production of an axial vector current
A3,

γ(∗)(q, ν) + p(p, s) −→ π0(q′) + p(p′, s′) , (6)

γ(∗)(q, ν) + p(p, s) −→ A3(q′, µ) + p(p′, s′) , (7)

and let us denote the corresponding amplitudes by Mν(π0; q′, p, q) and Mµν(A3; q′, p, q), re-
spectively, which we consider for q2 ≤ 0 and q′2 ≤ m2

π. Using the PCAC relation (5) we can
then express the former amplitude in terms of the latter via

Mν(π0; q′, p, q) =
2πmp

√
2

fπm2
π

(−q′2 +m2
π) iq′µMµν(A3; q′, p, q) . (8)

3 Axial vector current production

The amplitude Mµν(A3; q′, p, q) for axial vector current production (7) can be treated with the
same general nonperturbative methods that were developed for Compton scattering in [11]. We
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Fig. 2: Leading diagrams at high energies for the reaction (7).

use the LSZ formula to relate the amplitude to Green’s functions, and the latter can then be
written as functional integrals over quark and gluon fields. Integrating out the quark degrees of
freedom leads us to diagram classes characterised by their quark line skeleton. Those diagrams
which contain the leading terms at high energies are shown in Figure 2, and they are exactly the
odderon exchange diagrams on which we want to concentrate here. The solid lines represent
full quark propagators in a given gluon field configuration, and the shaded blobs indicate the
functional integral over the gluon fields.

4 From axial vector current to pion production

We now consider the divergence of the amplitudes of Figure 2, that is we contract them with q ′µ

or take a derivative ∂µ. For the axial vector current this gives at the quark level

∂µA3
µ(x) = i[muū(x)γ5u(x)−mdd̄(x)γ5d(x)] , (9)

and hence there is a factor mq of the light quark masses in the divergence amplitude. Note that the
gluon anomaly does not contribute here. Such anomalous pieces are contained in the individual
contribution of the quark flavours to the divergence ofA3

µ and would have the quark line topology
of diagram (b) in Figure 2, but they cancel in ∂µA3

µ.

The quark loops in the diagrams of Figure 2 which couple to the axial vector current con-
tain a factor γ5. As a consequence, these loops give rise to an additional factor mq of the light
quark mass. This can be shown in a more detailed analysis which makes use of Lippmann-
Schwinger equations for the quark propagator, for details see [1]. Hence we find that the di-
vergence amplitude q′µMµν(A3; q′, p, q) is proportional to the square of the light quark masses.
More precisely,

q′µMµν(A3; q′, p, q) = m2
u C(u)ν(q′, p, q)−m2

d C(d)ν(q′, p, q) , (10)

where the functions C(q)ν have pion poles but are otherwise finite. (These poles are cancelled by
the explicit factor (−q′2 + m2

π) in (8) when we insert (10) there.) We know from the theory of
chiral symmetry that the squared pion mass is linear in the light quark masses,

m2
π = B(mu +md) (11)
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with
B = − 2

f2
π

〈0|ū(x)u(x)|0〉 ≈ 1800 MeV . (12)

Therefore we can conclude from (8) and (10) that the odderon exchange amplitude for pion
production is proportional to the square of the pion mass,

Mν(π0; q′, p, q) ∼ 1
m2
π

Mµν(A3; q′, p, q) ∼ 1
m2
π

m2
q ∼ m2

π . (13)

We thus find that the odderon exchange amplitude for π0-production vanishes in the chiral limit
m2
π → 0. This result can be generalised to the reaction (1) with an arbitrary hadronic final state

X .

5 Conclusion

We have considered the diffractive process γ (∗)p → π0X at high energies where it should be
dominated by odderon exchange. As a consequence of chiral symmetry the odderon exchange
amplitude for this process vanishes in the chiral limitm2

π → 0. We still expect a strong dynamical
suppression in the case of approximate chiral symmetry as it is realised in Nature. The cross
section should be suppressed by a factor m4

π/M
4, where M is a mass scale characterising the

scattering process. In the calculation of the process γp → π0N∗ in [7] that effect had not been
properly taken into account. A numerical estimate suggests that due to chiral symmetry the cross
section found there is reduced by a factor of at least about 50 [9], changing the prediction (2)
to less than about 6 nb. That reconciles the theoretical expectation with the experimental upper
bound (3) of [8].

The considerations that we have outlined here can also be applied to pion production in
other diffractive processes. An example that is relevant at the LHC and a future ILC is the
quasidiffractive reaction γγ → π0π0 at high energies. Also this reaction is at high energies
mediated by odderon exchange. Here an even stronger suppression due to approximate chiral
symmetry is expected.
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Central Production of New Physics

Jeff Forshaw†, Andy Pilkington
University of Manchester, Manchester M13 9PL UK.

Abstract
We discuss some of the physics which can be explored through a study
of the Central Exclusive Process (CEP), pp → p + X + p, where X
is some system of particles produced centrally in pseudo-rapidity. In
particular, we talk about the case whereX is a single Higgs boson, with
properties determined either by the SM, the MSSM or the NMSSM.
The possibility that X could be a pair of long-lived gluinos is also
discussed.

1 Introduction

The interest in measuring the CEP process pp → p+ X + p at the LHC is very substantial, for
example see the contributions to the proceedings of this conference from de Roeck [1], Khoze
et al [2] and Tasevsky [3]. The FP420 collaboration aims to install suitable proton detectors at
420m from the interaction point (IP), which is the ideal place to guarantee acceptance for central
systems in the 70-150 GeV range [4]. This reach can be increased to higher masses upon using
also detectors stationed at 220m from the IP. In addition, the theoretical modelling [5] (for an
introduction see [6]) has recently received a reassuring degree of validation with the recent CDF
measurements of CEP dijet production, as presented in the talk by Goulianos [7]. Most recently,
there have been two studies of SM and MSSM Higgs production which deal with the relevant
physics to a high level of detail [8, 9]. In this short review I’d like, in the next section, to discuss
these recent developments before moving on in the remaining sections to discuss a potentially
very interesting scenario in the NMSSM and then the possibility to measure the gluino mass
through CEP in models where the gluino is stable. Particular attention is paid to the possibility
of making measurements at high luminosities, i.e. ∼ 1034 cm−2s−1.

2 SM & MSSM Higgs

CEP of a SM Higgs and its decay to WW has been explored in [10] where it was shown that
triggering is not a problem and the backgrounds can safely be eliminated. The bottom line is
that it is possible to measure the SM Higgs this way, with a handful of events per 30 fb−1 of
data collected at modest luminosities (i.e. ∼ 2 × 1033 cm−2s−1) for Higgs masses in the range
140-200 GeV. It is pretty clear that these are conservative estimates and that improvements in
efficiency could readily be achieved through lowering the trigger threshold for the leptons.

More of a challenge is the detection of Higgs bosons via their decay to bottom quarks.
Of course this channel is swamped by background in inclusive production and it would be of
immense value if it could be observed using CEP. The challenge of establishing whether H → bb̄
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can be observed in CEP was taken up in the recent papers of Cox, Loebinger & Pilkington [8]
and Heinemeyer et al [9] with the latter focussing on the case of MSSM Higgses (and other decay
channels). We’ll discuss the Heinemeyer et al paper first (briefly since more details can be found
in [2, 3]).

It is expected that the LHC will be able to discover the lightest MSSM Higgs boson without
too much trouble. However, the challenge is to distinguish it from a SM Higgs and to observe
the heavier Higgses predicted by supersymmetry. It is in the pursuit of this goal that problems
emerge. There is a region of MSSM parameter space (the lower portion of the tanβ − MA

plane called the ‘wedge region’) where it could be very difficult to detect the heavier neutral
Higgs bosons. Moreover, the existence of this wedge region is rather robust against variations
in the MSSM input parameters. The conclusion of [9] is that CEP offers the unique possibility
to observe a previously discovered CP even1 heavier Higgs, H , directly through its decay to b
quarks and with excellent resolution on its mass. It also has the feature that the discovery contours
extend slightly into the previously excluded wedge region, making it the discovery channel in that
region provided measurements can be made at high luminosities (∼ 1034 cm−2s−1).

These conclusions are in line with those drawn in [8]. In that paper, special attention was
paid to the challenge of running at high luminosity and in particular the effect of pileup. Pileup
refers to the fact that at high enough luminosities there are many proton-proton interactions per
collision with typically 35 interactions per collision at 1034cm−2s−1. Clearly these extra colli-
sions produce ambient activity in the detector which contaminates signal events. Moreover it can
generate fake signal events as a result of the co-incidence of two or more separate interactions,
e.g. for a p + (H → bb̄) + p signal the dominant background comes from the threefold coinci-
dence of two single diffractive events (pp → p+ X) with a third inclusive pp → X event. It is
this overlap background which renders a measurement of the SM Higgs through its decay to bb̄
extremely challenging. With its tan β enhanced cross-section, the situation is more favourable
for a MSSM Higgs. In that context, one of the major results of [8] is the establishment of the
fact that pileup can be brought under control even at 1034cm−2s−1 as a result primarily of time-
of-flight vertexing (the primary pp vertex can be located very accurately as a result of the 10ps
timing resolution of the base FP420 design) and cuts on the number of charged tracks. Various
triggering options have also been explored and shown to be viable. That said, it should also be
noted that if the Higgs sector were in fact to correspond to something like the mmax

h scenario
considered in [8] then one would almost certainly be keen to make every effort to put the 420m
detectors into the L1 trigger. Additionally, further improvements may be made on the fast-timing
rejection of the overlap background. In such a setup, it is claimed that a 10σ observation could
be made with a measurement of the Higgs mass to much better than 1 GeV with 300 fb−1 of
data.

3 NMSSM Higgs

The unsettling possibility that the only light scalar Higgs boson could decay predominantly to
four taus arises in the NMSSM. It occurs as a result of the decay chain h → aa → τ+τ−τ+τ−

where a represents a light pseudo-scalar Higgs.
1The CP odd Higgs would be filtered out.
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The NMSSM extends the MSSM by the introduction of a singlet superfield, Ŝ. To do
so provides the possibility to solve the fine tuning and little heirarchy problems present in the
MSSM and it provides a natural solution to the µ-problem [11]. The Higgs sector of the NMSSM
contains three CP-even and two CP-odd neutral Higgs bosons, and a charged Higgs boson.

In [12], a partial ‘no-lose’ theorem for NMSSM Higgs discovery was established. The
theorem states that the LHC would be able to detect at least one of the NMSSM Higgs bosons,
utilizing Higgs decay modes other than Higgs-to-Higgs decays. However, in [13] it was shown
that there exists a small part of the NMSSM parameter space where Higgs-to-Higgs decays are in
fact dominant. Benchmark points were presented for which the primary decaying neutral Higgs
boson has strong coupling to gauge bosons and has mass in the range [90 GeV, 150 GeV] but
decays almost entirely to a pair of lighter higgses. Both of these Higgs bosons could have escaped
the LEP searches and would quite possibly also evade the standard LHC search modes [13].

Fortunately the troublesome region can be covered using CEP. In [14] attention is focussed
on scenario 1 of [13], for which the scalar Higgs, h, has mass 92.9 GeV and the pseudo-scalar
Higgs, a, has mass 9.73 GeV.2 The h → aa decay occurs with a branching ratio of 92% and is
troublesome since each a decays to τ+τ− with a branching ratio of 81% [15, 16]. The signal
process has been incorporated into the ExHuME v.1.3.4 Monte Carlo [17] and the backgrounds
were generated using ExHuME for pp → p + gg + p and pp → p + bb̄ + p. We do not need
to simulate light quark production because these backgrounds are suppressed relative to bb̄ by a
factor of m2

q/m
2
b . POMWIG [18] is used to simulate this source of background and the version

used incorporates the latest diffractive parton distribution functions from the H1 experiment at
HERA [19]. In addition to these direct backgrounds, at sufficiently high luminosity it becomes
necessary to consider the OLAP background. Specifically, the possibility of a threefold coinci-
dence of two single diffractive pp→ p+X events with a generic pp→ X inelastic process was
considered. The inclusive QCD events pp → X were generated using PYTHIA, with the ‘AT-
LAS tune’ to Tevatron data. The forward protons (from single diffraction) were then added to the
event using the prescription presented in [8], which also allows one to estimate the probability of
the threefold coincidence as a function of instantaneous luminosity. The two protons detected by
the 420m detectors do not originate from the same vertex as the primary scatter which produces
the muon and this can be exploited to reduce the OLAP background. According to the results
presented in [8], a rejection factor of 18 (15) should be obtained at low (high) luminosity running.
Overlap backgrounds from twofold coincidences are not considered since it was shown in [8] that
the largest twofold background is a factor of∼ 5 smaller than that for threefold coincidences. Fi-
nally, the pure QED backgrounds: pp→ p+τ+τ−l+l−+p (where l is any charged lepton) were
also considered and simulated using MADGRAPH [20]. All final state particle four-momenta
were smeared according to the relevant detector component resolution [21] with the outgoing
proton momenta smeared by the amount given in [22] and the effects of pileup were accounted
for by superimposing additional inelastic pp collisions simulated using PYTHIA on top of both
signal and background events. The above numbers are quoted assuming that triggering requires
a single muon with pT > 6 GeV, although increasing this threshold to 20 GeV may be more
appropriate at high luminosity (see [14] for details).

The final results are encouraging: after all cuts, the signal cross-section is around 0.08 fb
2These values are not exactly those quoted in [13].
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Fig. 1: The reconstructed a mass for the signal events.

with a total background of less than 0.02 fb excluding the OLAP background. By far the largest
source of background is the DPE production of pp→ p+ jjX + p and the QED background is
entirely negligible. The OLAP background is luminosity dependent, and estimated to be 0.1 fb at
1034 and 100 times smaller at 1033. It should be noted that the results correspond to a wide central
mass window from 70-110 GeV, which would be desirable if one is operating in search mode.
Once a signal has been identified, a much tighter mass cut would lead to a further reduction in
backgrounds. It is striking that even at high luminosities the effects of pileup are under control.
The principal reason for the smallness of the backgrounds arises because the analysis strategy
is very much oriented upon the use only of charged tracks, the muon detectors and the proton
detectors, i.e. the calorimeter is barely needed (there is a muon isolation cut which is not critical
for the analysis). In fact the principal cuts used to eliminate the backgrounds are cuts to insist on
exactly 4 or 6 charged tracks and a series of cuts to ensure that the charged tracks have the right
topology (i.e. they should cluster and form back-to-back pairs). It remains to be seen how much
of this charged track philosophy can be exported to other CEP processes.

Another advantage of studying NMSSM Higgs production via CEP is that not only can
the mass of the scalar Higgs be determined on an event by event basis, so too can the mass the
the pseudo-scalar a. Knowledge of the mean rapidity and invariant mass of the central system
(from the 420m detectors) in conjunction with the assumption that the a’s are highly boosted (so
that their decay products are roughly collinear with the original a direction) allows four a mass
measurements per event. Fig.1 illustrates the a mass distribution: it is clearly peaked around the
correct mass and the width is determined mainly by the collinearity approximation (not detector
resolution).

4 Gluinos

The possibility that the gluino may be long-lived is a hallmark of the ‘Split Supersymmetry’
scenario [23,24], though long lived gluinos have been studied before, in the context of models in
which the gluino is the Lightest Supersymmetric Particle (LSP) [25–27]. In Split Supersymmetry
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mg̃ (GeV) σmg̃ (GeV)
σmg̃√
N−1

(GeV) N

200 2.31 0.19 145
250 2.97 0.50 35.0
300 3.50 1.10 10.2
320 3.61 1.54 6.5
350 3.87 2.45 3.5

Table 1: The gluino mass resolution as a function of the gluino mass.

the SUSY breaking scale, mS , is large (mS �1 TeV) and the scalar particles acquire masses at
this scale. The sfermions of the theory are protected by chiral symmetries and so can have masses
at the TeV scale as can one neutral Higgs boson whose mass is allowed to be finely tuned. As a
result the gluino can be long-lived on collider timescales since it can only decay via the massive
scalar particles.

Data from the Tevatron have been used to place the limit mg̃ > 170 GeV on the mass of a
long lived gluino [28], for the case in which the gluino forms only neutral hadrons which remain
neutral as they pass through the detector. This limit is expected to rise to ' 210 GeV using Run
II data [28]. We should stress that this is a conservative limit, since it is anticipated that these
hadrons will undergo charge conversion reactions as they pass through the detector [29]. In the
most optimistic case, the Tevatron may reach gluino masses of up to ' 430 GeV if no signal is
observed [28].

In [22], the possibility of CEP gluino pair production was considered in the case where
the gluinos are sufficiently long-lived that they do not decay within the detector.3 According to
that paper, there could be sufficient rate (with negligible backgrounds) for detection provided the
gluinos have mass below ' 350 GeV and the gluino mass could be measured to an accuracy at
the 1% level after 3 years of high luminosity running.

For CEP, triggering is on the fastest R-hadron4 in the event (it looks like a delayed muon),
in conjunction with a cross-check that the forward detector readout contains hits in either the
same event or the previous one. Due to the relatively large masses that are of interest, good
acceptance for central masses in the range 300 − 1500 GeV requires use of at least one pot at
220m. Even in the most conservative scenario with 420m pots at 5mm from the beam and 220m
pots at 3mm from the beam, the acceptance is more than 40% up to central masses of 950 GeV.

The resulting gluino mass resolution, given 3 years of high luminosity running, is shown
in Table 1. In particular the final error on the gluino mass measurement is shown for N events.
In conclusion, it should be possible to measure the gluino mass to an accuracy below 1% up to
gluino masses of ' 350 GeV.

3It means we do not consider the case where the gluinos stop and subsequently decay within the calorimeter.
4The colour singlet bound state containing a gluino.
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5 Conclusions

Central exclusive production is able to explore a wide range of interesting physics5 and the ex-
perimental programme is already well developed [1]. In this short note we focussed upon Higgs
boson and gluino production. The key points to note are as follows.

• The prospects for SM Higgs production are good for mH in the range 140-200 GeV via
the WW decay channel.

• The prospects for MSSM Higgs production are good, especially in regions of MSSM pa-
rameter space where there is a tanβ enhancement of the rate. CEP offers the possibility
to measure the scalar Higgses, h and H , through the decay to bb̄.

• CEP is able to close the loop-hole in the NMSSM whereby the lightest scalar Higgs could
be invisible at the LHC as a result of its decay to four taus. It offers the opportunity to
measure the pseudo-scalar mass on an event-by-event basis. This analysis is very robust
against pileup by virtue of the fact that it makes very little use of the calorimeters.

• Should there exist light, stable, gluinos, CEP could pair produce them if they have masses
below 350 GeV and their mass could be measured.
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Diffraction at CDF

Konstantin Goulianos, on behalf of the CDF Collaboration
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Abstract
The diffractive program of the CDF collaboration at the Fermilab Teva-
tron pp̄ Collider is reviewed with emphasis on measurements of the
diffractive structure function and on exclusive production from Run II
at
√
s =1.96 TeV. Results on cross sections for exclusive dijet pro-

duction are used to calibrate theoretical estimates for exclusive Higgs
production at the Large Hadron Collider.

1 Introduction

The CDF collaboration has been conducting studies of diffractive interactions at the Fermilab
Tevatron pp̄ collider since 1989, aiming at elucidating the QCD nature of hadronic diffraction [1].
Diffractive interactions are characterized by one or more large rapidity gaps [2], presumed to
occur via the exchange of a Pomeron, generically defined as a quark/gluon combination carrying
the quantum numbers of the vacuum [3]. The diffractive process directly analogous to classical
diffraction is elastic scattering. The total cross section is also of interest in testing theoretical
models of diffraction, since it is related to the imaginary part of the forward elastic scattering
amplitude through the optical theorem. However, the most stringent tests for QCD inspired
models of diffraction are provided by inelastic diffraction. In this paper, we review the results
on diffraction reported by CDF and discuss their physics significance. These results have been
obtained from a comprehensive program spanning two decades, as outlined in the table below.

Run Sub-Run Date
∫

Lum (pb−1) Process
Run I IØ 1988-1989 5 σel, σtot, σel

Ia 1992-1993 20 see Fig. 1 (b)
Ib 1993-1995 100 ”
Ic 1995-1996 10 ”

Run II IIa 2003-2006 1000 see text
IIb in progress

2 Run IØ Results

In Run IØ , CDF measured the elastic, soft single diffractive, and total pp̄ cross sections at√
s =630 and 1800 GeV. The measurement was performed with the CDF I detector, which during

run IØ had tracking coverage out to |η| ∼ 7 and Roman Pot Spectrometers on both sides of the
Interaction Point (IP). The normalization was obtained by the luminosity independent method,
which is based on simultaneously measuring the total interaction rate, which depends on σ tot,
and the elastic scattering differential rate at t = 0, which depends on σ2

tot (optical theorem):

σtot ∝
1
L

(Nel +Ninel) & σ2
tot ∼

1
1 + ρ2

dNel

dt
|t=0 ⇒ σtot =

16π
1 + ρ2

1
Nel +Ninel

dNel

dt
|t=0

137



1000010001001 0
1

1 0

1 0 0

√s (GeV)

To
ta

l S
in

gl
e 

D
iff

ra
ct

io
n 

C
ro

ss
 S

ec
tio

n 
(m

b)

ξ <  0.05
Albrow et al.

Armitage et al.

UA4

CDF

E710

Renormalized

Standard 

f lux
Cool et al.

pp

f l ux

"knee" at 22 GeV

Fig. 1: (left) Schematic diagrams and event topologies in azimuthal angle φ versus pseudorapidity η for (a) elastic

and total cross sections, and (b) single diffraction (SD), double diffraction (DD), double Pomeron exchange (DPE),

and double plus single diffraction cross sections (SDD=SD+DD). The hatched areas represent regions in which there
is particle production. (Right) The total pp/pp̄ single diffraction dissociation cross section data (sum of p̄ and p

dissociation) for ξ < 0.05 compared with Regge predictions based on standard and renormalized Pomeron flux [5].

A global Regge fit to total and elastic pp̄/pp, π±p, and K±p cross sections using the
eikonal approach to ensure unitarity yields results consistent with the CDF cross sections even
when the CDF results are not used in the fit [4]. In contrast, the standard Regge fit to total single
diffractive cross sections, shown in Fig. 1 (right), overestimates the Tevatron cross sections by a
factor of ∼ 10. This discrepancy represents a breakdown of factorization, which is restored by
the renormalization procedure proposed in Ref. [5] (see also Ref. [6]).

3 Run Ia,b,c Results

The diffractive processes studied by CDF in Tevatron Runs Ia,b,c are schematically shown in
Fig. 1b. Both soft and hard processes were studied. A discussion of the results obtained and
of their significance in deciphering the QCD nature of the diffractive exchange can be found in
Ref. [7]. The most interesting discoveries are the beakdown of factorization and the restoration
of factorization in events with multiple rapidity gaps.

Breakdown of factorization. At
√
s =1800 GeV, the SD/ND ratios (gap fractions) for dijet,

W , b-quark, and J/ψ production, as well the ratio of DD/ND dijet production, are all≈ 1%. This
represents a suppression of a factor of∼10 relative to predictions based on diffractive parton den-
sities measured from DDIS at HERA, indicating a breakdown of QCD factorization comparable
to that observed in soft diffraction processes relative to Regge theory expectations. However, fac-
torization approximately holds among the four different diffractive processes at fixed

√
s, which

indicates that the suppression comes from the formation of the rapidity gap, as predicted by the
generalized gap renormalization model (see Ref. [7]).
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Restoration of factorization in multi-gap diffraction. Another interesting aspect of the data
is that ratios of two-gap to one-gap cross sections for both soft and hard processes obey factor-
ization. This provides both a clue to understanding diffraction in terms of a composite Pomeron
and an experimental tool for diffractive studies using processes with multiple rapidity gaps (see
Ref. [7]).

4 The Run II Diffractive Program

In Run II, CDF has been conducting the following studies of diffraction:

− structure function in dijet production,

− t distributions,

− exclusive dijet, diphoton [8], and e+e− [9] production,

− structure function in W production,

− gap between jets: dependence of the cross section on gap size for fixed ∆η jet.
In this paper, we present preliminary results on the diffractive structure function, on diffrac-

tive t-distributions, and on exclusive dijet production. The diffractive W and ‘gap between jets’
analyses are in progress.

4.1 Run II forward detectors
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Fig. 2: The CDF detector in Run II: (left) location of forward detectors along the p̄ direction; (right) position of the

Cerenkov Luminosity Monitor (CLC) and MiniPlug calorimeters (MP) in the central detector.

The Run II diffractive program was made possible by an upgraded CDF detector [10],
which includes the following special forward components (see Fig. 2):

− Roman Pot Spectrometer (RPS) to detect leading antiprotons,

−MiniPlug (MP) forward calorimeters covering the region of ∼ 3.5 < |η| < 5.5,
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− Beam Shower Counters (BSC) surrounding the beam pipe within ∼ 5.5 < |η| < 7.5.

The Roman Pot Spectrometer is the same one that was used in Run Ic. It consists of X-Y
scintillation fiber detectors placed in three Roman Pot Stations located at an average distance of
57 m downstream in the p̄ direction. The detectors have a position resolution of±100µm, which
makes possible a ∼ 0.1% measurement of the p̄ momentum. In Run Ic, the p̄-beam was behind
the proton beam, as viewed from the RPS side. An inverted polarity (with respect to Run I) of the
electrostatic beam separators enabled moving the RPS detectors closer to the p̄-beam and thereby
gain acceptance for small |t| down to ξ ≡ 1 − xF (p̄) = 0.03 (for larger |t|, lower ξ values can
be reached).

The MiniPlug calorimeters are placed within the holes of the muon toroids. They consist
of layers of lead plates immersed in liquid scintillator. The scintillation light is picked up by
wavelength shifting fibers strung through holes in the lead plates and read out by multi-channel
PMT’s. The calorimeter “tower” structure is defined by arranging fibers in groups to be read out
by individual PMT pixels. There are 84 towers in each MiniPlug measuring energy and position
for both electromagnetic and hadron initiated showers [11].

The Beam Shower counters are rings of scintillation counters “hugging” the beam pipe. The
BSC-1 rings are segmented into four quadrants, while the other BSCs are segmented into two
halves. The BSC-1 are also used to provide rapidity gap triggers and for measuring beam losses.

4.2 Diffractive structure function from dijet production
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T = Q2; (right) b|t=0 slope vs Q2.

In Run II, CDF has obtained preliminary results for the xBj ,Q2, and t dependence of the diffrac-
tive structure function from dijet production at

√
s = 1960 GeV. The measured xBj rates confirm

the factorization breakdown observed in Run I (see review in Ref. [12]). The Q2 and t depen-
dence results are shown in Fig 3.
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Q2 dependence. In the range 102 GeV2 < Q2 < 104 GeV2, where the inclusive ET distribu-
tion falls by a factor of ∼ 104, the ratio of the SD/ND distribution increases by only a factor of
∼ 2. The above results indicate that the Q2 evolution in diffractive interactions is similar to that
in ND interactions.

t-dependence. The slope parameter b(Q2)|t=0 of an exponential fit to t distributions near t = 0
shows no Q2 dependence in the range 1 GeV2 < Q2 < 104 GeV2.

These results support the picture of a composite Pomeron formed from color singlet com-
binations of the underlying parton densities of the nucleon (see Ref. [7]).

4.3 Exclusive Dijet Production
Exclusive production in pp̄ collisions is of interest not only for testing QCD inspired models of
diffraction, but also as a tool for discovering new physics. The process that has attracted the most
attention is exclusive Higgs boson production. The search for Higgs bosons is among the top
priorities in the research plans of the LHC experiments. While the main effort is directed toward
searches for inclusively produced Higgs bosons, an intense interest has developed toward exclu-
sive Higgs production, p̄/p+ p→ p̄/p+H + p. This Higgs production channel presents several
advantages: it can provide clean events in an environment of suppressed QCD background, in
which the Higgs mass can accurately be measured using the missing mass technique by detect-
ing and measuring the momentum of the outgoing proton and (anti)proton. However, exclusive
production is hampered by expected low production rates [13]. As rate calculations are model
dependent and generally involve non-perturbative suppression factor(s), it is prudent to calibrate
them against processes involving the same suppression factors(s), but have higher production
rates that can be measured at the Tevatron. One such processes is exclusive dijet production,
which proceeds through the same mechanism as Higgs production, as shown in Fig. 4.
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Fig. 4: Lowest order diagrams for exclusive dijet (left) and Higgs (right) production in p̄p collisions.

The search for exclusive dijets is based on measuring the dijet mass fraction, Rjj , defined
as the mass of the two leading jets in an event, Mjj , divided by the total mass reconstructed
from the energy deposited in all calorimeter towers, MX . The signal from exclusive diets is
expected to appear at high values of Rjj , smeared by resolution and radiation effects. Events
from inclusive DPE production, p̄p → p̄ + gap + jj + X + gap, are expected to contribute to
the entire Mjj region. Any such events within the exclusive Mjj range contribute to background
and must be subtracted when evaluating exclusive production rates.
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The exclusive signal is extracted from the inclusive Rjj distribution by fitting the data
with MC simulations [14]. Two methods have been used. In the first one, the POMWIG and
ExHuME generators are used for simulating inclusive and exclusive events, respectively, while
in the second, inclusive (exclusive) distributions are simulated using the POMWIG (DPEMC)
program. Experimentally, the MC non-exclusive dijet background shape is checked by a study
of high ET b-tagged dijet events, as quark jet production through gg → q̄q is suppressed in LO
QCD by the Jz = 0 selection rule as mq/M

jet → 0.

Figure 5 shows measured Rjj distributions plotted versus dijet mass fraction. On the
left, the number of events within the specified kinematic region the data are compared with
fits based on POMWIG plus ExHuME distribution shapes, and on the right with fits based on
POMWIG⊕DPEMC predictions. Both approaches yield good fits to the data. The suppression
factor expected for exclusive b-tagged dijet events is checked with CDF data in Fig. 6. Within the
quoted errors, this result validates the MC based method for extracting the exclusive signal. In

X / Mjj = MjjR
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s

0

100

200

300

400

500

600

CDF Run II Preliminary
DPE data (stat. only)

H1⊕POMWIG: CDF
ExHuME
Best Fit to Data

| < 5.9gapη3.6 < |
 > 10 GeVjet2

TE
 < 5 GeVjet3

TE

 1.2 %± = 15.0 exclF
(stat. only)

X / Mjj = MjjR
0 0.2 0.4 0.6 0.8 1

E
ve

nt
s

0

100

200

300

400

500

600

CDF Run II Preliminary
DPE data (stat. only)

H1⊕POMWIG: CDF
Exclusive DPE (DPEMC)
Best Fit to Data

| < 5.9gapη3.6 < |
 > 10 GeVjet2

TE
 < 5 GeVjet3

TE

 1.3 %± = 15.8 exclF
(stat. only)

Fig. 5: Extraction of exclusive dijet production signal using Monte Carlo techniques to subtract the inclusive dijet

background: (left) dijet mass fraction in data (points) and best fit (solid line) obtained from MC events generated

using the POMWIG (dashed) and ExHuME (filled) MC generators for inclusive and exclusive events, respectively;

(right) the same data fitted with POMWIG and exclusive DPEMC generators.

Fig. 7 (left), integrated cross sections above a minimum E jet1,2
T are compared with ExHuME and

DPEMC predictions. The data favor the ExHuME prediction. ExHuME hadron level differential
cross sections dσexcl/dMjj , normalized to the measured data points of Fig. 7 (left), are shown in
Fig. 7 (right) with errors propagated from the uncertainties in the data. Within the errors, the good
agreement with the default ExHuME prediction up to masses in the region of the standard model
Higgs mass predicted from global fits to electroweak data confirms the calculation of Ref. [13]
for exclusive Higgs boson production at the LHC.
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data; the ExHuME predictions have comparable systematic uncertainties.

5 Summary

Diffractive processes studied by CDF in Run I include elastic and total cross sections, soft diffrac-
tive cross sections with single and multiple rapidity gaps, and hard single diffractive production
of dijet, W , b-quark, and J/ψ production, as well as central dijet production in events with two
forward rapidity gaps (double Pomeron exchange). The results obtained support a picture of uni-
versality of diffractive rapidity gap formation across soft and hard diffractive processes, which
favors a composite over a particle-like Pomeron made up from color singlet quark and/or gluon
combinations with vacuum quantum numbers.

Run II preliminary results on the xBj and Q2 dependence of the diffractive structure func-
tion obtained from dijet production are also presented, as well as results on the slope parameter
of the t-distribution of diffractive events as a function of Q2. In the range 102 GeV2 < Q2 <
104 GeV2, where the inclusive ET distribution falls by a factor of ∼ 104, the ratio of SD/ND
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distributions varies by at most a factor of ∼ 2, indicating that the Q2 evolution in diffractive
interactions is similar to that in ND ones. The slope parameter b(Q2)|t=0 of an exponential fit
to t distributions near t = 0 in the range 1 GeV2 < Q2 < 104 GeV2 shows no Q2 dependence.
These results support a picture of a composite diffractive exchange (Pomeron) made up from the
underlying parton densities of the nucleon [7].
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Proton tagging at high luminosities at LHC

Marek Taševský
Institute of Physics, Na Slovance 2, 18221 Prague 8, Czech Republic

Abstract
We show that forward proton taggers at the LHC installed at 220 and
420 m from ATLAS and / or CMS give access to a very rich forward
physics program including possibilities to study the diffractive struc-
ture of proton or Higgs boson production in central exclusive diffrac-
tion processes, and also the photon-photon and photon-proton physics.
The focus is put on projects aiming at tagging scattered protons at high
luminosities at the LHC.

1 Introduction

There has been a great attention recently being devoted to the possibility of complementing the
standard LHC physics menu by adding forward proton detectors to the ATLAS [1] and CMS [2]
detectors. As a general and well-known feature of the hadronic production at LHC, the particle
multiplicity is peaked in the central region, while most of the energy flows very forward and
undetected by the main detector. In order to have a chance to explore the very rich forward
physics it is necessary to instrument the forward region of the main detectors. The forward
detector projects around the interaction point (IP) of ATLAS (IP1) and CMS (IP5) outside the
main detectors are summarized as follows:

• 14 m:
T2 GEM trackers of the Totem experiment [3] at CMS. Each of them contains 10 aligned
detector half-planes with 512 strips. The acceptance is 5.2 < |η| < 6.5 and resolution is
∆φ×∆η = 0.06× 0.017π. Installation is foreseen in 2007.

• 16 m:
CASTOR (Centauros and Strange Object Research) [4] calorimeter at the CMS side is
composed of tungsten/quartz planes with Cerenkov radiation as a measuring principle and
with separate electromagnetic (20.1 X0) and hadronic (9.5 λI ) sections. It is an octagonal
cylinder (length of 1.5 m, diameter of 36 cm) with 16-fold segmentation in φ and 14-fold
segmentation in z. The acceptance is 5.2 < |η| < 6.6. The construction is two-staged: the
first CASTOR will be installed in 2008, the second one in 2009.

Two LUCID (Luminosity measurement using Cerenkov Integrating Detector) [5] detec-
tors at the ATLAS side consist each of 168 gasfilled (C4F10 gas) aluminum tubes with
Cerenkov radiation as a measuring principle. It is a cylinder (length of 1.5 m, diameter
of 13.7 cm) with 168 tubes and 1176 fibers. The acceptance is 5.5 < |η| < 6.2. The
construction is also staged: a partial detector is being build in 2007, the full detector later.

• 140 m:
ZDC (Zero Degree Calorimeter) at the CMS side [6] is a tungsten/quartz Cerenkov calorime-
ter with separate electromagnetic (19 X0) and hadronic (5.6 λI ) sections. The acceptance
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for neutral particles (γ, π0, n) is η > 8.1 (100% for η > 9.3). The installation is planned
for 2007.

ZDC at the ATLAS side [7] is a tungsten/quartz Cerenkov calorimeter with separate elec-
tromagnetic (29 X0) and hadronic (3.4 λI ) section. It has 3-fold segmentation in z for
the the hadronic section; quartz rods in the electromagnetic and the first hadronic module
provide transverse coordinate measurement. The acceptance for neutral particles is η > 8.
The installation of one side is planned for 2007/2008 and the completion should be phased
with the LHCf detector.

The LHCf [8] tungsten-scintillator/silicon calorimeters share the location with the ATLAS
ZDC in the 140 m region.

• 220 m:
Roman Pots from the Totem experiment at the CMS side are formed by two units separated
by 4 m and each consisting of 2 vertical and one horizontal pot approaching the beam down
to 10σ+250 µm = 1.5 mm. Each pot has 5+5 planes of edgeless silicon detectors. It reaches
a spatial resolution of 20 µm per plane. The overall proton acceptance for central exclusive
production (CEP) processes varies with beam optics: it is almost 90% in the range 10−3 <
−t < 0.3 GeV2 and 10−4 < ξ < 0.2 for β∗ = 1540 m, while for β∗ = 0.5 m (the highest
instantaneous luminosity) it is around 40% in the range 10−3 < −t < 10 GeV2 and almost
100% in the range 0.02 < ξ < 0.2, where ξ is the fractional proton momentum loss. The
installation should be completed in 2007.

Roman Pots of the RP220 project at the ATLAS side [9] should contain just horizontal pots
with silicon strip or 3D silicon detectors with foreseen spatial resolution of 10–15 µm and
active edge of 30–60 µm in the case of the silicon strip option. The installation is foreseen
to happen in 2010.

• 240 m:
ALFA (Absolute Luminosity For ATLAS) [10] contains two vertical stations approaching
the beam down to 1.5 mm. It is composed of 10+10 planes of scintillating fiber detectors
with spatial resolution of 30 µm and the insensitive region smaller than 100 µm. The
ALFA system is foreseen to be installed in the 2008/2009 shutdown.

• 420 m:
FP420 [11] is an R&D collaboration formed to study the possibility to adapt 15 m long
cryostat using moving a beam pipe at both sides, ATLAS and CMS. It is designed to oper-
ate at the highest luminosity optics for which the 3D silicon detectors is the best solution to
stand high radiation levels. The detectors yield ∆p/p = 10−4 and hence a mass resolution
of about 1%. The overall proton acceptance for CEP processes is almost 100% in the range
0.002 < ξ < 0.02 giving the exclusive central system in a mass range 30 < M < 200
GeV. The acceptance is around 40% in the range 10−3 < −t < 10 GeV2. A timing detec-
tor with at least 10 ps is necessary to be installed to suppress the pile-up background. The
installation is foreseen in 2010.

In the following, an emphasis is put on the two projects aiming at installing forward proton
taggers for high luminosities, namely the FP420 and RP220. In the sections 2–5, common aspects
for both projects are discussed, followed then by sections about the status of both projects.
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2 Physics motivation for forward proton taggers at high luminosities

The use of forward proton tagging will provide an exceptionally clean environment to search for
new phenomena at the LHC and to identify their nature. Of particular interest in this context is
Central Exclusive Production (CEP), pp → p ⊕ φ ⊕ p (where ⊕ denotes a rapidity gap), which
gives access to the generalized (or skewed) PDFs. At the highest available luminosities, CEP
may become a discovery channel for particles with appropriate quantum numbers that couple
to gluons. The CEP of a SM (or MSSM) Higgs boson is an attractive and at the same time a
challenging process. It is attractive for two reasons: firstly, if the outgoing protons remain intact
and scatter through small angles then, to a good approximation, the central system φ must be
produced in a spin 0, CP even state, therefore allowing a clean determination of the quantum
numbers of any observed resonance. Secondly, from precise measurements of proton momen-
tum losses, ξ1 and ξ2, the mass of the central system can be measured much more precisely than
from the dijet method, by the so-called missing mass method, M 2 = ξ1ξ2s, which is indepen-
dent of the decay mode. The simplest decay mode from an experimental perspective is the WW
decay mode, in which one (or both) of the W bosons decay leptonically. With standard single
and double lepton trigger thresholds at ATLAS or CMS, approximately 6 events are expected for
Higgs boson mass around 160 GeV with luminosity of 30 fb−1 [12]. In the bb̄ decay mode, the
quantum number selection rules in CEP strongly suppress the QCD b-jet background, neverthe-
less severe requirements, necessary to get rid of the pile-up background, make the event yield
rather modest. In certain regions of the MSSM parameter space the cross section for the CEP of
the lightest Higgs boson is significantly enhanced and possibly making the bb̄ decay mode the
discovery channel [13]. Another interesting feature coming from the MSSM studies is that the
Higgs boson mass spectrum gets broader with increasing tan β, which from a certain value of
tanβ may serve as a distinguishing criterion between the SM and MSSM signals [13].

Forward proton tagging at high luminosities will also give access to a rich QCD program.
The proton structure can be investigated via the diffractive process pp → pX and pp → pXp
where X includes a dijet system, vector bosons or heavy quarks. These reactions give access
to the diffractive PDFs as well as to the so-called rapidity gap survival probability. The latter is
closely linked to soft rescattering and the features of the underlying event at LHC.

As the LHC beams act also as a source of high-energy photons a rich program of photon-
photon and photon-proton physics can be pursued. The LHC will open up a new kinematic
regime for the photoproduction of jets, providing information on the low-x and low-Q2 structure
of the proton. Top-quark pairs will also be produced in this mode. In photon-photon collisions,
one may expect lepton pairs (theoretically very well-known: this kind of process is a candidate
for the luminosity measurement) as well as W-pairs.

3 Acceptance

In general, the position of a proton hit in detectors at 220 or 420 m depends (for a given beam
optics) on the energy and the scattering angle of the outgoing proton and the z-vertex position
of the collision. The energy and scattering angle are directly related to the kinematic variables
ξ and −t. Fig.1 shows the acceptance in the (x, y) plane for the 220 m and 420 m detectors for
beam 1 and beam 2, respectively, around IP1 (ATLAS). The scattered protons were tracked with
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the MAD-X package [14] with LHC optics version 6.5. The distribution of diffractively scattered
protons explains why only horizontal stations are needed for both, the FP420 and RP220 projects.
The two projects however differ in where these stations are necessary to be put: as protons in the
220 m region are deflected away from the ring, they can be detected by pots approaching the
beam from outside the ring. In contrast to that, protons in the 420 m region are deflected inward
the ring and this poses greater demands on the engineering work related to the adaptation of the
connection cryostat as described in Section 6.
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Fig. 1: The acceptance for diffractively scattered protons in the (x, y) plane determined by MAD-X at 220 m for
beam 1 (upper left), beam 2 (upper right) and at 420 m for beam 1 (lower left) and beam 2 (lower right).

The low-ξ (and therefore low mass) acceptance depends critically on the distance of ap-
proach of the active area of the sensitive detectors from the beam. This is shown in Fig.2 on left
hand plot. While the acceptance for the 420+420 configuration in the 120 GeV mass range is not
too sensitive to the distance of approach (not shown), the acceptance of the 220+420 configura-
tion is quite sensitive. This is because the 220 m detectors have acceptance only for relatively
high ξ forcing the proton detected at 420 m to have lower ξ and therefore to be closer to the
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beam. The final distance of approach will depend on the beam conditions, machine-induced
backgrounds and collimator positions, and the RF impact of the detector on the beams. For
FP420, the nominal operating position is assumed to be between 5 and 7.5 mm, depending on
the beam conditions, for RP220, it is between 1.5 and 2 mm. For masses above about 120 GeV,
the 220 m detector adds to the acceptance with power increasing as mass increases. While the
difference between the IP1 and IP5 acceptances and beam 1 and 2, for the 420 detectors is negli-
gible, the situation is more complicated at 220 m where the crossing angle is in the vertical plane
for IP1 and the horizontal plane for IP5. This results in a significantly higher acceptance at IP1
(ATLAS) than IP5 (CMS) for 420+220 configuration, as shown in Fig.2 on right side [11].
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detectors) for IP1 and IP5. In the case of splitted curves, the lower one corresponds to the 420+220 configuration,

while the higher one to the sum of acceptances for the 420+220 and 220+220 configurations.

4 Timing detectors

The necessity of equipping the forward detectors operating at the highest luminosities by timing
detectors emerged from studies estimating the effect of pile-up background on diffractive pro-
cesses at LHC [15]. At an instantaneous luminosity of 2 × 1033cm−2s−1, the average number
is 7 events per bunch crossing, at 1 × 1034cm−2s−1, it is 35. Of these pile-up events, 3% (1%)
contain a proton within the acceptance of forward detector at 220 m (420 m). If we consider e.g.
the case of CEP of a Higgs boson with 120 GeV mass that decays into a pair of b-jets, an over-
lay of three events, namely two single diffractive ones each with a proton within the acceptance
of forward detectors on opposite sides and one hard-scale dijet event, mimics the signal almost
perfectly. Given the much larger cross section of inclusive dijet events compared to the signal,
this is the most important source of background. This background can be reduced by exploiting
the correlations between quantities measured in the central detector and those measured by the
forward detectors. One possibility is to compare ξ or pseudorapidity, η, another possibility is
to use fast timing detectors placed close to the forward detectors. Fast timing detectors with an
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expected sub-10 ps time resolution corresponding to a vertex resolution of better than 2.1 mm
should be able to assign a vertex to the proton detected in the forward detector and as preliminary
studies indicate, to reject about 97% of cases that appear to be CEP events but where the protons
in reality originated from coincidences with pile-up events. Currently the development of fast
timing detectors proceeds on several fronts, the interest comes also from other fields of physics
as well as from medical applications. Presently two detector options are studied, namely Quartz
and Gas Cerenkov which may be read out with a Constant Fraction Discriminator which allows
the time resolution to be significantly improved compared to usual electronics.

5 Trigger

The detectors at 420 m are too far away from the central detectors to be included in the L1
trigger in normal running conditions. The events with protons detected in the 420 m detectors
can however be retained by other means. In the case of no pile-up, it is possible to lower the L1
trigger jet thresholds by a sufficient value to retain the Higgs boson events by vetoing on energy in
the forward region at L1 [16]. Another way is to collect the events with protons tagged by a 420
m detector on one side and by a 220 m detector on the other side (this point is elaborated below).
A further 10% of b-jet events can be saved irrespective of pile-up conditions by triggering on
muons from B-hadron decays in the jets [15].

A big advantage of Roman Pots at 220 m is that they can be directly included in the
L1 trigger. Various strategies to trigger on diffractive physics have been studied in [15]. As
anticipated in Section 1 and 4, the big issue for any diffractive channel at high LHC luminosities
is the fact that diffractive protons from pile-up events may fake the signal diffractive protons. For
example, at the highest luminosity the rate of fake pile-up protons per bunch crossing seen in
both Roman Pots at 220 m on CMS side is about 50%. The rates for the 420+420 and 420+220
configurations are 10% and about 60%, respectively [15]. The numbers for the ATLAS case are
similar. These rates are of course enormous and need to be brought down to an acceptable L1
level. The trigger strategy depends on the mass of the diffractively produced object. Triggering
on heavy mass objects (e.g. masses above 200 GeV) should not be a problem since the expected
L1 rate of a two jet trigger withET > 100 GeV is about 6 kHz at the highest luminosity and it can
be reduced to about 2 kHz if we require in addition the double proton tag at 220 m. Triggering
on low mass objects is more difficult but in principle feasible as documented in the detailed
study [17] where a diffractive L1 trigger for 120 GeV Higgs boson decaying in two b-jets has
been proposed. The trigger consists of the following conditions:

• 2 jets with ET > 40 GeV (an expected L1 trigger rate is 2.6 kHz and 260 kHz at L =
1032cm−2s−1 and L = 1034cm−2s−1, respectively).

• Requirement of exclusiveness, (ET1 +ET2)/HT > 0.9, where HT is the scalar sum of all
L1 jet transverse momenta, reduces the rate by a factor of 2 independently of luminosity

• One proton detected in the detector at 220 m on at least one side from the IP.
• Momentum conservation along the beam axis, (η1+η2)·η220 > 0 where η1,2 are pseudora-

pidities of two L1 jets and η220 is the pseudorapidity of the proton detected in the detector
at 220 m, reduces the rate by a factor of 2

• Requirement of ξ1(2) < 0.05 following from the missing mass formula.
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The output rate of this trigger was estimated to be within 1 kHz up to luminosities of L =
2× 1033cm−2s−1 corresponding to 7 pile-up events per bunch crossing. Other reductions might
be achieved from the knowledge of the precise Higgs boson mass after it has been measured and
from a possible use of timing detectors at L1. The single-sided 220 m condition opens up space
for the protons caught in detectors at 420 m thereby enabling to collect also asymmetric 220+420
and partly even 420+420 configurations. This enlarges the missing mass spectrum towards lower
values. On top of that, a hit in 420 m detector may help to reduce the output rate of high level
triggers - similarly to comparing pseudorapidities or masses of the central object calculated from
the dijet system and from both protons seen in detectors on opposite sides from the IP.

A natural proposal for another diffractive L1 trigger would be based on a double-sided
proton presence in 220 m detectors. This trigger would only enable us to retain events with higher
mass objects (masses above roughly 160 GeV) by requiring in addition standard L1 triggers such
as high mass Higgs boson decaying into WW or ZZ, inclusive high pT dijets and inclusive high
pT jets (or low pT jets highly prescaled).

6 FP420

The FP420 R&D collaboration, with members from ATLAS, CMS and LHC aims at installing
high precision tracking and timing detectors close to the beam at 420 m from the IP. At LHC
start-up, the beam pipes in the 420 m region are contained in a 15 m long interconnection cryo-
stat that connects the superconducting arcs and dispersion suppressor regions of the LHC. The
cryostat provides continuity not only of cold (2 K) beam pipes, but also of the insulation vac-
uum, electrical power, cryogenics circuits and thermal and radiation shielding. The engineering
challenge of integrating detectors operated at room temperatures into the cryogenic section has
been solved by replacing the existing interconnection cryostat with a warm beam-pipe section
and a cryogenic bypass. A new connection cryostat with approximately 8 m of room tempera-
ture beam pipes has been designed using a modified Arc Termination Module (which includes
cold to warm transitions for the beam-pipes) at each end. A solution has also been found for a
mechanism which would bring the detectors close to the beam. It is a movable beam-pipe section
to which the detector stations would be attached. Detection of the protons will be achieved by
two 3D silicon detector stations at each end of the FP420 region. This novel technique uses elec-
trodes processed inside the silicon bulk instead of being implanted on its surface which makes it
very radiation-resistive and which may provide the insensitive area as small as 5 µm close to the
beam. The current prototypes utilize radiation-hard ATLAS pixel readout chip and were tested
in several beam tests. With a silicon detector electrode pitch of 50 µm a resolution in the two
spatial dimensions of about 15 µm can be reached. Monte Carlo studies indicate that for CEP
of a Higgs boson with mass between 120 and 200 GeV this translates into a mass resolution of
around 1.5 GeV, when the two protons are detected at 420 m on opposite sides.

7 RP220

The RP220 project is aiming at installing Roman Pots at 216 and 224 m on both sides of the
ATLAS detector. In a natural way, it follows up the ALFA project which is to measure the total
cross section of proton-proton interaction, by concentrating on measurements of hard diffractive
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physics accessible at high luminosities.

The Roman Pot design closely follows that used by the Totem collaboration and by the
ALFA project in ATLAS. As discussed in Section 3, a sensitive detector of a 2 × 2 cm2 size
placed in a horizontal pot approaching the beam from outside should be sufficient to detect all
diffractive protons.

There will be two kind of detectors to be put inside the pots, one for precise position
measurements, the other one for precise time measurements. For both cases, the experience
of FP420 with their development is closely followed. There are two options for the position
detectors: either five layers of silicon strips of 50 µm and two additional layers for triggering
purposes, or 3D silicon design as chosen for the FP420 project. In both cases, the precision of
the position measurement is foreseen to be 10–15 µm which translates in a mass resolution of the
order of 3% over a wide range of masses. The dead zone up to the active edge will be of the order
of 50 µm for the strip detector, while it is of the order of 5 µm for the 3D option. Assuming a
thin window of 200 µm and the distance of approach to the beam 10σ (15σ), the minimum value
of ξ is about 0.01 for beam 1 and 0.012 for beam 2 (0.014 and 0.016), respectively. The detectors
will be read out by standard ABCNext chip being developed for the silicon detectors in ATLAS.
The latency time of this chip is of the order of 3.5 µs, time long enough to send back the local
L1 decision from pots to ATLAS and to receive the L1 decision from ATLAS Central DAQ.
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Total Cross-Section Measurement and Diffractive Physics with
TOTEM

M. Deile on behalf of the TOTEM Collaboration
CERN, Genève, Switzerland

Abstract
The TOTEM Experiment will measure the total pp cross-section and
study elastic and diffractive scattering at the LHC. For the initial LHC
running period, TOTEM has requested a beam optics with β∗ = 90 m
which fits well into the standard LHC start-up scenario and whose
commissioning is expected to be less complex than the one of TOTEM’s
baseline optics with β∗ = 1540 m. The early running conditions will
allow a measurement of the total pp cross-section and – independently
– of the luminosity at the 5% level. In addition, the cross-sections and
topologies of soft diffractive events can be studied. At a later stage,
the precision of the total and elastic cross-section measurements will
be improved to the 1% level by using the final TOTEM optics, and the
diffraction studies will be extended by collaborating with CMS.

1 Introduction

The TOTEM apparatus [1] with its unique coverage of high rapidities (3.1 ≤ |η| ≤ 6.5) and
with its unprecedented acceptance for surviving protons is the ideal tool for studying forward
phenomena, including elastic and diffractive scattering. Since the particle multiplicity of inelastic
events (both non-diffractive and diffractive) peaks in the forward region (Figure 1), TOTEM
accepts about 95 % of all inelastic events in its trigger. This is crucial for achieving TOTEM’s
main objective for the first years of LHC operation, the luminosity-independent measurement of
the total cross-section based on the Optical Theorem.
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2 Measurement of the Total pp Cross-Section

2.1 Motivation and Technique
A precise measurement of the total pp cross-section σtot and of the elastic scattering over a
large t-range is of primary importance for distinguishing between different models of soft proton
interactions.
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Figure 2 summarises the existing measurements of σtot from low energies up to collider
and cosmic-ray energies. Taking into account all available data, the COMPETE collaboration [2]
has performed fits of the energy dependence of the total cross-section and the ratio ρ of the real to
imaginary parts of the elastic scattering amplitude, based on different models. The model leading
to the best fit predicts for the LHC at

√
s = 14 TeV:

σtot = 111.5 ± 1.2+4.1
−2.1 mb , ρ = 0.1361 ± 0.0015+0.0058

−0.0025 , (1)

where the second error is due to the 2.6 standard-deviations discrepancy between the two final
results from TEVATRON [3,4]. The cosmic-ray data with their large uncertainties do not provide
strong constraints on the model choice. Inclusion of the full set of COMPETE’s models leaves a
wide range for the expected value of σtot at 14 TeV, typically from 90 to 130 mb.

The total pp cross-section is related to nuclear elastic forward scattering via the two rela-
tions

Lσ2
tot =

16π
1 + ρ2

· dNel

dt

∣∣∣∣
t=0

and Lσtot = Nel +Ninel , (2)

the first of which is known as the Optical Theorem. This equation system can be resolved for
σtot or L independently of each other:

σtot =
16π

1 + ρ2
· dNel/dt|t=0

Nel +Ninel
, (3)

L =
1 + ρ2

16π
· (Nel +Ninel)2

dNel/dt|t=0
. (4)

Hence the quantities to be measured are the following:

M DEILE

154



• dNel/dt|t=0: The nuclear part of the elastic cross-section extrapolated to t = 0 (see Sec-
tion 2.3). The expected uncertainty of the extrapolation depends on the acceptance for
elastically scattered protons and hence on the beam optics.

• The total nuclear elastic rate Nel measured by the Roman Pot system and completed by
the extrapolation of the nuclear part dN nuc

el /dt to t = 0.
• The inelastic rate Ninel consisting of diffractive (∼18 mb at LHC) and minimum bias

(∼65 mb at LHC) events. It will be measured by the tracking stations T1 and T2.

For the rate measurements it is important that all TOTEM detector systems have level-1 trigger
capability. The parameter ρ = R[fel(0)]

I[fel(0)] , where fel(0) is the forward nuclear elastic amplitude,
has to be taken from external theoretical predictions, e.g. [2]. Since ρ ∼ 0.14 enters only in a
1+ρ2 term, its impact is small. At a later stage of TOTEM operation, a measurement of ρ via the
interference between Coulomb and nuclear contributions to the elastic scattering cross-section
might be attempted at a reduced centre-of-mass energy of about 8 TeV [5].

2.2 Inelastic Rate
The measurement of the inelastic rate is based on inclusive triggers with the forward trackers
T1 and T2 and the Roman Pots. To maximise the event detection efficiency on one hand and
to optimise the separation of physics signals from machine background on the other hand, an
interplay of various trigger strategies will be adopted:

• The inelastic single-arm trigger (requiring activity in T1 or T2 on one side of the IP) has
the best efficiency, missing only events with very low diffractive masses (< 10 GeV for
SD). However, it suffers from beam-gas background.

• The inelastic double-arm trigger (requiring activity in T1 or T2 on both sides of the IP) sup-
presses beam-gas background by its coincidence requirement. However, it cannot be used
for single diffraction and suffers from reduced efficiency in low-mass double diffraction.

• The purity of the inelastic triggers can be enhanced by reconstructing the interaction vertex
from the tracks in T1 or T2.

• Triggering on “non-colliding bunch crossings”, where the bunch position in one beam is
empty, gives access to a direct measurement of the beam-gas background rate which can
then be statistically subtracted from the data obtained with normal triggers.

• Single Diffractive and Double Pomeron Exchange events can be tagged by supplementing
the inelastic trigger with a proton trigger on one or both sides of the Roman Pot spectrom-
eter. However, proton inefficiencies in a small kinematic region with low values of |t| have
to be extrapolated in this trigger scheme.

• The rates of low-mass single or double diffractive events which are missed in all trigger
schemes can be statistically recovered by extrapolating the measured cross-section under
theoretical assumptions on dσ

dM2 . However, one has to keep in mind that low-mass reso-
nances typically escape such extrapolations.

The result of the trigger loss estimate (see [1,5]) is 0.8 mb or 1% of the predicted inelastic cross-
section of 80 mb.
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2.3 Elastic Scattering
The determination of total cross-section and luminosity according to Eqns. (3) and (4) requires
two aspects of elastic scattering to be measured: the total elastic rate and the extrapolation of
the differential cross-section dσ/dt to the Optical point t = 0. Obviously, to be complete, the
measured elastic rate has to be complemented by the extrapolated part, so that this extrapolation
enters twice in the procedure.

With the β∗ = 90 m optics [5], protons with |t| > 0.03 GeV2 are observed in the RP
detector at 220 m. This acceptance starting point lies well above the region where the delicate
effects from the interference between nuclear and Coulomb scattering play a role. Hence no
such perturbation needs to be included in the extrapolation procedure, in contrast to the final
β∗ = 1540 m optics with |t|min = 10−3 GeV2.

Most theoretical models [6] predict an almost exponential behaviour of the cross-section
up to |t| ≈ 0.25 GeV2, as shown in Figure 3. The deviations from a purely exponential shape
are quantified by the exponential slope B(t) = d

dt ln dσ
dt in Figure 3 (right). For all the models

considered – except for the one by Islam et al. – the deviations are small. In the t-range men-
tioned, the slope B(t) can be well described by a parabola which is therefore used for the fitting
function and the extrapolation. Since this quadratic behaviour of the slope characterises all the
models, the extrapolation method is valid in a model-independent way.
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Fig. 3: Left: Differential cross-section of elastic scattering at 14 TeV as predicted by various models. Right: Expo-

nential slope of the differential cross-section.

With the β∗ = 90 m optics – on which we will focus in all the following considerations –
the effective length Lx(220 m) at the Roman Pot at 220m is 0. Hence in this station only the y-
component of the scattering angle is measured and only the ty ≡ t sin2 ϕ ≈ (pΘ∗y)

2 component
reconstructed. Using the azimuthal symmetry of the elastic scattering process and hence the
equality of the distributions of ty and tx, the distribution dσ/dt can be calculated from dσ/dty
distribution.

The accuracy of the simulated extrapolation is shown in Figure 4. The key contributions
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(0.025 GeV2) respectively.

are the following:
• Smearing effects of the t-measurement which are dominated by the beam divergence

(σbeam = 2.3 µrad). Based on our preliminary MC simulations this contribution leads
to a shift of −2 % in the extrapolation result (Figure 4 left).

• The statistical error of the extrapolation for an integrated luminosity of 2 nb−1 correspond-
ing to 2× 104 s (about 5 hours) of running at a luminosity of 1029 cm−2 s−1.

• Systematic uncertainty of the t-measurement: the dominant contribution comes from the
uncertainty of the effective length Leff . The expected precision of 2 % would lead to an
extrapolation offset of about 3 %.
Due to the thick beam at β∗ = 90 m (σybeam = 625µm at RP220) compared to β∗ =
1540 m (σybeam = 80µm), detector or beam position inaccuracies have a much smaller
impact on the t measurement.

• Model-dependent deviations of the nuclear elastic pp cross-section from an exponential
shape lead to a bias in the extrapolation (left-hand plot in Figure 4). Besides the Islam
model which can be excluded or confirmed by the measured t-distribution at large t-values,
the models stay within ±1 %.

2.4 Combined Measurement Uncertainty
For the early TOTEM optics with β∗ = 90 m, the total uncertainty of σtot in Eqn. (3) has the
following contributions:

• Inelastic rate: δ(Ninel)
Ninel

≈ 1 %. This contribution is almost independent from the beam
optics, exceptions being SD and DPE where for some trigger strategies leading protons are
parts of the signature.

• Extrapolation of the elastic cross-section: For the early TOTEM optics with β ∗ = 90 m,
δ(dNel/dt|t=0)
dNel/dt|t=0

≤ 4 %.
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• Elastic rate: For β∗ = 90 m, δ(Nel)
Nel

≤ 2 %. The high correlation between Nel and
δ(dNel/dt|t=0)
dNel/dt|t=0

leads to a partial cancellation of errors, which is taken into account in the
error combination below.

• The ρ parameter, estimated to be about 0.14 by extrapolating measurements at lower ener-
gies [2], enters σtot in the factor 1

1+ρ2 ∼ 0.98, and hence gives only a relative contribution
of about 2 %. Assuming a relative uncertainty of 33 % on ρ, determined by the error of
the measurements at TEVATRON [4] and extrapolation to LHC energies, we expect an
uncertainty contribution of δ(1+ρ2)

1+ρ2 =+1.4 %
−1.2 %.

Combination of all these uncertainties by error propagation taking into account the correlations
yields a relative error of 4 % in σtot. The uncertainty of the luminosity calculated from Eqn. (4)
is slightly worse (7%) because the total rate enters squared.

At a later stage, the final baseline optics with β∗ = 1540 m will allow a precision improve-
ment to the 1% level. However, to achieve this ambitious goal, an improved knowledge of the
optical functions and a RP alignment precision better than 50µm will be needed.

3 Soft Diffraction

Fig. 5 (left) shows the (t, ξ) acceptances integrated over ϕ for the special TOTEM optics (β ∗ =
90 m and 1540 m) and for the low-β∗ optics (2 m is shown, 0.5 m and 11 m are similar). While
for β∗ = 0.5 m only protons with ξ > 2 % – corresponding to rather high diffractive masses – are
observed, the TOTEM optics give access to all ξ-values down to 10−8, except for very low |t|-
values. Consequently, a large fraction of the diffractive protons is observed: 65 % for β ∗ =90 m
and 95 % for 1540 m, allowing first measurements of SD and DPE at LHC. Due to the vanishing
effective length Lx at RP220 for the β∗ =90 m optics, the dependence of the x-position on the
emission angle Θ∗x is eliminated, which leads to a ξ-resolution of 6 × 10−3, mainly due to the
vertex uncertainty. For ξ < 6× 10−3 where σ(ξ)/ξ > 100%, events will rather be reconstructed
via their rapidity gap (Fig. 5, right). In the regions 0.0017 < ξ < 0.045 and 1 × 10−7 < ξ <
3×10−6, the gap edge lies within the acceptance of one arm of T1 or T2, resulting in a resolution
of σ∆η(ξ)/ξ = 0.8 ÷ 1. At a later stage, joint data taking together with CMS [7] will benefit
from a complete rapidity gap acceptance in the range 3.1 < ∆η < 16.1. Furthermore, vertex
reconstruction by CMS with an accuracy of 30µm will improve the ξ-resolution to 1.6 × 10−3.
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Fig. 5: Left: Acceptance in log10 t and log10 ξ for diffractive protons at RP220 for different optics. The contour lines
represent the 10 % level. Right: Rapidity gap as a function of ξ (diagonal line). In the shaded regions TOTEM can

reconstruct events via protons (vertical band) or via the rapidity gap in T1 or T2 (horizontal bands).
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Abstract
The LHC will soon provide proton-proton collisions at the unprece-
dented center of mass energy,

√
s =14 TeV. This not only allows us

to probe new regions of high-pT physics, but also low-x and forward
physics. A selection of potential measurements are described to out-
line the prospects for low-x and forward physics in the ATLAS, CMS,
TOTEM, and LHCf experiments.

1 Introduction

In pp collisions, forward scatterings occur when x1 � x2, where xi is the fraction of the proton’s
total momentum carried by parton i (the Bjorken-x). Since one of the partons in a forward
collision must have a low-x, there is an inherent connection between forward energy flow and
low-x physics. After a discussion on the current status of the forward detectors in the ATLAS,
CMS, TOTEM, and LHCf experiments, some examples of the forward energy flow and low-x
physics potential of these experiments are given.

The gluon density of the parton distribution functions (PDF) of the proton were discovered
to grow as xG(x,Q2) ∝ x−λ(Q2), where λ ' 0.1 − 0.3 rises logarithmically with Q2, in deep-
inelastic scattering (DIS) ep collisions at HERA [1]. The ’saturation’ region, where the non-
linear effects of gluon-gluon fusion due to high gluon density become important, is expected to
be accessible at the LHC. Figure 1 shows the coverage of the LHC in x and Q2 [2], as well as a
schematic representation of BFLK [3–5] evolution into the saturation region [6].

Forward physics is also very interesting for the measurement of the high energy (1016 −
1020 eV) cosmic ray energy and composition spectrum. Above Elab ∼ 1014 eV only indirect
measurements of extensive air showers are possible. These indirect measurements depend on
simulations of the air shower high in the atmosphere. Since there is no accelerator data above
Tevatron (∼ 1015 eV), the simulations have to extrapolate over several orders of magnitude to
reach the highest energy cosmic rays at ∼ 1020 eV. The dominant contribution to the uncertainty
of these models is the soft QCD forward energy flow, which can be studied at the LHC.

2 LHC Forward Detectors

The Large Hadron Collider (LHC) will provide pp collisions with
√
s = 14 TeV to four in-

teraction points (IP) instrumented with detectors. This is a summary of the forward detectors
instrumented at IP1 and IP5. The ATLAS and LHCf experiments are located at IP1, the CMS
and TOTEM experiments are located at IP5. The ALICE and LHCb experiments will not be
discussed here.
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Fig. 1: Schematic of saturation region (left), LHC coverage in x vs Q2 compared to HERA and fixed target experi-

ments (right).

The ATLAS detector [7] is the general purpose detector at IP1. The ATLAS forward de-
tectors include LUCID, ALFA, and ATLAS-ZDC. The LUCID and ALFA detector’s [8] primary
objective is luminosity measurement, but they will also be useful for forward physics studies.
The LUCID (LUminosity measurement using Cerenkov Integrating Detector) detector is located
at ±17 m from the ATLAS IP (5.4 < |η| < 6.1) and consists of aluminium tubes filled with
C4F10 gas surrounding the beam-pipe and pointing towards the ATLAS IP. The Cerenkov light
emitted by a traversing particle from the ATLAS IP is reflected down the tube and read out by
photo-multipliers. Particles not coming from the ATLAS IP will not traverse an entire tube and
thus leave a much smaller signal, thereby reducing backgrounds. The LUCID detector is also
expected to be of use in diffractive physics studies (using rapidity gap signatures) and forward
multiplicity studies.

The ALFA (Absolute Luminosity For ATLAS) detectors are scintillating fibre trackers lo-
cated inside Roman Pots at ±240 m from the ATLAS IP. The main purpose of ALFA is to
measure elastic proton scattering at low angles to determine absolute luminosity in ATLAS. To
achieve an optimal precision in the luminosity measurement, the LHC will have dedicated runs
with the so-called high-β∗ optics. This will provide the absolute calibration of the luminosity
for the LUCID detector. Potential for other physics using ALFA, such as, measuring the to-
tal pp cross-section, measuring elastic scattering parameters, and using the tagged protons for
diffractive studies are also being explored.

The ATLAS-ZDC (Zero Degree Calorimeter) [9] is a tungsten/quartz calorimeter located
between the two LHC beam-pipes at±140 m from the ATLAS IP. By measuring neutral particles
at a 0◦ polar angle it will have a central role in the ATLAS heavy-ion physics program, where it
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will be used to measure the centrality of the collisions, the luminosity, as well as be used in some
physics triggers. In the pp physics program, it will be used to study forward particle production
and energy flow.

The other experiment at IP1 is LHCf [10]. The primary objective of the LHCf collabora-
tion is to measure the forward production spectra of photons and π◦’s in high-energy pp collisions
to constrain the models of high energy cosmic ray air shower development. The LHCf detectors
are tungsten/scintillator calorimeters with silicon microstrip and scintillating fibre trackers lo-
cated at ±140 m from the interaction point.

The CMS [11] experiment is the general purpose detector at IP5. The TOTEM [12] exper-
iment shares IP5 with CMS. The CMS forward detectors include HF, CASTOR, and CMS-ZDC,
while the TOTEM detectors, T1/T2 and RP, are all in the forward region. While TOTEM and
CMS are independent collaborations, the experiments will have integrated read-out, allowing
TOTEM to benefit from the CMS central coverage, and CMS to benefit from the TOTEM for-
ward coverage.

The CMS HF is a steel/quartz calorimeter located 11 m from the CMS IP (3 < |η| < 5).
The primary motivation for the HF is forward jet tagging for the vector-boson-fusion Higgs
production channel, but it will play an important role in low-x and forward physics as well.
CASTOR is a tungsten/quartz calorimeter with electromagnetic (5.3 < |η| < 6.5) and hadronic
(5.2 < |η| < 6.4) components located at ±14 m from the CMS IP. The primary objective of the
CASTOR calorimeter in pp collisions is the study of the proton PDFs at very low x (∼ 10−6)
using Drell-Yan measurements. The CMS-ZDC is a tungsten/quartz calorimeter at±140 m from
the CMS IP. Like the ATLAS-ZDC, the CMS-ZDC’s primary physics objective is to measure the
centrality in heavy-ion collisions. In the pp program it can be used to study charge exchange
events with a leading neutron as well as forward energy flow.

The primary objectives of the TOTEM experiment are to measure; the pp elastic cross
section as a function of the square of the exchanged four-momentum (t), the pp total cross section
with a precision of approximately 1%, and diffractive dissociation in pp collisions at

√
s =

14 TeV. The TOTEM experiment consists of 2 tracking telescopes T1 and T2, as well as Roman
Pot (RP) stations. The T1 (3.2 < |η| < 5) and T2 (5 < |η| < 6.6) telescopes consist of cathode
strip chambers and gas electron multiplier chambers, respectively. The TOTEM RP stations
containing silicon strip detectors will be placed at a distance of ±147 m and ±220 m from IP5.
The stations can measure protons with a momentum loss ξ = ∆p/p in the range 0.02 < ξ < 0.2
for the nominal collision optics. For other optics with larger β∗, and hence lower luminosity,
much smaller values of ξ can be reached.

The FP420 (Forward Protons at 420m) [13] research and development project is aiming
to instrument both IP1 and IP5 with 3D silicon trackers and fast timing proton taggers to detect
the leading proton from high mass exclusive diffractive pp interactions.

3 Physics Prospects

The high cross section of forward jet production makes it a favourable channel to study the low-x
behaviour of the proton PDF at 14 TeV. Figure 2 (based on PYTHIA 6.403 [14]) shows that x
as low as 10−4 − 10−5 will be accessible in the CMS HF. So far, measurements at the Tevatron
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have probed the proton PDF down to x ' 10−3. The CMS analysis of forward jets has two
primary objectives; the single inclusive jet cross-section in HF with ET ' 20−100 GeV, and the
”Muller-Navelet” (MN) dijet cross-section with a jet in each of the +η and −η HF detectors [6].

Fig. 2: Generator level log(x1,2) distribution accessible at CMS given that one of the partons falls within the HF

acceptance (3 < |η| < 5 and ET > 20 GeV).

The primary objective of the single inclusive jet cross-section measurement is to constrain
the low-x proton PDF by including the data into the global PDF fits. This initial analysis con-
siders only 1 pb−1 of low luminosity data, since pile-up (a potentially significant contribution
to the systematic error) is negligible at low luminosity. Figure 3 shows that the statistics avail-
able in just 1 pb−1 are very large, but a full calculation of the systematic uncertainties (primarily
from detector response, underlying event, hadronization, and luminosity) needs to be completed
before a definitive statement on the possible constrains on the PDF are possible.

The MN dijet measurement is particularly sensitive to the BFKL [15] and small-x [16]
evolution of the proton. The colliding partons in the MN kinematics are both large-x valence
quarks (x1,2 ≈ 0.1) which produce a large rapidity interval between the two jets. The large
rapidity separation enhances the available phase space in longitudinal momentum for BFKL
radiation. Recent work [16] indicates that the presence of low-x saturation effects will suppress
the forward-backward MN dijet production cross section compared to the BFKL prediction, as
seen in Figure 4. By using the +η and −η HF calorimeters, ∆η ∼ 9 (where the suppression is
∼2 at low Q) can be achieved in the CMS detector. A full study of the rate and jet reconstruction
efficiency in the HF must be performed before a conclusion can be drawn regarding the feasibility
of this measurement.

Another physics process that could provide information on saturation effects are forward
Drell-Yan pairs [6]. With a large imbalance between the x of the q and q̄, the Drell-Yan pair is
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116 Chapter 9. Low-x QCD physics

resolution as it minimises underlying event background. Seed thresholds lower than 2-3 GeV
caused an inefficiency for low ET jets and introduced a larger dependence on the details of
jet fragmentation. In order to estimate the effects of the underlying event contributions and
the hadronization corrections we computed the jet cross-sections at the particle-level using
the iterative cone algorithm with all particles generated by PYTHIA after hadronization, as
well as at the parton-level recovering the original outgoing partons directly from the MC
“truth”.

9.2.3 Single inclusive forward jet measurement

Figure 9.4 shows the single spectrum measured in both HFs (3< |η| <5) obtained from
PYTHIA after jet reconstruction at the particle-level compared to a NLO calculation (CTEQ6M
PDFs, R = 0.5, scales µ = 0.5ET -2ET ) [174]. Although PYTHIA only contemplates LO dia-
grams, both calculations agree well. This is not unexpected since higher-order corrections
play a decreasing role at the large LHC energies [186].
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Figure 9.4: Single inclusive jet cross-section in HF (3 < |η| < 5) in pp collisions at 14 TeV as
determined with PYTHIA 6.403 at the particle-level with the cone algorithm (R = 0.5) (his-
togram) compared to a NLO jet calculation with scale µ = ET (scales variations in the range
µ = 0.5ET -2ET yield only ∼15% changes in the spectrum) [187, 188]. [Note that no detector
response, underlying event and hadronization corrections have been considered to produce
the spectrum].

Although we are not taking into account any detector response in this preliminary study, we
do not expect very significant changes in the measured spectrum due to: (i) the HF energy
resolution, (ii) electronic noise, or (iii) pileup events; inasmuch as the HF jet energy resolu-
tion is excellent [48] (thanks to the large forward boost of the produced jets), the expected

Fig. 3: Number of single inclusive jet events within the CMS HF acceptance expected in 1 pb−1 of data using particle-

level jets (cone R=0.5) from PYTHIA 6.403 with no detector response, underlying event, or hadronization corrections

applied.

118 Chapter 9. Low-x QCD physics

!"#

!"$

!"%

!"&

!"'

!"(

!")

*

*"*

*"+

*! *% +! +% #! #% $!

,-./012-

34
5"
67
8
9
:
-;
4
5<
= >-?-*"%

>-?-+"%

>-?-#"%

>-?-$"%

>-?-%"%

Figure 9.5: Ratio of the saturation over BFKL predictions for the Müller-Navelet forward
dijet cross sections in pp collisions at

√
s = 14 TeV as a function of Q ≡ Q1 = Q2 for different

values of y ≡ y1 = −y2 [180].

HFs, reconstructing the relevant kinematics for the Mueller-Navelet process and determining
the cross-section as a function of Q2. In particular we applied the following event selection
cuts:

• ET,i > 20 GeV
• |ET, 1 − ET, 2| < 2.5 GeV (similar virtuality, to minimise DGLAP-evolution)
• 3 < |η1,2| < 5 (both jets in HF)
• η1 · η2 < 0 (each jet in a different HF)
• |η1|− |η2| < 0.25 (almost back-to-back in pseudo-rapidity)

The momentum transfer during the hard scattering is defined as:

Q ≡
√

ET, 1 · ET, 2 . (9.5)

The requirements Q ≈ ET, 1 ≈ ET, 2 and η ≈ |η1| ≈ |η2| allow one to go higher values in Y
(Eq. 9.4) [180]. The longitudinal momentum fractions x1,2 carried by the two interacting MN
partons can be obtained from the jet ET ,i and ηi via Eq. (9.1). As expected dijets passing the
chosen MN kinematics cuts have large-x: 0.02 ! x1,2 ! 0.3. The data were divided into 4
equal pseudorapidity bins in HF (η = [3., 3.5], ..., [4.5, 5.0]) and the dijet cross section in each
η bin was computed as

d2σ

dηdQ
=

Njets

∆η∆Q

1∫
Ldt

, (9.6)

Fig. 4: Suppression of the MN forward dijet cross-section with low-x saturation compared to BFKL as a function of

Q ≡ Q1 = Q2.
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boosted to large rapidities, and the low-x q and q̄ distributions become accessible. The effect
of saturation on the cross section is shown in Figure 5, where a standard parameterisation of the
parton density function (CTEQ 5M1) is compared to a saturated parameterisation (EHKQS) [17].
In the kinematic range accessible by the CMS CASTOR calorimeter, a 30% decrease in the cross
section is observed. Again, more study is required to make a definitive statement on the feasibility
of this measurement, but initial studies are very promising.

124 Chapter 9. Low-x QCD physics

Figure 9.7: The differential cross section for Drell-Yan production of e+e− pairs is shown
for a standard parameterisation of the parton density (CTEQ 5M1) and for a “saturated”
parameterisation (EHKQS) as a function of the dilepton invariant mass (upper plot) and of
Bjorken-x (lower plot).

Fig. 5: Comparison Drell-Yan pairs of non-saturation (CTEQ) and saturation (EHKQS) models using the CMS CAS-

TOR detector.

While the ATLAS and CMS ZDC’s primary focus is in the heavy ion program, they have
significant potential for measuring forward particle production in the pp program as well. The
ability to tag a forward neutron allows for the possibility to look for processes like p+γ →W+n,
where the forward neutron is used to identify the charge exchange process. The potential for
this process to be used to study trilinear gauge boson couplings has not yet been studied with
detector acceptances and efficiencies, but theoretical work is underway [18]. Measuring very
forward neutral scalar particle production is also possible with the ATLAS and CMS ZDC’s. The
reconstruction of π◦ → γγ, η → γγ, and η′ → γγ is shown using the ATLAS ZDC in Figure 6.

The LHCf experiment will also reconstruct very forward π◦ → γγ events and measure
their energy spectrum as well as providing information about forward energy flow for constrain-
ing high energy cosmic ray air shower simulations. The modeling of high energy cosmic ray
air showers is important to help resolve the apparent conflict in the results of the HiRes [19]
and AGASA [20] experiments regarding the GZK cutoff. The predictions of various models are
shown in Figure 7 [6]. The LHCf experiment will measure the forward production spectra of
π◦’s and photon’s to constrain these models to improve the shower simulation precision and help
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Fig. 6: Potential for forward neutral scalar boson reconstruction in the ATLAS ZDC.

resolve the GZK cutoff question.

Fig. 7: Comparison of various high energy cosmic ray air shower simulations with an overlay of the acceptance of the

ATLAS, CMS, and LHCf experiments.

Conclusions

The ATLAS, CMS, TOTEM, and LHCf experiments are well prepared to explore the low-x and
forward energy flow physics that will become accessible in the

√
s=14 TeV pp collisions of the

LHC. Using a variety of detector systems and event signatures, the experiments will cover a
broad spectrum of exciting forward physics measurements.
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Diffractive physics in ALICE
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Abstract

The ALICE detector presently being built at CERN consists of a cen-
tral barrel covering the pseudorapidity range of −0.9 < η < 0.9 and
a muon spectrometer in the pseudorapidity range −4.0 < η < −2.5.
Additional detectors used for trigger purposes and for event classifica-
tion cover adjacent pseudorapidity intervals of approximately 3 and
4 units on the two sides of the central barrel. Such a geometry is
suited for defining a double gap trigger by requiring no activity in the
event classification detectors. The centrally produced diffractive state
is measured by the detectors in the ALICE central barrel. A few se-
lected physics channels are discussed in order to illustrate the variety
of physics topics which becomes accessible by implementing such a
rapidity gap trigger.

1 The ALICE detector

The ALICE experiment at the LHC is designed as a general purpose experiment with a central
barrel covering the pseudorapidity range −0.9 < η < 0.9 and a muon spectrometer covering the
range −4.0 < η < −2.5 [1,2]. The ALICE experimental program foresees data taking in pp and
PbPb collisions at luminosities of L = 5x1030cm−2s−1 and L = 1027cm−2s−1, respectively. An
asymmetric system pPb will be measured at a luminosity of L = 1029cm−2s−1.

The central detectors track and identify particles from ∼ 100 MeVc−1 to ∼ 100 GeVc−1

transverse momenta. Short-lived particles such as hyperons, D and B mesons are identified by
their reconstructed secondary decay vertex. The detector granularity is chosen such that these
tasks can be performed in a high multiplicity environment of up to 8000 charged particles per
unit of rapidity. Tracking of particles is achieved by the inner tracking system (ITS) of two layers
of silicon pixel (SPD), two layers of silicon strip (SSD) and two layers of silicon drift detectors
(SDD). The global reconstruction of particle momentum uses the ITS information together with
the information from a large Time-Projection-Chamber (TPC) and a high granularity Transition-
Radiation Detector (TRD). Particle identification in the central barrel is performed by measuring
energy loss in the tracking detectors, transition radiation in the TRD and time-of-flight in a high-
resolution TOF array. A single arm High-Momentum Particle Identification Detector (HMPID)
with limited solid angle coverage extends the momentum range of identified hadrons. Photons
will be measured by a crystal PbWO4 PHOton Spectrometer (PHOS) and an electromagnetic
sampling calorimeter (EMCAL).

Additional detectors for trigger purposes and for event classification are placed on both
sides of the central barrel such that the pseudorapidity range −3.7 < η < 5 is covered. Fig. 1
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shows the pseudorapidity acceptance of ALICE resulting from the ALICE detectors as explained
above. The event characterization detectors shown in this figure are quartz scintillation detectors
(T0A,T0C) used for timing, plastic scintillator detectors (V0A,V0C) and silicon detectors (FMD)
for multiplicity characterization.

Fig. 1: Pseudorapidity coverage of the different detector systems of ALICE

1.1 The diffractive gap trigger in ALICE
The ALICE trigger is designed as a system with three levels L0,L1,L2 and a high-level software
trigger (HLT). A diffractive L0 trigger can be defined by requiring little or no activity in the V0A
and V0C detectors explained above. These two detectors are designed with an eight and four-fold
segmentation in azimuth and pseudorapidity, respectively. The segmentation in pseudorapidity
allows to select a gap width in steps of half a unit up to the maximum pseudorapidity interval of
two covered by the detectors.

The high-level trigger has access to the information of all the detectors shown in Fig. 1
and hence can increase the rapidity gap to −3.7 < η < −0.9 and 0.9 < η < 5.0, respectively.

Due to the absence of a V0A and V0C signal in a diffractive trigger, the L0 signal for this
trigger has to be defined within the central barrel. In defining a L0 diffractive trigger, the tran-
sition radiation detector needs special consideration. This detector system is put in sleep mode
after readout of an event in order to reduce power consumption. A wakeup signal is necessary
to activate the onboard readout electronics. The V0A and V0C signals are transfered to the TRD
pretrigger system where such a wakeup signal is generated.

A L0 diffractive trigger can, for example, be defined by the silicon pixel detector of the
inner tracking system. This signal is, however, not in time for the wakeup call of the transition
radiation detector. A TRD diffractive wakeup call can be defined by the information of the time-
of-flight array. The information from this array is bundled into 576 segments covering the full
central barrel. Each of these segments covers an area of approximately 30x50 cm2 and delivers
one bit per beam bunch crossing depending on whether a track has been seen within the segment.
A logic trigger unit collects the 576 bits and can set multiplicity conditions and topological
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constraints. In addition, the information of the V0A and V0C detectors is available at this level
hence the required gap width can be defined. The output of this trigger unit is fast enough to
reach the ALICE central trigger processor well before the time limit for L0 decision.

2 Signatures of the soft and hard Pomeron

The hadron-hadron cross section at high energies is increasing as function of energy. Regge
inspired models parameterize such an energy dependence in the form

σ = X1s
ε1 + Y1s

ε2

where the first term arises from soft Pomeron exchange and the second is associated with
ρ, ω, f2, a2 exchange. Numerical fits to data yield ε1 ∼ 0.08 and ε2 ∼ −0.5 [3]. This parame-
terization correctly predicted the γp cross section which was subsequently measured at HERA.
Extending the formalism to γ∗p collisions predicts the structure function F2(x,Q2) at small x

F2(x,Q2) ∼ A1(Q2)x−ε1 +A2(Q2)x−ε2

It was found, however, that the fit to HERA data requires an additional term A0(Q2)xε0
with ε0 ∼ 0.4 [4]. Such an additional term is called “hard-Pomeron” exchange.

The ALICE rapidity gap trigger is able to select diffractive events produced by double
Pomeron fusion. Soft/hard Pomeron exchanges will be reflected in a soft/hard scale inherent
in the system. In the absence of ALICE proton tagging and hence missing t-information, we
represent the inherent scale by the transverse momentum pT of secondaries. A soft/hard scale
can be defined according to whether the pT value is smaller or larger than some threshold value
pthr. The invariant mass differential cross section is thought to follow a power law

dσ
dM2 ∼ 1

Mλ

A representation of the exponent λ as function of the threshold value pthr: λ = λ(pthr)
will reveal the contribution from soft/hard exchanges.

In addition, due to the variable gap width described above, all of this analysis can be
carried out as function of rapidity gap width.

3 Signatures of the Odderon

The Odderon was first postulated in 1973 and is represented by color singlet exchange with nega-
tive C-parity [5]. Due to its negative C-parity, Odderon exchange can lead to differences between
particle-particle and particle-antiparticle scattering. In QCD, the Odderon can be a three gluon
object in a symmetric color state. Due to the third gluon involved in the exchange, a suppres-
sion by the coupling αs is expected as compared to the two gluon Pomeron exchange. However,
finding experimental signatures of the Odderon exchange has so far turned out to be extremely
difficult [6]. A continued non-observation of Odderon signatures would put considerable doubt
on the formulation of high energy scattering by gluon exchange [7]. The best evidence so far
for Odderon exchange was established as a difference between the differential cross sections for
elastic pp and pp̄ scattering at

√
s = 53 GeV at the CERN ISR. The pp cross section displays

a dip at t = -1.3 GeV2 whereas the pp̄ cross section levels off. Such a behaviour is typical for
negative C-exchange and cannot be due to mesonic Reggeons only.
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Signatures of Odderon exchanges can be looked for in exclusive reactions where the Odd-
eron (besides the Photon) is the only possible exchange. Diffractively produced C-even states
such as pseudoscalar or tensor mesons can result from Photon-Photon, Photon-Odderon and
Odderon-Odderon exchange. Any excess measured beyond the well understood Photon-Photon
contribution would indicate an Odderon contribution.

Diffractively produced C-odd states such as vector mesons φ, J/ψ,Υ can result from
Photon-Pomeron or Odderon-Pomeron exchange. Any excess beyond the Photon contribution
would be indication of Odderon exchange.

Estimates of cross section for diffractively produced J/ψ in pp collisions at LHC ener-
gies were first given by Schäfer et al [8]. More refined calculations by Bzdak et al result in a
t-integrated photon contribution of dσ

dy |y=0 ∼ 15 nb and a t-integrated Odderon contribution of
dσ
dy |y=0 ∼ 1 nb [9]. These two numbers carry large uncertainties, the upper and lower limit of
these numbers vary by about an order of magnitude. This cross section is, however, at a level
where in 106 s of ALICE data taking the J/ψ can be measured in its e+e− decay channel at a level
of 4% statistical uncertainty. Due to the different t-dependence, the Photon and Odderon contri-
bution result in different transverse momentum distribution pT of the J/ψ. A careful transverse
momentum analysis of the J/ψ might therefore allow to disentangle the Odderon contribution.

If the diffractively produced final state is not an eigenstate of C-parity, then interference
effects between Photon-Pomeron and Photon-Odderon amplitudes can be analyzed [10]. Charge
asymmetry in pion or kaon pairs is thought to be sizable [11, 12]. From the transverse momenta
of the two particles in the pairs, the vectors of sum and difference can be calculated. The sum is
C-even whereas the difference is C-odd. The opening angle α between sum and difference vector
behaves as α → α + π under C-parity, hence a Fourier analysis of the α-distribution will allow
to quantify the C-odd contribution.

4 Photoproduction of heavy quarks

Diffractive reactions involve scattering on small-x gluons in the proton. The number density of
gluons at given x increases with Q2, as described by the DGLAP evolution. Here, Q2 and x denote
the kinematical parameters used in deep inelastic ep scattering. The transverse gluon density at
a given Q2 increases with decreasing x as described by the BFKL evolution equation. At some
density, gluons will overlap and hence reinteract. In this regime, the gluon density saturates and
the linear DGLAP and BFKL equation reach their range of applicability. A saturation scale Qs(x)
is defined which represents the breakdown of the linear regime. Nonlinear effects become visible
for Q < Qs(x).

Diffractive heavy quark photoproduction represents an interesting probe to look for gluon
saturation effects at LHC. The inclusive cross section for QQ̄ photoproduction can be calculated
within the dipole formalism. In this approach, the photon fluctuates into a QQ̄ excitation which
interacts with the proton as a color dipole. The dipole cross section σ(x,r) depends on x as well
as on the transverse distance r of the QQ̄ pair. A study of inclusive heavy quark photoproduc-
tion in pp collisions at LHC energy has been carried out [13]. These studies arrive at differ-
ential cross sections for open charm photoproduction of dσ

dy |y=0 ∼ 1.3 µb within the collinear
pQCD approach as compared to dσ

dy |y=0 ∼ 0.4 µb within the color glass condensate (CGC). The
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cross sections are such that open charm photoproduction seems measurable with good statistical
significance. The corresponding numbers for the cross section for bottom photoproduction are
dσ
dy |y=0 ∼ 20 nb and 10 nb, respectively.

Diffractive photoproduction is characterized by two rapidity gaps in the final state. In the
dipole formalism described above, the two gluons of the color dipole interaction are in color sin-
glet state. Diffractive heavy quark photoproduction cross sections in pp, pPb and PbPb collisions
at LHC have been studied [14]. The cross sections for diffractive charm photoproduction are
dσ
dy |y=0 ∼ 6 nb in pp, dσ

dy |y=0 ∼ 9 µb in pPb and dσ
dy |y=0 ∼ 11 mb in PbPb collisions. The

corresponding numbers for diffractive bottom photoproduction are dσ
dy |y=0 ∼ 0.014 nb in pp,

dσ
dy |y=0 ∼ 0.016 µb in pPb and dσ

dy |y=0 ∼ 0.02 mb in PbPb collisions.

Heavy quarks with two rapidity gaps in the final state can, however, also be produced by
central exclusive production, i.e. two Pomeron fusion. The two production mechanisms have a
different t-dependence. A careful analysis of the transverse momentum pT of the QQ̄ pair might
therefore allow to disentangle the two contributions.
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Abstract
The Odderon remains an elusive object, 33 years after its invention.
The Odderon is now a fundamental object in QCD and CGC and it has
to be found experimentally if QCD and CGC are right. In the present
talk, we show how to find it at RHIC and LHC. The most spectacular
signature of the Odderon is the predicted difference between the differ-
ential cross-sections for proton-proton and antiproton-proton at high s
and moderate t. This experiment can be done by using the STAR de-
tector at RHIC and by combining these future data with the already
present UA4/2 data. The Odderon could also be found by ATLAS ex-
periment at LHC by performing a high-precision measurement of the
real part of the hadron elastic scattering amplitude at small t.

1 Introduction

This contribution to EDS07 is based upon work done in collaboration with Regina F. Avila and
Pierre Gauron [1].

The Odderon is defined as a singularity in the complex J-plane, located at J = 1 when
t = 0 and which contributes to the odd-under-crossing amplitude F−. The concept of Odderon
first emerged in 1973 in the context of asymptotic theorems [2]. 7 years later, it was possibly
connected with 3-gluon exchanges in perturbative QCD [3–5], but it took 27 years to firmly
rediscover it in the context of pQCD [6]. The Odderon was also rediscovered recently in the
Color Glass Condensate (CGC) approach [7, 8] and in the dipole picture [9]. One can therefore
assert that the Odderon is a crucial test of QCD.

On experimental level, there is a strong evidence for the non-perturbative Odderon: the
discovery, in 1985, of a difference between (dσ/dt)p̄p and (dσ/dt)pp in the dip-shoulder region
1.1 < |t| < 1.5 GeV2 at

√
s = 52.8 GeV [10, 11]. Unfortunately, these data were obtained in

one week, just before ISR was closed and therefore the evidence, even if it is strong (99,9 %
confidence level), is not totally convincing.

The maximal Odderon [2, 12], is a special case (tripole) corresponding to the maximal
asymptotic (s→∞) behavior allowed by the general principles of strong interactions:

σT (s) ∝ ln2 s, as s→∞ (1)
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and
∆σ(s) ≡ σp̄pT (s)− σppT (s) ∝ ln s, as s→∞ . (2)

Interestingly enough, an important stream of theoretical papers concern precisely the maximal
behavior [2], which was first discovered by Heisenberg in 1952 [13] and later proved, in a more
rigorous way by Froissart and Martin [14, 15]. Half a century after the discovery of Heisenberg,
this maximal behavior (1) was also proved in the context of the AdS/CFT dual string-gravity
theory [16] and of the Color Glass Condensate approach [17]. It was also shown to provide the
best description of the present experimental data on total cross-sections [18, 19].

The maximal behavior of ImF+(s, t = 0) ∝ ln2 s is naturally associated with the maxi-
mal behavior ImF−(s, t = 0) ∝ ln s. In other words, strong interactions should be as strong as
possible.

2 Strategy

In the present paper we will consider a very general form of the hadron amplitudes compatible
with both the maximal behavior of strong interaction at asymptotic energies and with the well
established Regge behavior at moderate energies, i.e. at pre-ISR and ISR energies [20, 21].

Our strategy is the following:

1. We will consider two cases: one in which the Odderon is absent and one in which the
Odderon is present.

2. We will use the two respective forms in order to describe the 832 experimental points for
pp and p̄p scattering, from PDG Tables, for σT (s), ρ(s) and dσ/dt(s, t), in the s-range

4.539 GeV 6
√
s 6 1800 GeV (3)

and in the t-range
0 6 |t| 6 2.6 GeV2 . (4)

The best form will be chosen.
3. In order to make predictions at RHIC and LHC energies, we will insist on the best possible

quantitative description of the data.
4. From the study of the interference between F+(s, t) and F−(s, t) amplitudes we will con-

clude which are the best experiments to be done in order to detect in a clear way the
Odderon.

3 The form of the amplitudes

F± are defined to be

F±(s, t) =
1
2

(Fpp(s, t)± Fp̄p(s, t)) (5)

and are normalized so that

σT (s) =
1
s

ImF (s, 0) , ρ(s) =
ReF (s, t = 0)
ImF (s, t = 0)

(6)
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dσ

dt
(s, t) =

1
16πs2

|F (s, t)|2 . (7)

The F+(s, t) amplitude is written as a sum of the Regge poles and cuts in standard form [1]
and the Heisenberg component FH

+ (s, t) representing the contribution of a 3/2 - cut collapsing,
at t = 0, to a triple pole located at J = 1 and which satisfies the Auberson-Kinoshita-Martin
asymptotic theorem [22]:

1
is
FH+ (s, t) = H1 ln2 s̄ 2J1(K+τ̄)

K+τ̄
exp(b+

1 t)

+ H2 ln s̄J0(K+τ̄) exp(b+
2 t)

+ H3[J0(K+τ̄)−K+τ̄J1(K+τ̄)] exp(b+
3 t) ,

(8)

where Jn are Bessel functions, Hk, b
+
k (k = 1, 2, 3) and K+ are constants,

s̄ =
(
s

s0

)
exp

(
−1

2
iπ

)
, with s0 = 1 GeV2 (9)

and

τ̄ =
(
− t

t0

)1/2

ln s̄, with t0 = 1 GeV2 . (10)

In its turn, the F−(s, t) amplitude is written as a sum of the Regge poles and cuts in
standard form [1] and FMO

− (s, t) representing the maximal Odderon contribution, resulting from
two complex conjugate poles collapsing, at t = 0, to a dipole located at J = 1 and which satisfies
the Auberson-Kinoshita-Martin asymptotic theorem:

1
s
FMO
− (s, t) = O1 ln2 s̄

sin(K−τ̄)
K−τ̄

exp(b−1 t) +O2 ln s̄ cos(K−τ̄) exp(b−2 t) +O3 exp(b−3 t) ,

(11)
where Ok, b−k (k = 1, 2, 3) and K− are constants.

4 Numerical results

Let us first consider the case without the Odderon. In this case, one has 23 free parameters.

In spite of the quite impressive number of free parameters, the χ2-value is inacceptably
bad:

χ2/dof = 14.2 . (12)

A closer examination of the results reveals however an interesting fact: the no-Odderon case
describes nicely the data in the t-region 0 6 |t| 6 0.6 GeV2 but totally fails to describe the data
for higher t-values.

This failure does not mean the failure of the Regge model, which is a basic ingredient of
the approach presented in this paper. It simply means the need for the Odderon.

In the case with the Odderon, we have 12 supplementary free parameters.

The total of 35 free parameters of our approach could be considered, at a superficial glance,
as too big. However, one has to realize that the 23 free parameters associated with the dominant
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F+(s, t) amplitude and with the component of F−(s, t) responsible for describing the data for
∆σ(s) (see eq. (2)) and ∆ρ(s, t = 0), where

∆ρ(s, t = 0) ≡ ρp̄p(s, t = 0)− ρpp(s, t = 0) (13)

are, almost all of them, well constrained.

Moreover, the discrepancy between the no-Odderon model and the experimental data in
the moderate-t region (especially at

√
s = 52.8 GeV and

√
s = 541 GeV) is so big that, in their

turn, the supplementary 12 free parameters (at least, most of them) are also well constrained.

Let us also note that the above - mentioned discrepancy in the region of t defined by

0.6 < |t| 6 2.6 GeV2 (14)

cannot come, as one could thing, from the contributions induced by perturbative QCD. The region
(14) is fully in the domain of validity of the non-perturbative Regge pole model and the respective
values of t are too small in order to make pQCD calculations.

The resulting value of χ2 is
χ2
dof = 2.46 , (15)

an excellent value if we consider the fact that we did not take into account the systematic errors
of the experimental data.

The partial value of χ2, corresponding only to t = 0 (σT and ρ) data is

χ2
dof

∣∣
t=0

= 1.42 , (16)

an acceptable value (276 experimental forward points taken into account). Of course, better χ2

values can be obtained in fitting only the t = 0 data, as it is in often made in phenomenological
papers. However, it is obvious that, in a global fit including non-forward data, the corresponding
t = 0 parameters will be modified and therefore a higher χ2 value will be obtained. The t = 0
and t 6= 0 data are certainly independent but the parameter values are obviously correlated in a
global fit.

5 Predictions

We plot in Fig. 1 our fit and predictions for dσ/dt data at
√
s = 52.8 GeV, at the RHIC energy

values
√
s = 500 GeV, at the commissioning run energy value

√
s = 900 GeV and at the

LHC energy value
√
s = 14 TeV. The description of the data at

√
s = 52.8 GeV as offered

by our approach is the best one existing in literature. It has to be noted that the structure (dip)
region moves slowly, with increasing energy, from |t| ≈ 1.35 GeV2 at

√
s = 52.8 GeV towards

|t| ' 0.35 GeV2 at
√
s = 14 TeV.

There is an interesting phenomenon of oscillations present in ∆( dσdt ) (see Fig. 2), which

∆
(
dσ

dt

)
(s, t) ≡

∣∣∣∣
(
dσ

dt

)p̄p
(s, t)−

(
dσ

dt

)pp
(s, t)

∣∣∣∣ , (17)
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Fig. 1: The structure (dip) region moves slowly, with increasing energy, from |t| ≈ 1.35 GeV2 at
√
s = 52.8 GeV

towards |t| ' 0.35 GeV2 at
√
s = 14 TeV.
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Fig. 2: Oscillations in the difference between the pp and p̄p differential cross-sections ∆

„
dσ

dt

«
(s, t) ≡

˛̨
˛̨
„
dσ

dt

«p̄p
(s, t)−

„
dσ

dt

«pp
(s, t)

˛̨
˛̨
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due to the oscillations present in the Heisenberg-type amplitude F H
+ (s, t) and in the maximal

Odderon amplitude FMO
− (s, t). Unfortunately, we can not directly test the existence of these

oscillations at RHIC and LHC energies, simply because we will not have both pp and p̄p ac-
celerators at these energies. However a chance to detect these oscillations at the RHIC energy√
s = 500 GeV still exists, simply because the UA4/2 Collaboration already performed a high-

precision p̄p experiment at a very close energy - 541 GeV [23]. By performing a very precise
experiment at the RHIC energy

√
s = 500 GeV and by combining the corresponding pp data

with the UA4/2 p̄p high-precision data one has a non-negligible chance to detect an oscillation
centered around |t| ' 0.9 GeV2 and therefore to detect the Odderon. It is precisely the oscillation
centered around |t| ' 0.9 GeV2 which is the reminder of the already seen oscillation centered
around |t| ' 1.35 GeV2 at the ISR energy

√
s = 52.8 GeV.

The participants at the workshop ”Odderon Searches at RHIC”, held at BNL in September
2005, concluded that the best available setup for the experimental search for the Odderon is the
proposed combination of STAR experiment and Roman pots at pp2pp experiment, described in
the proposal ”Physics with Tagged Forward Protons with the STAR detector at RHIC”. They also
concluded that the most unambiguous signature of the Odderon is to detect a non-zero difference
between pp and p̄p differential cross-sections at

√
s = 500 GeV, as described above. RHIC is an

ideal place for discovering the Odderon and therefore testing QCD and CGC [24].

LHC is also a good place to discover the Odderon. We predict

σppT (
√
s = 14 TeV) = 123.32 mb , (18)

∆σ(
√
s = 14 TeV) = −3.92 mb , (19)

ρpp(
√
s = 14 TeV, t = 0) = 0.103 , (20)

and
∆ρ(
√
s = 14 TeV, t = 0) = 0.094 . (21)

A ρpp-measurement at LHC would be certainly a very important test of the maximal Odderon,
given the fact that our prediction is sufficiently lower than what dispersion relations without
Odderon contributions could predict (ρ ' 0.12 − 0.14).

There are several other proposals for detecting the Odderon, summarized in the nice review
written by Ewerz [25].

6 Conclusions

There are very rare cases in the history of physics that a scientific and testable idea is neither
proved nor disproved 33 years after its invention. The Odderon remains an elusive object in spite
of intensive research for its experimental evidence.

The main reason for this apparent puzzle is that most of the efforts were concentrated in
the study of pp and p̄p scattering, where the F−(s, t) amplitude is hidden by the overwhelming
F+(s, t) amplitude. The most spectacular signature of the Odderon is the predicted difference
between pp and p̄p scattering at high s and relatively small t. However, it happens that, after the
closure of ISR, which offered the first strong hint for the existence of the Odderon, there is no
place in the world where pp and p̄p scattering are or will be measured at the same time. This is
the main reason of the non-observation till now of the Odderon.
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We show that we can escape from this unpleasant situation by performing a high-precision
measurement of dσ/dt at RHIC, at

√
s = 500 GeV, and by combining these future data with the

already present high-precision UA4/2 data at
√
s = 541 GeV.

There is no doubt about the theoretical evidence for the Odderon both in QCD and CGC.
The Odderon is a fundamental object of these two approaches and it has to be found at RHIC and
LHC if QCD and CGC are right.
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Prospects for Diffraction at the LHC

Albert De Roeck
CERN, 1211 Geneva 23 Switzerland and University of Antwerp

Abstract
A short review is given on the opportunities for diffractive and forward
physics measurements at the LHC.

1 Introduction

The Large Hadron Collider (LHC) [1], is a proton-proton collider being installed in the Large
Electron Positron (LEP) tunnel at the CERN Laboratory (the European Laboratory for Particle
Physics near Geneva, Switzerland). It will be a unique tool for fundamental physics research and
the highest energy accelerator in the world for many years following its completion. The LHC
will provide two proton beams, circulating in opposite directions, at an energy of 7 TeV each
(center-of-mass

√
s = 14 TeV). These beams upon collision will produce an event rate about

100 times higher than that presently achieved at the Tevatron pp̄ collider. The first collisions at
14 TeV are expected for early summer 2008.

The physics potential of the LHC is unprecedented: it will allow to study directly and in
detail the TeV energy scale region. The LHC is expected to elucidate the electroweak symmetry
breaking mechanism (EWSB) and provide evidence of physics beyond the Standard Model (SM)
[2]. The LHC will be also a pivotal instrument to study QCD at the highest energies. Diffraction
is an important component in hadronic collisions, and the LHC will shed new light on these still
relatively poorly understood interactions. The type of diffractive collisions, or collisions with
rapidity gaps expected at the LHC, is shown in Fig. 1 (left).

Diffractive collisions are usually pictured as the result of a diffractive exchange (aka
pomeron). In this language the high energy of the LHC beams effectively leads to ”pomeron
beams” with an energy close to a TeV, allowing to study partonic collisions with fractional mo-
menta of the partons in the ”pomeron” of 10−3, and p2

T transfers of more than 1 (TeV/c)2. The
gap dynamics is presently not fully understood and events with multi-gaps (Fig. 1) will allow
new insights.

Historically diffractive measurements have been made at the Spp̄S, Tevatron and HERA
Colliders. An example is given in Fig.1 (right) which shows one of the pioneering measurements
for diffractive hard scattering from the UA8 experiment [3], with evidence for a very hard com-
ponent in the diffractive structure. Beautiful measurements of the diffractive structure became
available from HERA, and impressive diffractive di-jets, W,J/ψ and more measurements came
from the Tevatron.

2 Diffraction and forward physics at the LHC

Diffractive measurements at present colliders have been made through the detection of rapidity
gaps, as is obvious from Fig. 1 (left). This technique has been used extensively at HERA and the
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Fig. 1: (Left) Rapidity gap configurations for diffractive events at the LHC; (Right) x(2jet) distribution compared to

simulations assuming a soft(dashed) and hard (solid) diffractive structure.
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Fig. 2: (Left) Pseudorapidity distribution of the charged particles and of the energy flow at the LHC. The energy is in

units of TeV; (Right) ξ acceptance of the Roman Pots of TOTEM and detectors at 420m.
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Tevatron. It uses the correlation between the maximum value at which activity (charged tracks
or energy) has been measured, ηmax, and the diffractive variable ξ, the energy lost by the proton
in the collision. Obviously this can be used only at low luminosity (perhaps up to 1033 cm−2

s−1 where about 20% of the bunch crossings still contain only one collision), and Monte Carlo
corrections are essential. Hence it is important that the detectors have an as large coverage in η
as possible.

On the other hand a more direct method is to detect the protons in those collisions where
they remain intact (i.e. don’t dissociate). This allows to constrain the full kinematics of the
scattering. Hence near-beam detectors have been developed and used, the most well known one
being the so called Roman Pots. These type of detectors will also be deployed at the LHC.

3 Forward detectors

The central detector of the CMS and ATLAS experiments have an acceptance in pseudorapidity
η, of roughly |η| < 2.5 for tracking information and |η| < 5 for calorimeter information. Fig-
ure 2(left) [4, 5] shows the expected pseudorapidity distribution of the charged particles and of
the energy flow at the LHC, demonstrating that with an acceptance limited to |η| < 5 most of the
energy in the collision will not be detected.

Several of the LHC experiments will have so called Zero Degree Calorimeters (ZDCs).
These detectors are located at 140m from the interaction point, where the proton beams are
separated in their own beampipe. The prime goal of the ZDC is to measure the centrality in
AA collisions. So-called ultra-peripheral events can also be tagged. In pp interactions it will
allow the study of events with charge exchange and consequently a forward high energy neutron.
Its ability to see low energy (≈ 50 GeV) photons is important for exclusive diffractive studies.
For cosmic ray physics also the measurement of the high energy π0 component in pp and pA
collisions at the LHC will be very important to tune the air shower models.

The different experiments and their forward detector capabilities are discussed next.

3.1 TOTEM
The TOTEM experiment [6, 7] will measure the pp elastic cross section as a function of t, –the
square of the exchanged four-momentum–, the total cross section with a precision of approxi-
mately 1%, and diffractive dissociation at

√
s = 14 TeV. The TOTEM experimental set-up con-

sists of 2 tracking telescopes T1 and T2, as well as Roman Pot (RP) stations, on both sides of
interaction point IP5. The T1 and T2 telescopes consist of CSC (Cathode Strip Chambers) and
GEM (Gas Electron Multipliers) chambers respectively, and will detect charged particles in the
η regions 3.2 < |η| < 5 and 5 < |η| < 6.6. The latter overlaps in acceptance with CASTOR of
CMS.

The TOTEM RP stations will be placed at a distance of ±147m and ±220m from IP5.
These stations can measure protons with a momentum loss ξ = ∆p/p in the range 0.02 < ξ <
0.2 for the nominal collision optics. For other optics with larger β∗, and hence lower luminosity,
much smaller values of ξ can be reached.
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3.2 CMS
Presently there are two planned additions to extend the coverage in the forward region of CMS:

• Add two calorimeters on either side of the interaction region which will cover higher |η|
values, called CASTOR (5.1 < |η| < 6.5) and the Zero Degree Calorimeter (ZDC). Both
have an electromagnetic and hadronic section. These calorimeters are of interest for mea-
surements in pp, pA and AA collisions.

• Capitalize on the opportunity to have common runs with the TOTEM experiment, which
uses the same interaction region as CMS (IP5). This common physics programme has
recently been reported in a document, released by the CMS/TOTEM working group [8].

CASTOR is an electromagnetic/hadronic calorimeter, azimuthally symmetric around the
beam and divided into 16 sectors. It is situated in the collar shielding at the very forward region of
CMS, starting at 1437 cm from the interaction point, as shown in Figure 3. The pseudorapidity

Fig. 3: Schematics of the CMS forward region.

range covered is 5.3 < |η| < 6.5 for the EM-section and 5.1 < |η| < 6.4 for the hadronic
section. This η-coverage closes hermetically the CMS pseudorapidity range over almost 13 units.
The ZDCs consist of tungsten absorber/quartz fibers.

The Roman Pot detectors of TOTEM aim to detect the protons in diffractive interactions
of the type pp → p + X and pp → p + X + p. When used in conjunction with the central
CMS detector interesting phenomena such as hard diffractive scattering can be studied, where
the system X can consist of jets, W , Z bosons, high ET photons, top quark pairs or even the
Higgs particle, as discussed recently in [9, 10].

The combination of T2 and CASTOR will allow the study of phenomena at lower Bjorken-
x than otherwise reachable. Drell-Yan measurements will enable the parton distributions to be
probed down to x ≈ 10−6−10−7. The energy and particle flows in the forward region are also of
prime interest for tuning Monte Carlo simulation programs used in cosmic ray studies. CASTOR
is designed especially to hunt for “strangelets” in AA collisions, which are characterized by very
atypical fluctuations in hadronic showers.
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It is expected that one CASTOR and two ZDC’s will be available for the LHC data taking
run in 2008.

3.3 ATLAS
ATLAS plans for its own Roman Pots for luminosity measurements, the ALFA project. Detec-
tors, consisting of scintillating fibres will be placed at 240m in Roman pots. These detectors, in
the present design, are not suited for diffractive physics studies at the nominal high luminosity.
Instead the option is studied to put radiation hard detectors in Roman Pots or other near beam
detector mechanics at 220m, the so called RP220 project.

ATLAS also plans a Cerenkov detector for relative luminosity measurements (LUCID
with an acceptance of 5.4 < η < 6.1) and ZDCs at a position of 140m. The ZDCs are made of
tungsten absorber and quartz fibres. LUCID could be used to help to define a rapidity gap in the
event, at low luminosity.

LUCID and the ZDC should be operational for the 2008 run but ALFA and RP220 (still to
be approved) will be installed only after 2009.

3.4 ALICE
The ALICE detector has (on one side) a muon spectrometer that covers the region 2.4 < η < 4
and a ZDC. Thus the forward muon acceptance of ALICE is larger than for the ATLAS and CMS
experiments, allowing for a more forward acceptance for the detection of heavy flavors.

Since some time ALICE has a program for the study of minimum bias pp collisions (see
e.g [11]). Recently [12] ALICE also studies specific diffractive channels.

3.5 LHCb
LHCb is a collider experiment but with the set-up of a fixed target experiment, namely a single
side forward spectrometer covering the range 1.9 < η < 4.9. In particular very forward heavy
flavour production can be studied in LHCb. So far LHCb has no specific diffractive program.

3.6 LHCf
The LHCf has recently been approved for forward physics, consisting only of two forward elec-
tromagnetic calorimeters at zero degrees, hence positioned at 140m. The aim is to measure the
very forward π0 and γ energy spectrum for pp collisions with an equivalent Elab of 1017 eV.
LHCf also plans to take data during heavy ion runs. These measurements will help calibrating
high energy cosmic ray spectra.

The detectors used will be based on a Tungsten absorber with scintillating fibres (one side)
or silicon µstrips (the other side) as active elements. The detectors should measure energy and
position of the γ’s from the π0 decays.
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3.7 FP420
The FP420 project proposes to complement the experiments CMS and ATLAS by installing
additional near-beam detectors at 420m away from the interaction region [13]. The presence of
these detectors will allow to measure exclusive production of massive particles, such as the Higgs
particle, as discussed in the next section.

The aims of the FP420 R&D study are

• Redesign the area of the machine around 420m. Right now this area contains a connecting
cryostat, but no magnet elements.

• Study the mechanics, stability and services for detectors at 420m
• Design and test tracking detectors to operate close to the beam
• Design fast timing detectors (with O(10) psec resolution)
• Study RF pickup, integration, precision alignment, radiation and resolution issues for the

FP420 setup.
• Study trigger, event selection, and pile-up issues.
• Study the operation of FP420 detectors at the highest LHC luminosity.

The FP420 collaboration has members from ATLAS, CMS, and ”independent” physicists,
with excellent contacts with the LHC machine group. In the emerging design the principle of
FP420 is based on moving ”pockets” which contain tracking and timing detectors. The tracking
detectors that are developed are 3D silicon pixel detectors, which are radiation hard and can
detect particles close to the edge. Timing detectors include both gas and crystal radiators. The
first test beam results of all these detector types are very encouraging and a full pocket beam-test
is foreseen for October 2007. Discussions on the implementation of FP420 in the ATLAS and
CMS experiments have started. More technical details on FP420 will become available in [14].

4 Forward physics

The forward physics program is very diverse. Examples are:

Soft and Hard diffraction

• Total cross section and elastic scattering, single diffraction (SD).
• Gap survival dynamics, multi-gap events; proton light cone studies (pp → 3jets + p),

Odderon studies.
• Diffractive structure: Production of jets, W,J/ψ, b, top quarks, hard photons; Generalized

Parton Distributions.
• Double Pomeron exchange (DPE) events as a gluon factory (anomalous W,Z produc-

tion?).

Exclusive production of new mass states

• Exclusive Higgs production, Exclusive Radion production...
• SUSY and other (low mass) exotics, long lived gluinos.

Low-x dynamics

• Parton saturation, BFKL/CCFM dynamics, proton structure, multi-parton scattering.

New forward physics phenomena
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• New phenomena such as DCCs, incoherent pion emission, Centauros.
Strong interest from cosmic rays community, and heavy ions
• Forward energy and particle flows/minimum bias event structure.
• Two-photon interactions and peripheral collisions.
• Forward physics in pA and AA collisions.
• Use QED processes to determine the luminosity to O(1%) (pp→ ppee, ppµµ).

Many of these topics can be best studied at start-up luminosities. As mentioned, the for-
ward detectors are of special interest for cosmic ray studies since these measure the production
of high energy particles, an important component in the air shower simulations. To better tune
such simulations collider data at the highest energies and over an as large acceptance range as
possible, are critical.

4.1 Diffraction and QCD
The acceptance for diffractive physics with tagged protons is given in Fig. 2, for TOTEM and
for detectors at 420m. Similar numbers hold for the ATLAS RPs. It shows that special runs with
high β∗ optics allow to detect protons over essentially the whole ξ range, but this corresponds
essentially to luminosities below 1031 cm−1 s−1. At the nominal high luminosity β∗ detectors at
220m (TOTEM or RP220) and detectors at 420m are complementary on the region they cover.
Physics topics include QCD and diffraction. Detectors at 220/420m can tag and measure protons
which have lost 10% to 0.1% of there initial momentum, and study in detail diffractive reactions
in that range.

With special optics and rather short running time (perhaps a week) processes with cross
sections of µbarns are accessible, while with high luminosity processes with nbarn and pbarn
cross sections can be studied. As an example for jet events, generator studies show that with
about 300 nb−1 about 60000 SD events and 2000 DPE events are produced with jets having an
ET larger than 20 GeV. With 100 pb−1 we have 500000 and 30000 events with jets with an ET
larger than 50 GeV. Low luminosities will allow initial studies while high luminosity samples
will allow for detailed t,Mx, pT dependence studies.

A measurement of particular interest for this conference is the total and elastic pp cross
section. The total cross section can be measured via the luminosity independent measurement as
detailed in [15, 16]. TOTEM opts to use a β∗ of 1500m in order to achieve a precision of 1% on
the total cross section. While TOTEM may be ready from the start in 2008, this special optics is
not expected to come very early on in the LHC running. As a compromise and easier achievable
β∗ of 90m would allow this measurement as well, but with a precision of O(5%). ATLAS opts
for a β∗ optics of 2625 m, which would allow to reach smaller |t| values and allow to measure the
ρ parameter as well. It has been often emphasized that ρ is an important quantity to measure as it
is sensitive to new strong physics at higher energies, beyond the c.m.s. energy of the collisions.

An extensive program of two photon physics and photon-proton physics becomes acces-
sible as well. In particular the study of the processes γγ → WW and ZZ is of interest and
can give precise measurements of the anomalous couplings. The QED processes γγ → µµ, ee
can be precise monitors of the luminosity. Two photon processes can also be used to search for
chargino pair production.
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Other processes where forward detectors play a significant role are eg. in the study of
low-x processes and the access to the gluon distribtution in the proton via Drell-Yan, jet or
heavy flavor production. Values in Bjorken-x down to 10−6 − 10−7 in the perturbative regime
can be reached. Adding forward detectors such as CASTOR to CMS will also allow to study
forward-central correlations between particles, which are measurements that are very sensitive to
for example multiple interactions and the way they are modeled.

Fig. 4: (Left) Diagram for the CEP process; (Right) Cross section for SM and MSSM exclusive Higgs production.

4.2 Central exclusive Higgs production
Central exclusive Higgs (CEP) production pp→ p+H + p is of special interest. The diagram is
shown in Fig. 4 (left). One of the key advantages of CEP is that the gg → bb̄ process is strongly
suppressed in LO, hence the decay H → bb̄ has less background and becomes potentially observ-
able. The Higgs to b-quark Yukawa coupling is otherwhise very difficult to access at the LHC.
The inclusive H → bb channel is not accessible due to the too large QCD backgrounds. Recently,
the ttH channel was analysed with detailed simulation in [17] and found not to be accessible even
with 60 fb−1. Also the WH associated channel was found to be marginally observable in the bb
decay mode.

The cross section for CEP of Higgs bosons has been subject of many discussions over the
last years, in particular during the HERA/LHC workshops [18], but now generally the calcula-
tions of [19] are taken as a reference. Note that there are still some issues and concerns on the
CEP soft survival probability at the LHC and the uncertainties in the PDFs. The cross section for
the production of a Standard Model CEP Higgs and for a MSSM CEP Higgs (for tan β = 30) is
shown in Fig. 4. Generator level calculations, including detector and trigger cuts, and estimates
of selection efficiencies, show that the decay channels H → bb and H → WW are accessable.
Eg. MH = 120 GeV/c2 gives about 11 events with O(10) events background for 30 fb−1 in the
bb decay mode. For MH above 140 GeV/c2 about 5-6 events with no appreciable background
for 30 fb−1 in the WW decay mode [10] will be observed, using channels with at least one lep-
tonic decay. There are however challenges: the signals from detectors at 420m cannot be used to
trigger the events at the first trigger level in neither ATLAS nor CMS. Hence the event will have
to be triggered at the first level with the information of the central detector. At the next trigger
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level the signals of FP420 can be used. While this is no problem for the WW decay channel,
it is a challenge for the bb channel. Several additional selection cuts for a low mass Higgs-like
object decaying into jets can be used, but generally, with di-jet thresholds of O(40) GeV and
these additional cuts, the rate at the first level for this trigger is very high: O(10) kHz. The usage
of the FP420 information can however strongly reduce that rate at the next level, so this is not
necessarily a show stopper. But in any case, studies both using detailed [8] and fast [20] simula-
tions show that the measurement of the SM Higgs decay into bb will be very challenging, even
with the highest luminosities.

The rate is much larger for MSSM Higgs production as shown in Fig. 4 (right), thus leading
to a much more favourable signal to background ratio than for the SM Higgs. The cross section
can be a factor 10 or more larger than the SM model one. This has recently been explored in a
systematic way in [21]. A typical result is shown in Fig. 5 (left), for a Higgs decaying in bb.
The lines in the plot show the relative cross section increase w.r.t. the SM cross section. In some
regions of the phase space the CEP process could be a discovery channel. Fig. 5 (right) shows an
example of a signal for 60 fb−1 after acceptance cuts, trigger efficiencies etc., for a MSSM Higgs
with a cross section that is a factor 8 enhanced w.r.t the the SM Higgs, based on the so called
mmax
h scenario [22], with mA = 120 GeV and tan β = 40. A clear signal over background is

observable.

A detailed study of the backgrounds to this diffractive process was presented in [8]. At
high luminosity, ie. 1033 cm−2s−1 and higher, the pile-up is considerable, coming mainly from
soft single diffractive interactions. Several techniques such as correlations between the detectors
at 420/220m, vertices, event multiplicities and especially fast timing are essential to reduce the
pile-up background. Rapidity gaps can obviously not be used due to the many interactions per
bunch crossing.

Furthermore, to a very good approximation the central system in CEP is constrained to
be a colour singlet, JZ = 0 state, and, due to the strongly constrained three particle final state,
the measurement of azimuthal correlations between the two scattered protons will allow to deter-
mine the CP quantum numbers of the produced central system [23]. Hence this is a way to get
information on the spin of the Higgs, and is added value to the LHC measurements.

It was pointed out recently [24] that in case of CPV models the h,A,H may mix into
states h1, h2, h3 which may be quasi-degenerated in mass, with mass differences of the order of
a few GeV or less. Due to the interference these will show up as one broad mass distribution,
with a structure that is sensitive to the underlying parameters. Analyzing the three-way mixing
scenario [24] it was found that the different peaks can be detected with a 1 GeV mass resolution,
but would need a few hundred fb−1 of accumulated luminosity. Other CP violating benchmark
scenarios may lead to larger differences between the Higgs peaks and may be easier to detect.

Other searches for new physics in the channel are possible as well. It has been pointed out
that the mass of long lived gluinos, as predicted in split SUSY models, can be determined with
CEP events to better than 1%, with 300 fb−1 for masses up to 350 GeV [25]. More spectacular
are the predictions presented in [26], where a very high cross section of CEP WW and ZZ
events is expected, in a color sextet quark model.
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Fig. 5: (Left) Contours for the ratio of signal events in the MSSM to those in the SM in the H → bb channel in CEP

production in the MA–tan β plane. The ratio is shown in the no-mixing scenario with µ = +200 GeV. The values of

the mass of the heavier CP-even Higgs boson, mH , are indicated by dashed contour lines. (Right) A typical mass fit

for 3 years of data taking at 2 × 1033 cm−2 s−1 (60 fb−1). The significance of the fit is 3.5σ and uses only events

with both protons tagged at 420m.

5 Conclusion

The LHC is coming on line, with the first 14 TeV collisions to be expected in summer 2008.

Forward physics at the LHC came a long way during the last years. Two forward physics
experiments got approved (TOTEM, LHCf). ATLAS and CMS plan to extend the detector cov-
erage in the forward direction, with ZDCs, CASTOR (CMS) and LUCID (ATLAS). ATLAS also
plans to add RPs at 240m and studies additional near beam detectors at 220m. CMS and TOTEM
have common physics program on diffraction.

The R&D for FP420 is nearing its completion. Discussions with the ATLAS and CMS
managment have started. The earliest date for data taking with these detectors is 2010.

In all, forward physics is now well in the blood of the LHC experiments.
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Abstract
In this talk I first discuss the experimental evidence for multiple scat-
tering and the properties of the underlying event. The extensive anal-
yses by Rick Field of data from CDF cannot be reconciled with tra-
ditional wisdom concerning multiple collisions and the AGK cutting
rules. Data seem to imply some kind of color recombination or unex-
pectedly strong effects from pomeron vertices.

I then discuss theoretical ideas concerning the relation between mul-
tiple collisions and unitarity: the AGK rules, pomeron loops, dipole
cascade models and diffraction.

1 Experimental overview

1.1 Minijet cross section
In collinear factorization the cross section for a parton-parton subcollision is given by

dσsubcoll

dp2
⊥
∼
∫
dx1dx2f(x1, p

2
⊥)f(x2, p

2
⊥)

dσ̂

dp2
⊥

(ŝ = x1x2s, p
2
⊥). (1)

(Note that one hard subcollision corresponds to 2 jets.) The partonic cross section dσ̂/dp2
⊥

behaves like 1/p4
⊥ for small p⊥, which means that a lower cutoff, p⊥min, is needed. The total

subcollision cross section is then proportional to 1/p2
⊥min, and for pp-collisions the subcollision

cross section becomes equal to the total cross section for p⊥min ≈ 2.5 GeV at the Tevatron and
≈ 5 GeV at LHC [1]. Fits to data give p⊥min ∼ 2 GeV at the Tevatron and slowly growing with
energy [2].

In k⊥-factorization there is a dynamic cutoff when the momentum exchange k⊥ is smaller
than the virtuality of the two colliding partons, given by k⊥1 and k⊥2 [3]. This approach gives a
very similar effect. Thus we conclude that at high energies the subcollision cross section is much
larger than the total inelastic cross section, which means that on average there must be several
hard subcollisions in one event. It was also early suggested that the increase in σtot is driven by
hard parton-parton subcollisions [4].

1.2 Experimental evidence for multiple collisions
1.2.1 Multijet events

Besides from independent multiple subcollisions, multijet events can also originate from multiple
bremsstrahlung from two colliding partons. If we study four-jet events the difference between
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these two types of events is that in a double parton scattering the four jets balance each other
pairwise in the transverse momentum plane, while such a pairwise balance is not present in
the multiple bremsstrahlung events. The Axial Field Spectrometer at the ISR proton-proton
collider [5] studied an ”imbalance parameter”

J =
1
2

[(p⊥1 + p⊥2)2 + (p⊥3 + p⊥4)2], (2)

and found that there is a significant enhancement of events with small values of J , which thus
showed a clear evidence for multiple subcollisions.

Similar, but less clear, results for four-jet events have been observed by the CDF [6] and
D0 [7] experiments at the Tevatron. A more clear signal for multiple collisions at the Tevatron
has instead been seen in events with three jets + γ [8]. Evidence for multiple collisions has also
been observed in photoproduction by the ZEUS collaboration at HERA [9].

1.2.2 Underlying event

An important question is whether the hard subcollisions are correlated, or if a high p⊥ event just
corresponds to two jets on top of a minimum bias event. If the subcollisions are uncorrelated the
probability, P (n), for having n subcollisions should be described by a Poisson distribution. This
implies that

P (2) =
1
2
P (1)2. (3)

Here the factor 1/2 is compensating for double counting. Expressed in the cross sections σn =
P (n)σnd (where σnd is the inelastic non-diffractive cross section) this gives the relation σ2 =
1
2σ

2
1/σnd. The experimental groups have used the notation

σ2 =
1
2
σ2

1

σeff
, (4)

which means that σeff = σnd corresponds to uncorrelated subcollisions. The experimental
results on four-jet events referred to above find, however, that σeff is much smaller than σnd.
Thus at ISR one finds (for jets with p⊥ > 4 GeV) σeff ∼ 5 mb compared to σnd ∼ 30 mb, CDF
finds for four-jet events (p⊥ > 25 GeV) and 3 jets+γ the results σeff ∼ 12 mb and ∼ 14 mb
respectively, to be compared with σnd ∼ 50 mb. This means that if there is one subcollision there
is an enhanced probability to have also another one. A possible interpretation is that in central
collisions there are many hard subcollisions, while there are fewer subcollisions in a peripheral
collison.

Another sign of correlations is the observation that in events with a high p⊥ jet the under-
lying event is enhanced, the so called pedestal effect. The UA1 collaboration at the Spp̄S collider
studied the E⊥-distribution in η around a jet [10]. To avoid the recoiling jet they looked in 180◦

in azimuth on the same side as the jet. The result is that for jets with E⊥ > 5 GeV the back-
ground level away from the jet is roughly a factor two above the level in minimum bias events.
Similar results have been observed in resolved photoproduction by the H1 collaboration [11].
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1.3 CDF analysis and the PYTHIA model
Rick Field has made very extensive studies of the underlying event at the Tevatron (see e.g.
ref. [12]). He has here tuned the PYTHIA MC to fit CDF data, and found tunes (e.g. tune A
and tune DW) which give very good fits to essentially all data. In particular he has looked at
the E⊥-flow, the charged particle density, and p⊥-spectra in angular regions perpendicular to
a high-p⊥ jet. One noticeable result is that the charged multiplicity in this “transverse” region
grows rapidly with the p⊥ of the trigger jet up to p⊥(charged jet) ≈ 6 GeV, and then levels off
for higher jet energies at twice the density in minimum bias events. Also the charged particle
spectrum has a much higher tail out to large p⊥ in events with a high p⊥ jet, compared to the
distribution in minimum bias events. The multiple collisions have a very important effect in the
MC simulations, and the data cannot be reproduced if they are not included.

The version of the PYTHIA MC used by Field is an implementation of an early model
by Sjöstrand and van Zijl [2]. In this model it is assumed that high energy collisions are dom-
inated by hard parton-parton subcollisions, and also minimum bias events are assumed to have
at least one such subcollision. To be able to reproduce the observed pedestal effect, the parton
distribution is assumed to have a more dense central region, and is described by a sum of two
(three-dimensional) Gaussians. For fixed impact parameter, b, the number of subcollisions is as-
sumed to be given by a Poisson distribution, with an average proportional to the overlap between
the parton distributions in the two colliding protons. Integrated over the impact parameter this
gives a distribution which actually can be well approximated by a geometric distribution, that is
a distribution with much larger fluctuations than a Poisson.

The PYTHIA model does not include diffraction, and describes only non-diffractive in-
elastic collisions. Diffraction is related to the fluctuations via the AGK cutting rules [13]. In
QCD a single pomeron exchange can be represented by a gluon ladder. The diagram for double
pomeron exchange can be cut through zero, one and two of the exchanged pomerons, with rela-
tive weights 1, −4, and 2. If we add the contributions to k cut pomerons from diagrams with an
arbitrary number of exchanged pomerons, then we get for k > 1 with the weights in ref [13] a
Poisson distribution. For fixed impact parameter the assumptions in the PYTHIA model are thus
in agreement with the AGK rules.

1.4 Relation E⊥ − nch
Although Field’s tunes of the PYTHIA model give good fits to data, there are still problems. The
relation between transverse energy and hadron multiplicity is not what has been expected. In the
AGK paper a cut pomeron was expected to give a chain of hadrons between the remnants of the
two colliding hadrons, and two cut pomerons should give two such chains and therefore doubled
particle density. This is in contrast to the CDF data, where E⊥ grows more than the multiplicity
in multiple collision events.

The original AGK paper was published before QCD, and based on a multiperipheral
model. However, also in QCD the DGLAP or BFKL dynamics gives color-connected chains
of gluons. In the hadronization process the gluon exchange ought to give two triplet strings
(or cluster chains) stretching between the projectile remnants, and in the spirit of AGK two cut
pomerons should give four such triplet strings. Field’s tunes seem instead to indicate some kind
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of color recombination which reduces the effective string length. (Similar recombinations have
been studied by Ingelman and coworkers [14].)

In the PYTHIA model used by Field different possibilities for the color connection between
the partons involved are studied. The most common parton subcollisions are gg → gg, and as
mentioned above this is expected to give two strings between the projectile remnants. Initial state
radiation gives extra gluons, for which the color ordering agrees with the ordering in rapidity.
Therefore these emissions do not increase the total string length very much, and as a consequence
they increase E⊥ more than they increase the hadron multiplicity.

From the experimental data it was noted already in ref. [2] that two subcollisions could
not give doubled multiplicity, as expected from four strings as discussed above. It was therefore
assumed that the second subcollision could give a just single double string connecting the two
outgoing gluons. Another option was replacing the gluons by a qq̄ pair, connected by a single
triplet string. This reduces the multiplicity even further. A third possibility was to assume that
color rearrangement caused the scattered gluons to fit in the color chains of the first collision, in
such a way that the total string length was increased as little as possible. This gives a minimal
additional multiplicity, and in this case the multiple collisions have an effect on the total E⊥ and
multiplicity similar to the bremsstrahlung gluons (but the jets are balanced pairwise in transverse
momentum). The default assumption in ref. [2] was to give each of these possibilities the same
probability, 1/3. In Field’s successful tunes these ratios are changed, such that the last option
with color reconnection is chosen in 90% of the cases.

In a more recent study by Sjöstrand and Skands [1] a number of improvements have been
added to the old PYTHIA model. The hope was that with these modifications it would be possible
to describe data without the extreme color reconnections which have no real theoretical motiva-
tion in QCD. Their result is, however, discouraging, as they were not able to tune the new model
to give the relation between p⊥ and multiplicity observed in the data.

2 Theoretical ideas

2.1 Pomeron interactions
We have to conclude that something important is missing in our understanding of high energy
collisions. Although, in the AGK paper, pomeron interactions are assumed to give small contri-
butions, pomeron vertices (see e.g. [15]) and pomeron loops may be very important. As indicated
in fig. 1a, a pomeron loop can give a bump in the particle density if both branches of the loop are
cut, and a gap if the cut passes between the two branches. It is also conceivable that such gaps
and bumps have to be included in a ”renormalized” pomeron [16].

In QCD a pomeron is formed by two gluons in a color singlet. Two pomeron exchange
thus corresponds to four gluons in two singlet pairs. If the pairs (1,2) and (3,4) form singlets,
then gluon exchange can change the system so that instead the pairs (1,3) and (2,4) form color
singlets. This corresponds to an effective 2IP → 2IP coupling (cf. ref. [17]). A cut with gluons 1
and 2 on one side and 3 and 4 on the other can then give an isolated bump in the particle density,
as illustrated in fig. 1b. This type of pomeron interactions can also give a bound state [18], which
gives a pole in the angular momentum plane and an essential correction to the normal cut from
the exchange of two uncorrelated pomerons.
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Fig. 1: (a) A pomeron loop can be cut through 0, 1, or 2 of its two branches. This can give gaps and bumps in the

particle distribution. (b) Two pomerons can be represented by four gluons in two color singlet pairs. Gluon exchange

can switch the pairs (1,2) (3,4) into the singlet pairs (1,3) (2,4). A cut as indicated in the figure gives a localized bump

in the rapidity distribution.
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Fig. 2: (a) The evolution of the dipole cascade. At each step, a dipole can split into two new dipoles. (b) A symbolic

picture of a γ∗γ∗ collision in y − r⊥-space. When two colliding dipoles interact via gluon exchange the color

connection between the gluons is modified. The result is dipole chains stretched between the remnants of the colliding

systems.

We conclude that there are still many open questions. More experimental information is
needed, and to gain insight into the dynamics it is important to go beyond inclusive observables,
and study observables related to correlations and fluctuations.

2.2 Dipole cascade models, saturation and pomeron loops
Multiple scattering and rescattering is more easily treated in transverse coordinate space. In
Mueller’s dipole cascade model [19] a color dipole formed by a qq̄ pair in a color singlet is split
into two dipoles by gluon emission. Each of these dipoles can split repeatedly into a cascade,
see fig. 2a. The probability per unit rapidity for a split is proportional to ᾱ = Ncαs/π. When
two dipole chains collide, gluon exchange between two dipoles implies exchange of color and
a recoupling of the chains, as shown in fig. 2b. The probability for an interaction between two
dipoles i and j, fij , is proportional to α2

s = π2ᾱ2/N2
c , and is thus formally color suppressed
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Fig. 3: (a) If more than one pair of dipoles interact it can result in dipole loops, which correspond to pomeron loops.

(b) Schematic picture of a dipole swing. If the two dipoles a and b have the same color, they can be replaced by the

dipoles c and d. The result is a closed loop formed within an individual dipole cascade.

compared to the dipole splitting process.

In the eikonal approximation the total scattering probability is determined by the expres-
sion 1 − ∏ij(1 − fij), which is always smaller than 1 and thus satisfies the constraints from
unitarity. As seen in fig. 3a, multiple dipole-dipole interactions can imply that the color dipoles
form closed loops, which correspond to the pomeron loops in fig. 1a.

Mueller’s model includes those pomeron loops, which correspond to cuts in the particular
Lorentz frame used for the calculation, but not loops which are fully inside one of the collid-
ing cascades. This implies that the formalism is not Lorentz frame independent, and different
ways have been suggested to achieve a frame independent formulation (see e.g. refs. [20, 21]).
However, so far no explicitely frame independent formalism has been presented.

In one approach the evolution is expressed in terms of interacting dipoles. This implies
that the number of dipoles can be reduced, and the evolution of the projectile cascade depends on
the target. Besides the 1→ 2 dipole vertex there should here also be a 2→ 1 vertex. In another
approach the evolution of the projectile is independent of the target, and the non-interacting
dipoles are eliminated afterwards. In this approach there is no need to reduce the number of
dipoles in the evolution.

Dipole swing

A model based on the latter approach is presented in ref. [22]. In this model pomeron
loops can be formed with the help of a recoupling of the dipole chains, a ”dipole swing”. Just as
the dipole-dipole scattering, the pomeron loops in the cascades should be color suppressed. With
a finite number of colors we can have not only dipoles but also higher color multipoles. Two
charges and two anticharges with the same color may be better approximated by two dipoles
formed by nearby charge-anticharge pairs. These pairs may be different from the initially gen-
erated dipoles, and the result is a recoupling of the dipole chain, as seen in fig. 3b. The same
effect can also be obtained from gluon exchange, which is proportional to αs and thus also color
suppressed cf. to the dipole splitting proportional to ᾱ.

The swing does not result in a reduction of the number of dipoles, but the saturation ef-
fect is obtained as the recoupled dipoles are smaller and therefore have smaller cross sections.
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Fig. 4: Left: The γp total cross section obtained from the model in The result is plotted as a function of the scaling

variable τ = Q2/Q2
s , where Q2

s = Q2
0(x0/x)λ with Q0 = 1GeV, x0 = 3 · 10−4, λ = 0.29. Right: The total pp

scattering cross section. Results are presented for evolution with and without the dipole swing mechanism. The one

pomeron result and the result obtained in a frame where one of the protons is almost at rest are also shown.

Inserted in a MC the result is approximately frame independent, and the model describes well
both the F2 structure function in DIS and the pp scattering cross section [22, 23], as shown in
fig. 4. (For these results also energy conservation and a running αs are very important [24].) We
see here that the γ∗p cross section satisfies geometric scaling. The pp cross section is reduced by
about a factor 4 cf. to the one pomeron exchange at the Tevatron, and we also see that the result
of the model is the same when calculated in the cms as in the rest frame of the target proton, if
pomeron loops are included also in the evolution via the dipole swing.

Besides the total cross sections it is also possible to calculate the probability to have
pomeron loops formed by multiple collisions in a given frame, or loops formed within the cas-
cades. As examples we find at the Tevatron in the cms on average 2.2 loops from multiple
collisions and 0.65 loops in each of the two cascades. In an asymmetric frame, where the total
rapidity range is divided in 4.5 + 10.5 units, we find instead 2 loops from multiple collisions, and
0.15 and 1.35 in the two cascades respectively. In both cases this gives in total 3.5 loops. At LHC
we obtain in the same way in total an average of 5 loops.

Using the eikonal approximation it is besides total cross sections also possible to calculate
elastic scattering and diffractive excitation [25], but so far it has not been possible to calculate
exclusive final states. The aim for the future is to bridge the gap between dipole cascades, AGK,
and traditional MC generators, and construct an event generator fully compatible with unitarity
and the AGK cutting rules.

3 Conclusions
• Multiple collisions are present in data.
• Hard subcollisions are correlated. The underlying event is different from a minimum bias

event.
• Rick Field’s tunes of the PYTHIA MC fit Tevatron data well, but the relation between

transverse energy and multiplicity is not understood. This may indicate some kind of color
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rearrangement, or a ”renormalized pomeron”.
• Multiple collisions and unitarity constraints are easier treated in transverse coordinate

space. The dipole formalism can describe IP loops and diffraction. The application of
AGK cutting rules then implies the presence of rapidity gaps.

• For the future we hope to be able to combine the dipole formalism and traditional MC
generators to obtain event generators which include diffraction and are compatible with
unitarity and AGK.
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[22] E. Avsar, G. Gustafson, and L. Lönnblad, JHEP 01, 012 (2007). hep-ph/0610157.

[23] E. Avsar and G. Gustafson, JHEP 04, 067 (2007). hep-ph/0702087.
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Abstract
We review some aspects of multiple interactions in High Energy QCD;
we discuss in particular AGK rules and present some results concern-
ing multiple interactions in the context of jet production.

1 Introduction

Many years ago Abramovsky, Gribov and Kancheli in their pioneering paper [1] have pointed
out that, for high energy hadron-hadron scattering, multiple exchange of pomerons leads to ob-
servable effects in multiparticle final states. Multi pomeron exchange induces indeed fluctuations
in the rapidity densities of the produced particles; concerning the multiple inclusive production
of jets, they cause long range rapidity correlations. Nowdays it has become evident that multiple
interactions play a substantial role in determining the behaviour of high energy scattering. As
in-depth studies of DIS at HERA in the small x region and jet physics at Tevatron have shown,
diffractive events represent a substantial fraction of the total cross section.

The advent of LHC will open up a much wider kinematical window with respect to any
other hadron collider which as been available so far. Needless to say, the challenging measure-
ments aimed at the discovery of physics beyond the Standard Model require an extremely precise
understanding of the background physics. In particular, it is needed to assess the effects intro-
duced by multiple interactions. There are kinematical regions where the power suppression due
to the “higher twist” nature of these effect is expected to be compensated. If a jet is produced
close to the forward direction for example, one of the colliding hadrons PDF is probed in the
region of very small longitudinal fraction, where the dominant gluon density undergo a step rise
of the type ∝ (1/x)λ, x → 0, λ > 0. Here is where the mellow concepts developed in the pre
QCD era becomes topical again.

As far as the theoretical motivations for considering multiple interactions are concerned,
it is well known that they are expected to unitarize cross sections. The resummation of Leading
Logarithms (LL) log(1/x) in pQCD results in the perturbative BFKL pomeron [2–4], which
violated the unitarity constraint expressed by the Froissart bound, σ tot ≤ log2(s), s → ∞.
Finding a systematic way of including a minimal subset of subleading corrections in order to
restore unitarity has been subject to intensive research in the past decade.

In this talk we discuss AGK rules in the context of pQCD and some recent results regarding
multiple interaction effects in inclusive jet production. The relevant papers are [5, 6].

† speaker
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2 Review of AGK rules in Regge theory

In their simplest version, AGK cutting rules are nothing but a statement about how the s-channel
unitarity is encoded in reggeon diagrams. In standard perturbation theory the corresponding tool
is the set of Cutkosky rules [7], which tells us how to build up the discontinuity of an amplitude
at a particular order in the coupling, summing up all the possible cut diagrams contributing to the
amplitude. Symbolically, we could write

2ImA =
∑

cuts

/A, (1)

where /A indicates generically any cut version of the amplitude A. Such an approach is clearly
unfeasible when considering reggeon diagrams, since their being already the sum of a full series
in the coupling implies that we should consider an infinite set of cut amplitudes already at the
simplest level beyond a single ladder. Each term in the sum of multi-ladder diagrams contains a
number of possible cuts quickly growing with the number of the rungs in each ladder.

The fundamental observation of AGK was that cut reggeon diagrams where the cut cross a
side line of the ladder are strongly suppressed compared to diagrams where the reggeons are cut
or uncut completely. The natural question arising from this observation is whether the latter set
of diagrams is alone sufficient to reconstruct the full discontinuity; the striking result pointed out
in the AGK papers is the affirmative answer to this question. Let us then review their arguments.

The starting point of the AGK analysis is the Sommerfeld-Watson representation of the
elastic scattering amplitude A:

A(s, t) =
∫
dω

2i
ξ(ω)s1+ωF(ω, t), ξ(ω) =

τ − e−iπω
sinπω

. (2)

The signature function can be found in [5]. The (real-valued) partial wave F(ω, t) has singular-
ities in the complex ω-plane, and the multi-Regge exchange corresponds to a particular branch
cut. As we have already pointed out, the central goal of the AGK analysis is the decomposition
of the contribution of the n-reggeon cut in terms of s-channel intermediate states. The absorptive
part of the amplitude will consist of several different contributions: each piece belongs to a par-
ticular energy cut line, and there are several different ways of drawing such energy-cutting lines.
Each of them belongs to a particular set of s-channel intermediate states. For example, a cutting
line between reggeons,

belongs to double diffractive production on both sides of the cut: there is a rapidity gap between
what is inside the upper blob and the lower blob. When relating this contribution with the full
diagram, one requires a ‘cut version’ of the reggeon particle couplings Nn (represented as grey
blobs in the figures). Similarly, the cut through a reggeon,
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corresponds to a so-called multiperipheral intermediate state, and another cut version of the
particle-reggeon coupling appears. The basis of the AGK analysis is the observation that, under
very general assumptions for the underlying dynamical theory, these couplings are fully sym-
metric under the exchange of reggeons, and all their cut versions are identical. This property
then allows to find simple relations between the different cut contributions, and to derive a set of
counting rules.

Due to the analytic structure of the partial wave F(ω, t) in the s-channel physical region,
which is given by a set of cuts and poles on the real axis on the right side of a fixed point ω = ω0,
the amplitude A can be decomposed into the sum of the different contributions due to the various
singularities,

A(s, t) =
∞∑

n=1

An(s, t), (3)

where An(s, t) is the contribution due to the n-reggeon branch point. A further decomposition
of ImAn was found by AGK by observing that the complete result is obtained by summing up
just the diagrams where the reggeons are cut or uncut completely, therefore neglecting all the
(multitude of) diagrams where the cutting line breaks up at least one of the reggeons. For the
n-reggeon cut there are n+ 1 of such contributions (any number of cut reggeon from 0 to n), and
one ends up with

2ImA(s, t) =
∞∑

n=1

n∑

k=0

/Ank(s, t). (4)

Comparing this last equation with (1), it is immediately clear that we have struck a big deal: in
building up the imaginary part of the amplitude, we have got rid of most of the cuts on the r.h.s.
of (1), only those in (4) being left.

The simplest case, the two-Pomeron exchange, has the three contributions:

a b c

(a) in the diffractive cut all the pomerons are left uncut, and there is a rapidity gap between the
fragmentation regions of the two particles; (b) in the single multiplicity cut only one pomeron
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has been cut; (c) when both pomerons are cut the multiplicity of particles is doubled with respect
to the previous case. In this case one obtains the well known result that the different contributions
are in the proportion

/A20 : /A21 : /A22 = 1 : −4 : 2. (5)

Unfortunately AGK constraints can be formulated only for a very restricted class of interaction
vertices (in particular, for the 1→ n Pomeron vertex). For the general case (for example, for the
2 → 2 vertex) this is not the case; only explicit models, e.g. calculations in pQCD as the one
discussed in section 4, can provide further information.

Another remarkable result stems from the AGK analysis: for the n-particle inclusive cross
section, large classes of multi-pomeron corrections cancel. For the single inclusive case all multi-
Pomeron exchanges across the produced particle cancel,

+ + = 0 (6)

We are now ready to discuss the novel features arising in QCD.

3 AGK rules in pQCD

From this brief review it follows that the central task of performing the AGK analysis in pQCD
requires the computation and study of the coupling functions Nn. The simplest task is the study
of the two-Pomeron exchange. Since the BFKL Pomeron is a composite state of two reggeized
gluons, we have to start from the exchange of four reggeized gluons.

In the simple perturbative situation where the external particles are photons, the com-
putation of these couplings (which are denote Dn) was performed in [8]. The two pomerons
exchange contribution is encoded in the amplitude D4. The most peculiar fact about D4 is its
decomposition into two pieces:

D4 = D I
4 +D R

4 . (7)

The first term, D I
4 , is completely symmetric under the exchange of any two gluons, whereas the

second one, D R
4 , is a sum of antisymmetric terms which, as a result of bootstrap properties, can

be expressed in terms of two-gluon amplitudes, D2. Under the exchange of the two reggeized
gluons, D2 is symmetric. It is only after this decomposition has been performed, and we have
arrived at reggeon particle couplings with ‘good’ properties, that we can start with the AGK
analysis.

Starting from these functions D I
4 and D R

4 , the investigation in [9] has shown in some
detail how the AGK counting rules work in pQCD: the analysis has to be done seperately for D I

4

and D R
4 . For the former piece, we obtain the counting arguments for the Pomerons (which is

even-signatured) given by AGK; here the essential ingredient is the complete symmetry of D I
4

under the permutation of reggeized gluons. In the latter piece, the odd-signature reggeizing glu-
ons lead to counting rules which are slightly different from those of the even signature Pomeron:
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once the bootstrap properties have been invoked and D R
4 is expressed in terms of D2 functions,

cutting lines through the reggeized gluon appear. Since it carries negative signature, the relative
weight between cut and uncut reggeon is different from the Pomeron.

In the light of these facts, we will now attempt to use of the pQCD cutting rules in a
nonperturbative environment (e.g.multi-ladder exchanges in pp scattering). Basic ingredients are
the nonperturbative couplings of n reggeized gluons to the proton. In order to justify the use of
pQCD we need a hard scattering subprocess: we will assume that all reggeized gluons are con-
nected to some hard scattering subprocess; consequently, each gluon line will have its transverse
momentum in the kinematic region where the use of pQCD can be justified. Since AGK applies
to the high energy limit (i.e. the small-x region), all t-channel gluons are reggeized. Based upon
the analysis in pQCD, we now formulate a few general conditions which the nonperturbative
couplings Nn have to satisfy in order to get the usual AGK counting rules:

(i) they are symmetric under the simultaneous exchange of momenta and color;
(ii) cut and uncut vertices are identical, independently where the cut line enters.

Whenever these two properties are satisfied, it can be proved that the n-reggeized gluon cut satis-
fies a similar set of counting rules as the original ones found by AGK, but note that, in contrast to
the discussion above, in the case of reggeized gluons we do not need to consider cutting lines in-
side the reggeized gluons: compared to an uncut gluon, a cut gluon line is suppressed in order αs.
The multiplicity of the final state arises due to the s-channel gluons mediating the interactions
between the reggeized ones.

A simple (oversimplified) model for the coupling Nn correspond to eikonal couplings:

N2n = Φ(1, 2)Φ(3, 4) . . . Φ(2n− 1, 2n) + permutations (8)

Squaring two of these couplings and taking the large Nc limit one obtains that the multiplicity-k
contribution to the total cross section is

σk =
∫
d2k eib·qPk(s, b) , (9)

where Pk is a Poissonian distribution,

Pk(s, b) =
Ω(s, b)k

k!
e−Ω(s,b) , (10)

which is interpreted as the probability to have k cut pomerons at fixed impact parameter b and
total energy

√
s.

4 Multiple interactions in jet production

The other remarkable result of AGK, the destructive interference leading to the cancellations of
diagrams for jet production as the one represented in eq. (6), has also a counterpart in QCD. The
analogous result in QCD reads

∑
+ + = 0 , (11)
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where the sum is over all the possible ways to attach the jet (gluon) on each side of the cut. Such
interference take place only due to the summation over all possible final states and integration
over the phase space. Any given final state (underlying event), would provide by itself a non-
vanishing contribution. The result expressed by eq. (11) is quite general; it holds indeed for an
arbitrary number of reggeized gluons and jets (see [5]).

What is left after these cancellation have been exploited are production vertices for the
reggeized gluon interactions. Such vertices are model dependent, and must be computed from
the underlying theory. The first step in this direction has been taken in [6], where the three cuts
of the two-to-four reggeized gluon vertex have been computed. The techniques used are similar
to those exploited in [8] for the computation of the two-to-four inclusive vertex (triple pomeron
vertex). One writes down a set of coupled evolution equations for the particle-reggeized gluon
couplings, where the evolution is given by the exchange of s-channel gluons, and the virtual
corrections are taken into account by properly including the gluon Regge trajectories. In the case
of single jet production, the kinematics of a gluon is kept fixed. Reshuffling such equation and
using the bootstrap property, one obtains the factorization expressed by eq. (7) for the inclusive
case.

In the single jet production, the coherence leading to the simple factorization (7) is partially
broken by the missing integration over the phase space of the produced jet. In [6] was observed
that is possible to obtain gauge invariant objects by identifying antipodal jets: one gives up the
distinction between jets emitted in opposite directions in the transverse plane. If doing so, it is
possible to factorize the amplitude as a sum of gauge invariant pieces. Explicitely one gets in a
pictorial form

〈X〉

=
∑( 〈X〉

+
〈X〉

+ +
)

+

+
〈X〉

+ + . (12)

The grey blob on the l.h.s. represents the full particle-reggeized gluons coupling with a gluon
fixed. On the r.h.s. one observes the various gauge invariant terms contributing to such coupling.
The first three represent “reggeized” terms: they describe the exchange of less then four gluons,
some of which are “composite” (they contain corrections beyond the LL reggeized gluon). The
fourth term does not contribute to the cross section thanks to the AGK argument expressed by
equation (11). The first term in the last line is very simple: the jet is emitted inside the pomeron
attached to the external particles, and subsequently the pomeron decays into a four reggeized
gluon state via the standard two-to-four vertex. The last two pieces contain new ingredients. In
the first appear for the first time the production vertices for the two-to-four transition with the
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emission of one jet. There are three variants of such a vertex, depending where the s-channel cut
passes. In the last piece the new objects are a universal two-to-three production vertex, and three
versions of a three-to-four inclusive vertex. More details and explicit expression can be found
in [6].

5 Concluding remarks

We have reviewed some aspects of multiple interactions in pQCD, in the context of the total
cross section and associated multiplicity distributions (AGK), and of inclusive jet production.
We have shown that similar cutting rules as those first obtained in the framework of soft pomeron
Regge theory emerge in pQCD as well. We have also presented new vertices for the inclusive
production of a jet across the transition between two and three or four reggeized gluons. The
full particle-four-gluons coupling has been decomposed in a sum of gauge invariant pieces, and
each of them has been computed explicitely. Explicit expressions for all the new vertices are
computed and presented in [6].
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Multiple Parton Interactions, Underlying Event and Forward
Physics at LHC

Livio Fanò†, on behalf of ATLAS, CMS and TOTEM collaborations
INFN and Università degli Studi di Perugia

Abstract
A variety of physics measurements in the low and high PT regimes
will be performed by the LHC experiments in proton-proton collisions
at
√
S =14 TeV to study the Multiple Parton Interactions (MPI) pro-

cesses . The amount of activity in Minimum Bias and high PT events
will be quantified studying charged tracks and calorimetric clusters.
The contribution ofMPI to the Underlying Event (UE) will be studied
by examining the production of charged particles in the region trans-
verse to jets and in the central region of Drell-Yan muon pairs produc-
tion. The effective double parton scattering cross section is expected
to be measured in different topologies. The study of the activity in
diffractive topologies will allow disentangling the MPI component of
the Underlying Event from the Beam Remnant and Radiative compo-
nents.

1 Introduction

Evidence for Multiple Interaction phenomena is strongly supported by both the high-PT [AFS,
CDF] and low-PT [CDF, UA5] [1] [2] [3] phenomenology at hadron colliders. Such processes
have been implemented in the most popular QCD models since the ’80 [4]. The deep understand-
ing of the softer component of the collision recently achieved by the CDF collaboration allowed
even more sophisticated implementations accounting for flavour and color correlations between
different partonic interactions [5]. This paper is subdivided into three sections: in the first sec-
tion will be discussed the Underlying Event universality and the measurement plan for LHC, the
second section is dedicated to the interplay with the forward region and in the third section is
briefly discussed the double parton scattering measurements foreseen at LHC.

2 The Underlying Event universality: the measurement plan for LHC

2.1 Underlying Event in the central region
One can use the topological structure of hadron-hadron collisions to study the UE by looking
only at the outgoing charged particles [6]. Jets are constructed from the charged particles using
a simple clustering algorithm and then the direction of the leading charged particle jet is used
to isolate regions of φ space that are sensitive to the UE. The transverse region to the charged
particle jet direction is almost perpendicular to the plane of the hard, back to back, scattering and
is therefore very sensitive to the UE (left Figure 1).
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The charged jet PT ranging from 900 MeV/c (or 500 MeV/c depending on the lowest
threshold for tracking) to 200 GeV/c shown in right figure 1 is quite interesting: due to the MPI,
the PYTHIA tunes rise quickly and then reach an approximately flat plateau region at PT ∼ 20
GeV/c. Then at PT ∼ 50 GeV/c they begin to rise again due to initial and final state radiation
which increases as the scale of the hard scattering. The two versions of PYTHIA, with Multiple
Parton Interactions model, behave much differently than HERWIG without MPI.

The charged density distributions in jet topologies are studied by ATLAS and CMS with
full simulation (Figures 2 and 3). In the ATLAS studies (Figure 2) the leading calorimetric jet is
used as reference for the energy scale of the process and the investigated region is extended up
to 1 TeV. Results are sumamrized in terms of the average number of reconstructed tracks in the
transverse region and the pT sum average of those tracks [7].

In the CMS studies (Figure 3) the energy scale is defined by the leading charged jet of the
event and the observables in the transverse region are the average charged and energy density
(left and right Figure 3). Reconstructed and simulated quantities agrees considering charged
jet calibration [8] and the lower track reconstruction efficiency in the transverse region (where
the spectrum is softer). The ability to lower down the pT threshold for track reconstruction,
allows to reach a higher discriminating power between different MC tunes (as shown in the right
Figure 1) with a more inclusive measurement and a better control of the systematic errors related
to efficency, purity and pT estimation. Both ATLAS and CMS experiments have developed
several techniques to lower down as much as possible the pT threshold, the most promising
relies on tracking with the pixel detector [9].

Drell Yan muon pair production has been used by CMS to study the UE in an alternative
and cleaner topology [8]. In these events the scale of the hard scattering is given by the muon
pair invariant mass while all the other charged tracks are attributed to the UE. Figure 4 shows the
prediction for the charged density and energy density in the whole φ region.

2.2 Underlying Event in the forward region
In diffractive events at least one of the colliding protons survives in the final state. The beam
remnant contribution is then reduced and also MPI are reduced. These topologies are studied
exploiting the forward region of the detector.

Hard diffractive events, such as pp → p + X + Jet are used to study the underlying
event activity in a similar way as in not-diffractive topology (eg: pp → X + Jet), in example
using the jet to define the energy scale and studying the UE activity in the transverse region. A
comparison between the diffractive and not diffractive processes helps to disentangle the different
UE components.

The CMS collaboration is pursuing a program on forward and diffractive physics also with
the CASTOR [10] forward cherenkov calorimeter and the near-beam detectors at ± 220 m from
the interaction point (IP) that are part of the TOTEM experiment [11]. The goal is to carry out
this program as part of the routine CMS data taking with nominal LHC optics and up to the
highest luminosities.

Triggering on the forward and very forward regions, using the CMS Hadron Forward (HF)
and CASTOR calorimeters, may give rise to biases depending on the UE model.
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The forward CASTOR detector covers the region 5.32 < |η| < 6.86 and permits to in-
vestigate the forward activity using central/forward correlations at large rapidity range taking
into account the effect of the long-range correlation for model with MPI. It is possible with
an ad hoc forward trigger, to enhance the discriminative power in the central region. Figure 6
shows that a little difference in multiplicity in the central region for realistic models as Tune A
(itune=303) [12] and new showering model (itune=304) [13] is enhanced in the forward region.
For example, depending on the parameterization used for MPI model, more or less energy is
taken from the beam remnant as shown in right Figure 7.

3 MPI in High-PT

The final goal is to achieve a uniform and coherent description of multiple parton processes in
both High and Low-PT case. To quantify the High-PT contribution CMS proposes a program
based on double parton scattering [14] [15]. In the simplest model a double high-PT scattering
can be interpreted as 2 different independent hard scatters superimposed. The corresponding
cross section is parameterized as:

σDP = mσAσB
2σeff

, where σeff = ( NDI
NDP

)( Nc(1)
2Nc(2)

)σNSD

where A and B are 2 different hard scatters, m = 1, 2 for indistinguishable or distinguishable
scattering and σeff contains the information about the spatial distribution of the partons. In
this formalism σB/2σeff is the probability that an hard scatter B occurs given a process A and
this will be larger or smaller depending on the parton spatial density. The CMS experiment
foresees to accomplish this kind of studies using (as CDF [16]) 3jet+γ topology, same sign W
production (that is greatly enhanced at the LHC energies as shown in figure 8) and minijet pairs
production [17].

4 Conclusions

MPI can be studied using several processes:

• In the central region, studies are advanced for both CMS and ATLAS experiment using
Jets and Drell-Yan topologies

• The possibility to use the forward region seems to be in a most advanced state for CMS
and TOTEM experiments than for the ATLAS one, studies are ongoing exploiting the
possibility to combine different detectors (TOTEM/CMS) and using a dedicated forward
subdetector (CASTOR)

• Studies are also ongoing exploring the possibility to measure the double parton scattering,
finalized to provide a description of the High-PT multiple parton interaction

Final goal for LHC will be to identify as best as possible observables and regions where the
sensitivity to UE, and in particular the MPI contribution, is maximized. In this way, LHC exper-
iments can be able to properly calculate and understand the underlying event contribution to the
measurement and go back to the parton level with an uncertainty as small as possible. The UE,
finally, will be process dependent and needs a careful modelling. In particular, for what concern
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the MPI, its contribution to the measured cross section has to be carefully understood, again a
good modeling is needed to be able to subtract the contribution with only a small uncertainty.

5 Acknowledgments

Many people have contributed to the preparation of this talk with very high quality material and
fruitful discussions: the CMS QCD group, Monika Grothe, Paolo Bartalini, Rick Field, Filip-
po Ambroglini, Klaus Rabbertz, Ferenc Sikler, Fabiola Gianotti, Craig Buttar, Arthur Moraes,
Hannes Jung, Kerstin Borras and Mario Deile

References
.

References
[1] ”Scaling of Pseudorapidity Distributions at c.m. Energies Up to 0.9-TeV”, UA5 Collaboration, Z. Phys. C33

(1986) 1

[2] Tuning of multiple interactions generated by Pythia, CERN 2000-004, 293-300

[3] Pseudorapidity distributions of charged particles produced in p̄p interactions at sqrt[s]=630 and 1800 GeV, F.
Abe et al., Phys. Rev. D 41(1989) 2330

[4] A multiple-interaction model for the event structure in hadron collisions, T. Sjostrand, M. van Zijl, Phys. Rev.
D 36 (1987) 2019

[5] PYTHIA 6.4 Physics and Manual, T. Sjostrand et al. JHEP 0605:026,2006

[6] Charged jet evolution and the underlying event in proton anti-proton collisions at 1.8 TeV, A. A. Affolder et al.
[CDF Collaboration], Phys. Rev. D 65 (2002) 092002.

[7] Les Houches ’Physics at Tev Colliders 2003’ QCD/SM Working Group: Summary Report, A. M. Moraes et al.
hep-ph/0403100, pgg 8-16

[8] The Underlying Event at the LHC, D. Acosta et al., CMS-NOTE 2006/067

[9] CMS TDR 8.2-Add1, CERN/LHCC 2007-009

[10] Simulation of Energy Response Linearity, Resolution and e/π Ratio for the CASTOR Calorimeter at CMS, P.
Katsas A.D. Panagiotou A. Zhokin, CMS-NOTE 2006/147

[11] Prospects for Diffractive and Forward Physics at the LHC, The CMS and TOTEM diffractive and forward
physics working group, CERN/LHCC 2006-039/G-124

[12] R. Field and R. C. Group (CDF Collaboration), hep-ph/0510198

[13] Transverse-Momentum-Ordered Showers and Interleaved Multiple Interactions, T. Sjstrand and P. Skands, Eur.
Phys. J. C39 (2005) 129

[14] Heavy-quark production in proton-nucleus collisions at the LHC, D. Treleani et al., Int. J. Mod. Phys. A20:
4462-4468 (2005)

[15] Measurement of Double Parton Scattering in pp̄ Collisions at sqrt(s) = 1.8 TeV, F. Abe et al., Phys. Rev. Lett.
79, 584 (1997)

[16] Measurement of Double Parton Scattering in pp̄ Collisions at sqrt(s) = 1.8 TeV, F. Abe et al., Phys. Rev. D 56,
3811 (1997)

[17] QCD minijet cross sections, I. Sarcevic et al., Phys. Rev. D 40, 1446 - 1452 (1989)

L FANÒ

210



Fig. 1: Left: sketch of the proton-proton interaction in the transverse plane. Right: QCD Monte Carlo models

predictions for charged particle jet production at the LHC. Average density of charged particles, dNchg/dηdφ, with

|η| < 1 in the Transverse region versus the transverse momentum of the leading charged particle jet with two different

cuts on the minimum pT of the charged particle: pT >0.5 (top) and pT >0.9 (bottom)

Fig. 2: ATLAS. Mean number of tracks (left) and track pT sum (right) in the transverse region for both reconstructed

(red) and MC (blue) versus the transverse energy of the leading calorimetric jet.
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Fig. 3: CMS. Density of charged particles, dNchg/dηdφ (left) and average charged pT sum density, pT sum
chg /dηdφ

(right), with pT > 0.9 GeV/c and |η| <1 in the transverse region versus the transverse momentum of the leading

charged particle jet.

Fig. 4: CMS. Density of charged particles, dNchg/dηdφ and average charged pT sum density, pT sum
chg /dηdφ (right),

with pT >0.9 GeV/c and |η| <1versus the muon-pair invariant mass. Blue triangles are referred to generator-level

quantity while the red ones to the full simulated and reconstructed.
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Fig. 5: Sketch in the z-y plane of the TOTEM telescopes (T1 and T2). It is also indicated the CASTOR calorimeter.

Fig. 6: Charged particles multiplicity: different activity in the central region corresponding to different MC model

(itune = 303 and 304) could be enhanced triggering with CASTOR in the forward region.
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Fig. 7: The energy flow measured by CASTOR (left plot) will help to model the beam remnants contribution and long

range correlations (right plot) measuring the central/forward activity using different CASTOR trigger thresholds.

Fig. 8: differential cross section for the same sign W production. Contribution from double parton interaction are

superimposed to the single parton interaction production. W+W− cross section is also drawn as reference.
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Elastic Scattering, Total Cross-Section and Luminosity
Measurements at ATLAS

C. Sbarra (on behalf of the ATLAS Luminosity and Forward Physics Working Group)
University of Bologna and INFN, Bologna, Italy

Abstract
The ATLAS strategy to monitor and measure the absolute value of
the LHC luminosity at the ATLAS Interaction Point is reviewed. The
absolute luminosity will be extracted from the measurement of the t-
distribution of the elastic pp-scattering in the Coulomb–Nuclear in-
terference region, as performed during dedicated low luminosity runs
using specific beam optics. A luminosity monitor, LUCID, to be pre-
cisely calibrated during the elastic scattering parametrization, will also
be working in standard physics conditions to provide luminosity val-
ues both for bunch by bunch beam monitoring and data analysis. The
design, installation plans and expected performances of luminosity–
dedicated detectors are presented as well.

1 Introduction

A precise determination of the luminosity L will be a crucial experimental issue at the LHC,
as it is necessary to relate the cross section of any physical process to its event rate. Previous
experiences at hadron colliders suggest that a 5–10% precision on L may be reached from the
measurement of the machine parameters:

L =
f
∑kb
i=1N1iN2i

4πσ∗xσ∗y
(1)

where f is the revolution frequency, kb is the number of bunches, Nji is the number of protons
in bunch i of beam j and σ∗x and σ∗y are the transverse beam dimentions at the Interaction Point
(IP). However, at the LHC such a precision would already dominate the systematic error on the
determination of fundamental quantities, like the Higgs-boson coupling and the tanβ parameter
of the MSSM [1].
Besides the machine parameters, the luminosity can also be obtained by measuring the rate of a
clean and well–known process. In case of non–negligible background contamination, the back-
ground cross–section must be known as well. Both QED and QCD processes will be available
at LHC for this task, namely pp → ppµ+µ− and W± → `±ν, Z → `+`−. The former will
be limited in recorded statistics, whereas the latter requires a good control of the proton PDF,
which makes it unclear if the achievable precision on L through this event counting will exceed
the level of 5% [2].
Elastic pp-scattering at very small angles together with the total pp cross–section provide a fur-
ther handle on the determination of the luminosity. In fact, by measuring the total interaction rate
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(Rtot) and the elastic rate in the forward direction (dRel/dt|t=0) both the luminosity and the total
cross section (σtot) can be determined [3]:

L =
1

16π
R2
tot(1 + ρ2)
dRel/dt|t=0

(2)

σtot =
16π

(1 + ρ2)
dRel/dt|t=0

R2
tot

(3)

where ρ represents the real–to–imaginary part ratio of the elastic amplitude in the forward di-
rection. In order to keep extrapolation errors small, this method requires the measurement of
very small proton scattering angles (down to about 10µrad at LHC) or, equivalently, very small
momentum trasfer |t| ' (pθ)2, where p represents the proton momentum and θ its scattering
angle (tmin ' 10−3 GeV2 at LHC). Dedicated detectors close to the beam–line and specific
beam optics are therefore needed for this measurement togheter with a precise determination of
the inelastic rate, in turn requiring a good coverage in pseudorapidity. The ATLAS coverage in η
is somewhat limited in this context.
A further approach is to measure the elastic pp scattering down to even smaller angles so as to
reach the Coulomb region where the interference between the nuclear (fN ) and the Coulomb
(fC ) scattering amplitudes is maximum. In particular, both the luminosity and the total cross
section can be extracted from the elastic rate dependence on the momentum transfer t in the
Coulomb–Nuclear Interference (CNI) region without the need of any inelastic detector [3]. In
addition, fundamental soft physics parameters like the nuclear slope and ρ can be measured.
This technique was used in the past by the UA4 experiment at the CERN SPS [4], although with
a somewhat simplified theoretical description of the elastic cross section. In any case, to imple-
ment it at the LHC, proton scattering angles of few µrad (tmin ' 6.5 × 10−4 GeV2) need to be
detected. As a comparison, the instrinsic LHC beam divergence in high–luminosity runs will be
larger than 30µrad, which makes this measurement impossible during standard physics running.

2 ATLAS strategy

The strategy chosen by ATLAS will fulfil two complementary goals: to measure the absolute
value of L at the ATLAS IP with 2 − 3% precision on the one hand, and to monitor the istan-
taneous luminosity bunch by bunch in physics running conditions on the other hand, so as to
provide online–luminosity information useful for fast control and efficient use of the beams as
well as data analysis.
The program will be accomplished in various steps: the first estimate of the absolute luminosity
will certainly come from the machine parameters, although with limited accuracy, and will be
used to first–calibrate the ATLAS dedicated luminosity monitor, the LUCID Cherenkov counter,
that will also be operational from the first beams. Then, on a longer time scale, we aim at extract-
ing the absolute luminosity from the t-distribution of the elastic pp–scattering in the CNI region.
This will be measured by another dedicated detector, the ALFA scintillating–fiber tracker, housed
in Roman Pots [5] at 240 m on both sides of the ATLAS IP. Dedicated runs with specific beam
optics will be needed to perform this measurement. Should not the CNI region be reached, the
measurement of the forward elastic rate will still provide a measurement of the absolute Lumi-
nosity with twice the precision on the measurement of σtot, once complemented with the total
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cross section as measured by the TOTEM experiment [6]. In addition, the rate of events from
well known processes will be measured and used to cross–check the calibration of the luminosity
monitor. In any case, the best available estimate of the absolute luminosity will be used for the
calibration of LUCID, which was designed to be operational over a wide dynamic range and in
different beam optics conditions.

2.1 Experimetal aspects of absolute L measurement
In order to measure the t distribution of the elastic pp–scattering in the CNI region various ingre-
dients are needed:
• Large β∗ optics: a beam with an intrinsic divergence at the ATLAS IP smaller than the

minimum scattering angle to be measured is mandatory. This traslates into a large β ∗

optics, in turn implying large transverse dimensions of the beams at the ATLAS IP, and
thus low luminosity. A solution has been found (β∗ = 2625 m, L ' 1027 cm−2s−1) that
is compatible with the one prepared by the TOTEM collaboration for the measurement of
the total cross section [6], so as to allow TOTEM and ATLAS to run high–β optics at the
same time.

• Parallel–to–point focusing: due to the non–negligible beam size implied by the aforemen-
tioned large β∗ optics (σ∗ ' 600µm) the measurement of the momentum transfer |t| needs
to be independent of the actual vertex position. This is realized by a 90o betatron phase ad-
vance in the vertical plane between the IP and the detector, which makes the detector–level
vertical displacement of the scattered proton to depend only on its scattering angle.

• Edgeless detector in Roman Pots: the ALFA tracking detector (scintillating–fiber based)
will approach the circulating beams at 10 − 15σ (i.e. 1–2 mm) inside Roman Pots placed
at 240 m on both sides of the IP. This will allow to measure t with the needed acceptance
and precision. The goal spatial resolution is 30µm. Two test beam campagnes have shown
that both the detector concept and the readout electronics design are valid. A further test
beam is scheduled in October 2007 to test the full system, including Roman Pots. Then,
eight vertical Roman Pots housed in four stations will be installed and instrumented during
the 2008-2009 shutdown and become fully operational. Meanwhile, based on previous
test beam results, the performance of the system has been estimated [7] by reconstructing
and analysing 10M of simulated data corresponding to about one week of running at L '
1027 cm−2s−1. The measured t distribution has been used to extract both L and σtot,
as well as ρ and the nuclear slope parameter B. Although the standard West–Yennie pp
elastic cross–section formula was used (where ρ is independent of t), this study indicates
that a measurement of L with about 3% precision is reachable, including systematics from
both the beams and the background, as well as the detector acceptance, resolution and
alignment. The statistical precision on σtot is expected to be better than 1%. Further
details on the detectors and their associated electronics can be found in [3], and results of
prototype–detectors can be consulted in [8].

2.2 Experimetal aspects of relative L measurement
Any detector able to count the number µ of interactions occurring in a bunch crossing (BX) can
be used as a luminosity monitor, since µ = σ · L by definition. The LUCID Cherenkov counter
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will monitor µ by counting the mean number of charged particles produced in each BX within
its acceptance. In order to estimate the absolute value of µ, and thus the luminosity, a proper
calibration is needed. The idea is to perform it while measuring the absolute luminosity L in
large β∗ runs, when the probability to have more than one interaction per BX is negligible and a
number 〈N〉 of charged particles is counted per interaction. Then, if ε is the efficiency to detect
one interaction and 〈M〉 is the average number of particles counted by the LUCID at any time:

µ =
〈M〉
〈N〉 · ε = L · σ (4)

from which

L =
〈M〉

〈N〉 · σ · ε (5)

where the product σ ·ε is a “luminosity independent” calibration constant obtained by comparison
to the measured value of L and known with the same precision as L [9].
The LUCID detector consists of two arrays of aluminum tubes filled with C4F10 Cherenkov
radiator at about 1.2 bar pressure. The arrays will be placed around the beam pipe at 17 m
of the ATLAS IP, on both sides. The Cherenkov light is emitted at about 3o with respect to
the impinging charged track direction and is collected at each tube end by either a PMT or an
optical fiber–bundle leading to a PMT, after few reflections on the tube internal surface. The key
characteristics of the detector are:
• the Cherenkov threshold, amounting to 10 MeV for electrons and 2.8 GeV for pions, to

limit the background;
• the pointing geometry allowing particles coming from the IP to produce more light than

background particles coming from the LUCID sides;
• the aluminum reflectivity, at the level of 80 to 95% in the 320–700 nm wavelength range

after mechanical polishing, as measured in dedicated bench tests;
• the radiation hardness needed to survive in a high radiation environment.

In addition, the lack of Landau fluctuations in the number of Cherenkov photons makes the parti-
cle counting robust, while a good time resolution (2–3 ns) allows bunch by bunch measurements.
Two test beam campagnes in 2006 showed that 80 p.e. are produced on average per aluminum
tube traversed by a high momentum collinear track, out of wich 60 are produced in the gas and
20 in the PMT quartz window. Subsequent simulation studies including the background expected
in the LUCID area in physics run conditions showed that the single PMT signal can be safely
separated from the background by requiring a threshold of 50 p.e. at both low and medium lu-
minosity (L ≤ 1033 cm−2s−1). Furthermore, radiation hardness tests for the PMTs with both
gammas and neutrons proved that these devices are suitable for the first years of LHC running.
The LUCID implementation will therefore be performed in two phases: at low–to–medium lumi-
nosity, e.g. up to L ' 1033 cm−2s−1, 16 tubes with direct PMT readout plus 4 tubes with optical
fibers will be installed on each side, corresponding to a pseudorapidity coverage 5.6 ≤ |η| ≤ 6.0.
At higher luminosity, when the PMTs might not survive the intense radiation, 168 tubes coupled
to far–away PMTs by optical fibers should replace the previous 20 on each side, covering the
pseudorapidity range 5.4 ≤ |η| ≤ 6.1.
Various methods for particle counting exist, each having both pro and cons. They range from
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the counting of BX with no interactions (zero counting), statistically unfit at high luminosity, to
hit–counting, subject to saturation at high luminosity when more than one charged particle is
likely to hit the same tube, and particle counting, which is an intrinsically linear method but is
sensitive to PMT gain fluctuations. Monte Carlo studies have shown that hit–counting is a good
option for LUCID phase I, although all methods will be investigated. In particular, no saturation
effects and subsequent loss of linearity are expected when the number of interactions per BX is
up to 7. Should the background level be substantially worse than expected, side coincidence will
be required.
A detailed study of the systematics is currently under study. The one due to differences in optics
conditions between calibration and physics has been estimated to be below 1%. Based on the ex-
perience of the CDF collaboration with the CLC luminometer [10], conceptually very similar to
the LUCID, we hope to keep the systematics at the level of 2%, the ones related to uncertainties
in acceptance and inelastic cross–section being included in the error on the calibration constant.

3 The Zero Degree Calorimeters

A letter of Intent [11] has been presented last January to complement the ATLAS detector with
Zero Degree Calorimeters (ZDC) to be inserted in the transverse aperture of the ATLAS neutral
particle absorbers, at about 140 m from the IP on each side. They consists of Tungsten-quartz
fiber calorimeters suited to study both heavy ions and pp physics. In particular, ZDC have shown
to be very effective devices for pp beam tuning, and therefore for luminosity monitoring: at RHIC
the ZDC coincidence rate versus the relative beam position has been used during Van der Meer
scans to measure both the beam crossing angle and the longitudinal position of the IP. ZDC are
thus expected to be useful tools to tune the accelerator parameters in the early LHC days. The
installation of the hadronic module of the ATLAS ZDC is scheduled for the fall of 2007. Due
to the high radiation environment, the devices are expected to survive at most three years in pp
collisions at L ' 1033 cm−2s−1.

4 Conclusions

In the last years new ideas and concerns on the matter of luminosity measurements at the LHC
have led to proposals to complement the ATLAS detector with new devices in the forward region.
In particular, a luminosity monitor (LUCID) will be installed around the beam pipe at about
17 m from the IP in the 2007–2008 winter, together with a pair of Zero Degree Calorimeters
at about 140 m from the IP. Then, in the 2008–2009 shutdown, Roman Pot stations equipped
with scintillating fiber trackers (ALFA) will be installed at 240 m from the ATLAS IP to provide
elastic scattering and absolute luminosity measurements, the latter with a precision of 2–3%.
The luminosity monitor will be calibrated with 5–10% accuracy at the LHC startup based on
information from the accelerator. Then, a 5% accuracy on the LUCID calibration is expected
at mid–term based on the rate of QED and QCD processes, to reach the goal accuracy of few
percent after 2009.
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Abstract
We describe new QCD fits to diffractive cross sections measured at
HERA and we use the parton densities derived from these fits to predict
the shape of the dijet mass fraction in double Pomeron exchange at the
Tevatron. We discuss the existence of exclusive events in this dijet
channel and some prospects are given for the LHC.

1 Diffraction at HERA

One of the most important experimental results from the DESY ep collider HERA is the observa-
tion of a significant fraction (around 15%) of diffractive events in deep inelastic scattering (DIS)
with large rapidity gap between the scattered proton, which remains intact, and the rest of the
final system [1]. In the standard QCD description of DIS, such events are not expected in such an
abundance since large gaps are exponentially suppressed due to color strings formed between the
proton remnant and scattered partons. For diffractive events, however, a color neutral cluster of
partons fragments independently of the scattered proton. The theoretical description of diffrac-
tive events is a real challenge since it must combine perturbative QCD effect of hard scattering
with nonperturbative phenomenon of rapidity gap formation.

There are various interpretations of this phenomenon, but a very appealing one relies upon
a partonic interpretation of the structure of the Pomeron [2]. It is defined in the presence of a hard
scale, the photon virtuality Q2 or jet transverse momentum, which allows to apply perturbative
QCD. Soft diffraction, when such a scale is missing, is outside the scope of the model but can be
described in the context of Regge pole phenomenology. This phenomenology, however, turns out
to be quite useful in the description of a soft part of hard diffraction, responsible for the rapidity
gap formation. In fact, it is possible to nicely describe the diffractive cross-section data from
HERA by a QCD DGLAP evolution of parton distributions in the Pomeron combined with a
Regge parametrisation of flux factors describing the probability of finding a Pomeron state in the
proton [1]. It follows exactly the same procedure than for standard DIS except that the diffractive
distributions are related to the Pomeron, whose flux factor is factorised and parametrised as a
function of xlP, the momentum fraction lost by the proton.

Sets of diffractive parton distribution functions (dPDFs) are shown in figure 1. In the
infinite momentum frame, the dPDFs have an interpretation of conditional probabilities to find
a parton in the proton with the momentum fraction x = βxlP, where β denotes the fraction of
the particular parton in the Pomeron. The gluons dominate the diffractive exchange and carry
approximately 70 % of the momentum. While the quark densities are found to be relatively
close for H1 and ZEUS experiments, the gluon density differs by more than a factor 2. New
preliminary data from ZEUS reduce this discrepancy.
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Fig. 1: Singlet and gluon distributions of the Pomeron as a function of z, the fractional momentum of the Pomeron

carried by the struck parton, derived from QCD fits on H1RAP data alone, ZEUSMX data alone or the four data sets

together. The parton densities are normalised to represent xlP times the true parton densities multiplied by the flux

factor at xlP = 0.003.

In the following, we will use the QCD fits to the H1 data to compare with the dijet mass
fractions measured by the CDF collaboration in double Pomeron exchange and we discuss the
possible evidence for exclusive events in this context.

2 Diffraction at Tevatron and LHC

The difference between diffraction at HERA and at the Tevatron is that diffraction can occur not
only on either p or p̄ side as at HERA, but also on both sides. The former case is called single
diffraction whereas the other one double Pomeron exchange. In the same way as we defined
the kinematical variables xlP and β at HERA, we define ξ1,2 as the proton fractional momentum
loss (or as the p or p̄ momentum fraction carried by the Pomeron), and β1,2, the fraction of the
Pomeron momentum carried by the interacting parton. The produced diffractive mass is equal to
M2 = sξ1 for single diffractive events and to M 2 = sξ1ξ2 for double Pomeron exchange, where
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Fig. 2: Scheme of non diffractive, inclusive double Pomeron exchange and exclusive events at the Tevatron or LHC

√
s is the energy of the reaction in the center of mass frame. The size of the rapidity gap is of the

order of ∆η ∼ log 1/ξ1,2.

It has been shown that the dPDFs of HERA can not be used directly to make predictions
at the Tevatron. Indeed, factorisation does not hold and a gap survival probability of a few % has
to be considered. It corresponds to the probability that there is no soft additional interaction or in
other words that the event remains diffractive. Knowing the presence of this essential factor, we
can discuss the case of the double Pomeron exchange at the Tevatron. A schematic view of non
diffractive, inclusive double Pomeron exchange and exclusive diffractive events at the Tevatron
or the LHC is displayed in figure 2. The upper left plot shows the ”standard” non diffractive
events where the Higgs boson, the dijet or diphotons are produced directly by a coupling to the
proton associated with proton remnants. The bottom plot displays the standard diffractive double
Pomeron exchange (DPE) where the protons remain intact after interaction and the total available
energy is used to produce the heavy object and the Pomeron remnants. There may be a third class
of processes displayed in the upper right figure, namely the exclusive diffractive production.
Exclusive events allow a precise reconstruction of the mass and kinematical properties of the
central object using the central detector or even more precisely using very forward detectors
installed far downstream from the interaction point [3]. As mentioned above, the mass of the
produced object can be computed using roman pot detectors and tagged protons, M =

√
sξ1ξ2,

where ξ1,2 represent the fractions of energy losses for both protons. We see immediately the
advantage of those processes : we can benefit from the good roman pot resolution on ξ1,2 to get
a good resolution on mass. Therefore, it is possible to measure the mass and the kinematical
properties of the produced object and use this information to increase the signal over background
ratio by reducing the mass window of measurement [3].
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If such exclusive processes exist in DPE, the most appealing is certainly the Higgs boson
production through this channel at the LHC [3]. It cannot be observed at the Tevatron due to the
low production cross section, but one can use present measurements at the Tevatron to investigate
any evidence for the existence of exclusive production in DPE.

3 Dijet mass fraction at the Tevatron

x/Mjj=MjjR
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Fig. 3: Dijet mass fraction for jets pT > 10 GeV. The data are compared to the sum of inclusive and exclusive

predictions. The dPDFs derived from H1 data have been used together with the survival gap probability measured
with single diffractive events at Tevatron.

The CDF collaboration measured the so-called dijet mass fraction (DMF) in dijet events
when the antiproton is tagged in the roman pot detectors and when there is a rapidity gap on
the proton side to ensure that the event corresponds to a double Pomeron exchange [3]. The
measured observable RJJ is defined as the ratio of the mass carried by the two jets divided by the
total diffractive mass. The DMF turns out to be a very appropriate observable for identifying the
exclusive production, which would manifest itself as an excess of the events towards RJJ ∼ 1.
Indeed, for exclusive events, the dijet mass is essentially equal to the mass of the central system
because no Pomeron remnant is present. Then, for exclusive events, the DMF is 1 at generator
level and can be smeared out towards lower values taking into account the detector resolutions.
The advantage of DMF is that one can focus on the shape of the distribution. The observation of
exclusive events does not rely on the overall normalization which might be strongly dependent on
the detector simulation and acceptance of the roman pot detector. Results are shown in figure 3
with Monte-Carlo expectations calculated using DPEMC [4]. Indeed, we see a clear deficit of
events towards high values of the DMF, where exclusive events are supposed to occur. In figure 3,
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a specific model describing exclusive events [5] is also added to the inclusive prediction and we
obtain a good agreement between data and the sum of MC expectations [4]. It is a first evidence
that exclusive events could contribute at the Tevatron [3, 6].

4 Conclusions

We have discussed a first evidence for the existence of exlusive events in double Pomeron ex-
change at the Tevatron. If such events can be also observed at the LHC, it would be possible to
produce a Higgs boson as well as of a dijet system regarding the cross section values accessible
at the LHC. First, a direct precise determination of the gluon density in the Pomeron through the
measurement of the diffractive dijet cross section at the Tevatron and the LHC would be neces-
sary if one wants to prove the existence of exclusive events in the dijet channel. In particular,
a Tevatron or LHC diffractive gluon density could be extracted including de facto the survival
gap probability. Then, the great benefit of exclusive events concerns the precise reconstruction
of the mass of the central object, using roman pot detectors installed far downstream from the
interaction point [3]. It gives the opportunity to work with a favorable signal/background ratio
compared to standard Higgs searches with a mass below 150 GeV.
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Abstract
We use new HERA QCD fits to predict the shape of a dijet mass frac-
tion RJJ at the Tevatron, investigate the presence of exclusive signal
in CDF dijet mass fraction measurement, and look for its appearance
in the dijet channel at the LHC.

Exclusive diffractive production of heavy mass objects is an interesting part of the physics
program at the LHC. The fact that all energy lost by scattered protons is used to create a desired
object (Higgs boson, dijets, diphotons, etc.) in the central rapidity region, yields highly accurate
reconstruction of its mass (e.g. Higgs mass precision can reach σ(M) ∼ 1 GeV [1]). The energy
flowing into diffractive system can be precisely computed using missing momenta of scattered
protons measured by proton taggers placed in the LHC tunnel.

But the exclusive production rate is so far not confidently known. The CDF collaboration
advocated a presence of exclusive signal in the dijet production, analyzing the dijet mass fraction
Rjj distribution [2]. It was an indirect measurement since the exclusive contribution was obtained
by subtracting the inclusive diffractive contribution (where the energy lost by protons is used not
only for producing the heavy object but also for pomeron remnants) from the measured signal.
The inclusive contribution was calculated with the knowledge of diffractive PDFs as measured at
HERA.

However, looking at newer QCD fits of HERA data presented in Ref. [3] one notices
significant differences from the PDFs used in CDF analysis, mainly in the gluon distribution
function. Its normalization has changed by a factor of 2 plus it turned out that the QCD fits poorly
constrain the gluon density at large β, where β denotes the momentum fraction of a pomeron
carried into the hard interaction by an interacting parton. This is quantitatively expressed as
follows: multiplying the gluon density by a factor (1−β)ν , the uncertainty on the gluon translates
to the uncertainty on the parameter ν as ν = 0.0 ± 0.6. It is important to see whether this
uncertainty on the gluon distribution function cannot imitate the exclusive signal in the dijet
mass fraction measurement.

1 Search for the exclusive signal at the Tevatron

In the CDF measurement [2], one requests two jets with pT greater than certain threshold pminT =
10, 25 GeV and defines the dijet mass fraction distribution Rjj as a ratio of the invariant dijet
mass to the total diffractive energy in the event. We compared the data with two models for
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inclusive diffraction, namely Factorized (FM) [4] and BPR [5] model. In the first case, diffrac-
tive cross section almost exactly factorizes to the flux factor and the parton distribution function;
the only factorization breaking comes through the survival probability factor which is about 0.1
for the Tevatron energies and is predicted to be 0.03 for the LHC. Pomeron parameters are ob-
tained from the fits at HERA. BPR model, on the other hand, is viewed as an exchange of two
non-perturbative pomerons with soft pomeron parameters as extracted by the Donnachie and
Landshoff [6].
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Fig. 1: Dijet mass fraction for jets pT > 10 GeV predicted by Factorized model for inclusive diffraction. The

uncertainty of the gluon density at high β is obtained by multiplying the gluon distribution by (1 − β)ν for different

values of ν = −1,−0.5, 0, 0.5, 1 (non-solid lines).

In Fig. 1, one can see the comparison of the CDF dijet mass fraction data with pminT =
10 GeV with the Factorized model for inclusive diffraction using the new parton densities [3].
The blue curve denotes the calculation performed with official PDFs whereas the other distri-
butions correspond to gluon density variations at high β for ν = −1,−0.5, 0, 0.5, 1. We note
that even taking into account the gluon uncertainties, one is unable to explain the tail of the
Rjj distribution and even though the data statistics is limited for a dijets with pT above 25 GeV,
the conclusion holds also. BPR model gives similar results; inclusive contribution by itself is
insufficient to describe the data.

Therefore, the exclusive Rjj distribution predicted by Khoze-Martin-Ryskin (KMR) [7]
exclusive model was added on top of the inclusive one, performing a fit of the two contributions
to the data. The model is based on the direct coupling of perturbative gluons to the protons.
As seen in Fig. 2, one can describe the measured CDF data well by superimposing FM and
KMR model. It is worth mentioning that the relative normalizations between the inclusive and
the exclusive contributions obtained from the fit for pminT = 10 GeV and pminT = 25 GeV jets
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Fig. 2: Dijet mass fraction for jets pT > 10 GeV (left) and pT > 25 GeV (left). Inclusive contribution (FM) and

exclusive contribution (KMR) are superimposed. We notice that the exclusive contribution allows to describe the tails

at high Rjj .

where consistent with each other. This allowed us to determine the relative normalization from
the Tevatron measurement and to apply it when making predictions of Rjj for the LHC. Let us
note that the other existing model for exclusive diffraction, the Bialas-Landshoff model (BL), is
disfavoured by the CDF data because it predicts to slow decrease of an exclusive dijet production
cross section as a function of the jet pT [8].

Beside the pomeron inspired models, we also investigated a prediction of the Soft color
interaction model (SCI) [9] which succesfully described number of HERA and Tevatron mea-
surements [10]. The model interprets diffraction as a consequence of a special color rearrange-
ment in the final state controlled by just one probabilistic parameter. For low pminT = 10 GeV
jet threshold, one needs to add exclusive production to describe the data similarly as in the case
of pomeron inspired models, whereas for pminT = 25 GeV the need of an additional contribution
to reproduce the data is not so evident. However, it is important to stress that the SCI signal
comes from the single diffraction events mainly and thus producing two protons in the final state
within this framework is almost impossible. Consequently, the SCI model fails to describe other
characteristics of the measurement like jet rapidity distributions and is therefore in disagreement
with CDF dijet data [8].

2 Dijet mass fraction at the LHC

Having fixed the relative normalization between the inclusive and exclusive production, we made
a prediction of dijet mass fraction at the LHC environment. The prediction of Rjj for jets with
pT above 400 GeV is shown in Fig. 3 (left). The exclusive contribution manifests itself as a
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Fig. 3: Left:dijet mass fraction at the LHC for jets pT > 400 GeV. Inclusive contribution (FM) and exclusive contri-

bution (KMR) are superimposed. The exclusive signal appears at high Rjj . Right: number of jet events as a function
of a jet threshold. The gluon uncertainty in the calculation can overshadow the signal due to the exclusive events.

peak toward high Rjj . Precise prediction of the dijet mass fraction distribution depends on
many peculiarities, e.g. parameters of the pomeron flux, pomeron structure function, or survival
probability factor. One of the important factors is the gluon density in the pomeron. Its tail at
high β can significantly influence the number of dijet diffractive events as demonstrated in Fig.
3 (right). The signal due to the exclusive production could be mimicked by the uncertainty on
the gluon. It is therefore desirable to perform QCD fits at the LHC to extract the pomeron parton
densities precisely in order to be able to distinguish the exclusive exclusive signal.
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Diffractive production of quarkonia
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Abstract
I discuss two selected examples of diffractive production of quarkonia:
pp → pη′p and pp → pJ/ψp. In the first case I consider diffrac-
tive pQCD approach and γγ fusion, in the second case the amplitude
is linked to the amplitude of the process for J/ψ photoproduction at
HERA. Absorption effects are discussed briefly for the second reac-
tion.

1 Introduction

Exclusive production of mesons was studied in details only at fixed target collisons at CERN. At
present, there is ongoing investigations at Tevatron aiming to measure the exclusive production
of both vector and scalar quarkonia, but no result is yet publicly available. Only an upper limit
for χc was given up to now [1].

There is a long standing debate about the nature of the pomeron. The approximate sin2(Φ)
(Φ is the azimuthal angle between outgoing protons) dependence observed experimentally for
pp→ ppη′ [2] was interpreted in Ref. [3] as due to (vector pomeron)-(vector pomeron)-(pseudo-
scalar meson) coupling. The QCD-inspired calculation for diffractive production of pseudoscalar
mesons was presented only recently in Ref. [4]. Here I shall present some results from that
analysis obtained within the pQCD approach of Khoze-Martin-Ryskin (KMR) [5].

Recently the J/ψ exclusive production in proton-proton and proton-antiproton collisions
was suggested as a candidate in searches for odderon exchange [6]. In order to identify the
odderon exchange one has to consider all other possible processes leading to the same final
channel. One of such processes, probably dominant, is pomeron-photon or photon-pomeron
fusion [7].

The diffractive photoproduction of J/ψ–mesons has been recently a subject of thorough
studies at HERA [8, 9], and serves to elucidate the physics of the QCD pomeron and/or the
small–x gluon density in the proton (for a recent review and references, see [10]). Being charged
particles, protons/antiprotons available at RHIC, Tevatron and LHC are a source of high energy
Weizsäcker–Williams photons. Those photons interact with the other nucleon. In some cases
such an interaction leads to elastical (ground state proton) production of J/ψ. In the approach
presented here the amplitude for the pp → ppJ/ψ reaction is related to the amplitude of the
photoproduction γp → J/ψp [7]. Such a method of calculating cross section is expected to be
much more precise than any QCD approach which does not refer to the ep HERA data.
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Fig. 1: The sketch of the bare QCD mechanism. The kinematical variables are shown in addition.

2 Diffractive production of η′

Following the formalism for the diffractive double-elastic production of the Higgs boson one can
write the amplitude from Fig.1 as

Mg∗g∗→η′
pp→pη′p = i π2

∫
d2k0,tV (k1, k2, PM )

foffg,1 (x1, x
′
1, k

2
0,t, k

2
1,t, t1)foffg,2 (x2, x

′
2, k

2
0,t, k

2
2,t, t2)

k2
0,t k

2
1,t k

2
2,t

, (1)

where f ′s are skewed unintegrated gluon distributions. For more details see [4].

As an example in Fig. 2 I show the results of calculations obtained with several models of
UGDF (for details see [4]) for relatively low energy W = 29.1 GeV. For comparison I show also
the contribution of the γ∗γ∗ fusion mechanism. The contribution of the last mechanism is much
smaller than the contribution of the diffractive QCD mechanism.

The diffractive and γ∗γ∗ contributions have very different dependence on four-momentum
transfers. In Fig.3 I present two-dimensional maps t1 × t2 of the cross section for the QCD
mechanism (KL UGDF) and the QED mechanism (Dirac terms only) for the Tevatron energy
W = 1960 GeV. If |t1|, |t2| > 0.5 GeV2 the QED mechanism is clearly negligible. However,
at |t1|, |t2| < 0.2 GeV2 the QED mechanism may become equally important or even dominant.
However, the details depend strongly on UGDFs.

Finally in Fig.4 I show energy dependence of the total cross section for the pp → pη ′p
reaction for different UGDFs. Quite different results are obtained for different UGDFs. The cross
section with the Kharzeev-Levin type distribution (based on the idea of gluon saturation) gives
the cross section which is relatively small and almost idependent of beam energy. In contrast, the
BFKL distribution leads to strong energy dependence. The sensitivity to the transverse momenta
of initial gluons can be seen by comparison of the two solid lines calculated with the Gaussian
UGDF with different smearing parameter σ0 = 0.2 and 0.5 GeV. The contribution of the γ∗γ∗

fusion mechanism (red dash-dotted line) is fairly small and only slowly energy dependent.
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Fig. 2: dσ/dxF as a function of Feynman xF for W = 29.1 GeV and for different UGDFs. The γ∗γ∗ fusion con-

tribution is shown by the dash-dotted (red) line (second from the bottom). The experimental data of the WA102

collaboration are shown for comparison. The dashed line corresponds to the KL distribution, dotted line to the GBW

distribution and the dash-dotted to the BFKL distribution. The two solid lines correspond to the Gaussian distribution
with details explained in the original paper. No absorption corrections were included here.

3 Photoproduction of J/ψ

The basic mechanisms leading to the exclusive production of J/ψ are shown in Fig.5. The
amplitude for the corresponding 2→ 3 process can be written as

Mλ1λ2→λ′1λ′2λV
h1h2→h1h2V

(s, s1, s2, t1, t2) =MγIP +MIPγ

= 〈p′1, λ′1|Jµ|p1, λ1〉ε∗µ(q1, λV )
√

4παem
t1

Mλγ∗λ2→λV λ2

γ∗h2→V h2
(s2, t2, Q

2
1)

+〈p′2, λ′2|Jµ|p2, λ2〉ε∗µ(q2, λV )
√

4παem
t2

Mλγ∗λ1→λV λ1

γ∗h1→V h1
(s1, t1, Q

2
2) .

(2)

After some algebra it can be written in the compact form:

M(p1,p2) = e1
2
z1

p1

t1
Fλ′1λ1

(p1, t1)Mγ∗h2→V h2(s2, t2, Q
2
1)

+e2
2
z2

p2

t2
Fλ′2λ2

(p2, t2)Mγ∗h1→V h1(s1, t1, Q
2
2) . (3)
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Fig. 3: Two-dimensional distribution in t1 × t2 for the diffractive QCD mechanism (left panel), calculated with the

KL UGDF, and the γ∗γ∗ fusion (right panel) at the Tevatron energy W = 1960 GeV. No absorption corrections were

included here.

The differential cross section is given in terms of M as

dσ =
1

512π4s2
|M |2 dydt1dt2dφ , (4)

where y is the rapidity of the vector meson, and φ is the angle between p1 and p2. Notice that
the interference between the two mechanisms γIP and IPγ is proportional to e1e2(p1 · p2) and
introduces a charge asymmetry as well as an angular correlation between the outgoing protons.

In Fig.6 I collect rapidity distributions for different energies relevant at RHIC, Tevatron
and LHC. One observes an occurence of a small dip in the distribution at midrapidities at LHC
energy. One should remember, however, that the distribution for the LHC energy is long-distance
extrapolation of the γ∗p→ J/ψp amplitude (or cross section) to unexplored yet experimentally
energies Wγp. Therefore a real experiment at Tevatron and LHC would help to constrain cross
sections for γp→ J/ψp process.

In Fig.7 I show two-dimensional distributions in rapidity and the azimuthal angle. Sur-
prisingly, the interference effect between both diagrams is significant over broad range of J/ψ
rapidity. One can see that even at large J/ψ rapidities one observes ansisotropic distributions in
the azimuthal angle. This means that interference between photon-pomeron and pomeron-photon
mechanisms survives up to large rapidities.

The parametrization of the γ∗p → V p amplitude which describes corresponding exper-
imental data (see [7]) includes effectively absorption effects due to final state V p interactions.
In the pp → ppJ/ψ (pp̄ → pp̄J/ψ) reaction the situation is more complicated as here pp (or
pp̄) strong rescatterings occur in addition. In Ref. [7] we have included only elastic rescatterings
shown schematically in Fig.8.

In order to demonstrate the effect of the absorption in Fig.9 I show the ratio of the cross
section with absorption to that without absorption as a function of t1 and t2, for pp̄ (left) and pp
(right). Generally, the bigger t1 and/or t2 the bigger the absorption. On average, the absorption
for the pp̄ reaction is smaller than the absorption for the pp reactions.
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Fig. 4: σtot as a function of center of mass energy for different UGDFs. The γ∗γ∗ fusion contribution is shown by the

dash-dotted (red) line. The world experimental data are shown for reference. No absorption corrections were included

here.
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Fig. 5: The sketch of the two mechanisms considered in the present paper: photon-pomeron (left) and pomeron-photon

(right). Some kinematical variables are shown in addition.
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Fig. 6: dσ/dy for exclusive J/ψ production as a function of y for RHIC, Tevatron and LHC energies. No absorption

corrections were included here.

Fig. 7: dσ/dydΦ for W = 1960 GeV and for pp̄ (left panel) and pp (right panel) collisions. No absorption corrections

were included here.

4 Summary

In contrast to diffractive Higgs production, in the case of ligh meson production the main contri-
bution to the diffractive amplitude comes from the region of very small gluon transverse momenta
and very small longitudinal momentum fractions. In this case application of Khoze-Martin-

A SZCZUREK

236



˜t1
h1

γ∗

1
(q̃2

1
)

V

˜t2
h2

EM

h1

h2

h1

h2

h1

h2

V

˜t1

˜t2

γ∗

2
(q̃2

2
)

EM

h2

h1h1

h2

Fig. 8: The sketch of the elastic rescattering amplitudes. Some kinematical variables are shown in addition.

Ryskin UGDFs seems not justified and we have to rely on UGDFs constructed for this region.

The existing models of UGDFs predict cross section much smaller than the one obtained
by the WA102 collaboration at the center-of-mass energy W = 29.1 GeV. This may signal pres-
ence of subleading reggeons at the energy of the WA102 experiment or suggest a modificaction
of UGDFs in the nonperturbative region of very small transverse momenta.

Due to a nonlocality of the loop integral our model leads to sizeable deviations from the
sin2 Φ dependence (predicted in the models of one-step fusion of two vector objects). The γ ∗γ∗

fusion may be of some importance only at extremely small four-momentum transfers squared.

It was shown in [7] that at the Tevatron energy one can study the exclusive production of
J/ψ at the photon-proton center-of-mass energies 70 GeV < Wγp < 1500 GeV, i.e. in the un-
measured region of energies, much larger than at HERA. At LHC this would be correspondingly
200 GeV< Wγp < 8000 GeV. At very forward/backward rapidities this is an order of magnitude
more than possible with presently available machines.

An interesting azimuthal-angle correlation pattern has been obtained due to the interfer-
ence of photon-pomeron and pomeron-photon helicity-preserving terms.

We have estimated also absorption effects. In some selected configurations the absorption
effects may lead to the occurence of diffractive minima. The exact occurence of diffractive
minima depends on the values of the model parameters. Such minima are washed out when
integrated over the phase space or even its part. We have found that on average the rescattering
effects in proton-antiproton reactions are much bigger than in proton-proton reactions. In this
case the obvious isospin violation is of electromagnetic origin due to the interference of diagrams
with photon exchange.
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Fig. 9: The ratio of the cross sections with absorption to that without absorption for pp̄ (left panel) and pp (right panel)

scattering. Here the integration over -1 GeV2 < t1, t2 < 0.0 and -1 < y < 1 is performed.
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Abstract
We summarize how the approach to the black–disk regime (BDR) of
strong interactions at TeV energies influences rapidity gap survival in
exclusive hard diffraction pp → p + H + p (H = dijet, Q̄Q,Higgs).
Employing a recently developed partonic description of such proces-
ses, we discuss (a) the suppression of diffraction at small impact pa-
rameters by soft spectator interactions in the BDR; (b) further suppres-
sion by inelastic interactions of hard spectator partons in the BDR;
(c) effects of correlations between hard and soft interactions, as sug-
gested by various models of proton structure (color fluctuations, spatial
correlations of partons). Hard spectator interactions in the BDR sub-
stantially reduce the rapidity gap survival probability at LHC energies
compared to previously reported estimates.

1 Introduction

At high energies strong interactions enter a regime in which cross sections are comparable to the
“geometric size” of the hadrons, and unitarity becomes an essential feature of the dynamics. By
analogy with quantum–mechanical scattering from a black disk, in which particles with impact
parameters b < Rdisk experience inelastic interactions with unit probability, this is known as the
black–disk regime (BDR). The approach to the BDR is well–known in soft interactions, where
it generally can be attributed to the “complexity” of the hadronic wave functions. It is seen
e.g. in phenomenological parametrizations of the pp elastic scattering amplitude, whose profile
function Γ(b) approaches unity at b = 0 for energies

√
s & 2 TeV. More recently it was realized

that the BDR is attained also in hard processes described by QCD, due to the increase of the gluon
density in the proton at small x. Theoretically, this phenomenon can be studied in the scattering
of a small–size color dipole (d ∼ 1/Q) from the proton. Numerical studies show that at

√
s ∼

few TeV the dipole–proton interaction is close to “black” up to Q2 ∼ several 10 GeV2 [1]. This
fact has numerous implications for the dynamics of pp collisions at the LHC, where multiple hard

† A preliminary version of this report was published in the proceedings of DIS07, Munich, 16–20 Apr. 2007,
arXiv:0708.3106 [hep-ph].

‡Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this
manuscript for U.S. Government purposes.
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interactions are commonplace. For example, it predicts dramatic changes in the multiplicities and
pT spectra of forward particles in central pp collisions compared to extrapolations of the Tevatron
data [2]. Absorption and energy loss of leading partons by inelastic interactions in the BDR can
also account for the pattern of forward pion production in d–Au collisions at STAR [3].

Particularly interesting is the question what the approach to the BDR implies for exclu-
sive hard diffractive scattering, pp → p + H + p. In such processes a high–mass system
(H = dijet, Q̄Q,Higgs) is produced in a hard process involving exchange of two gluons be-
tween the protons. At the same time, the spectator systems must interact in a way such as not to
produce additional particles. This restricts the set of possible trajectories in configuration space
and results in a suppression of the cross section compared to non-diffractive events. For soft
spectator interactions this suppression is measured by the so–called rapidity gap survival (RGS)
probability. Important questions are (a) what role the BDR plays in traditional soft–interaction
RGS; (b) how the physical picture of RGS is modified by hard spectator interactions in the BDR
at LHC energies; (c) how fluctuations of the strength of the pp interaction related to inelastic
diffraction influence RGS in hard diffractive processes; (d) how possible correlations between
hard and soft interactions affect RGS.

These questions can be addressed in a recently proposed partonic description of exclusive
diffraction [4], based on Gribov’s parton picture of high–energy hadron–hadron scattering. Ques-
tions (a) and (b) can be studied within this framework in a practically model–independent way.
They require only basic information about the strength of hard and soft interactions and their
impact parameter dependence, which is either known experimentally or can be obtained from
reasonably safe extrapolations of existing data to higher energies. Questions (c) and (d) require
more detailed assumptions about correlations in the partonic wavefunction of the proton, which
relate to less understood features of the pp interaction at high energies. We can address them
by implementing within the approach of Ref. [4] specific dynamical models of nucleon structure
(color fluctuations, transverse correlations between partons). Our studies of these questions are
of exploratory nature.

2 Black–disk regime in soft spectator interactions

A simple “geometric” picture of RGS is obtained in the approximation where hard and soft
interactions are considered to be independent [4]. The hard two–gluon exchange process can
be regarded as happening locally in space–time on the typical scale of soft interactions. In the
impact parameter representation (see Fig. 1a) the RGS probability can be expressed as

S2 =
∫
d2b Phard(b) |1− Γ(b)|2. (1)

Here Phard(b) is the probability for two hard gluons from the protons to collide in the same
space–time point, given by the overlap integral of the squared transverse spatial distributions of
gluons in the colliding protons, normalized to

∫
d2b Phard(b) = 1 (see Fig. 1b). The function

|1 − Γ(b)|2 is the probability for the two protons not to interact inelastically in a collision with
impact parameter b. The approach to the BDR in pp scattering at energies

√
s & 2 TeV implies

that this probability is practically zero at small impact parameters, and becomes significant only
for b & 1 fm (see Fig. 1b). This eliminates the contribution from small impact parameters in the
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Fig. 1: (a) Transverse geometry of hard diffractive pp scattering. (b) Dashed line: Probability for hard scattering
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√
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(We point out that the distributions shown in Fig. 8 of Ref. [4] correspond to a gluon t–slope Bg = 4 GeV−2, not

Bg = 3.24 GeV−2 as stated in the caption. The plot here shows the correct distributions for Bg = 3.24 GeV−2.)

integral (1) (see Fig. 1b) and determines the value of the RGS probability to be S 2 � 1. One sees
that the approach to the BDR in soft interactions plays an essential role in RGS at high energies.

3 Black–disk regime in hard spectator interactions

At LHC energies even highly virtual partons (k2 ∼ few GeV2) with x & 10−2 experience
“black” interactions with the small–x gluons in the other proton. This new effect causes an addi-
tional suppression of diffractive scattering which is not included in the traditional RGS probabil-
ity [4]. One mechanism by which this happens is the absorption of “parent” partons in the QCD
evolution leading up to the hard scattering process (see Fig. 2a). Specifically, in Higgs production
at the LHC the gluons producing the Higgs have momentum fractions x1,2 ∼MH/

√
s ∼ 10−2;

their “parent” partons in the evolution (quarks and gluons) typically have momentum fractions
of the order x ∼ 10−1 and transverse momenta k2

T ∼ few GeV2. Quantitative studies of the
BDR in the dipole picture show that at the LHC energy such partons are absorbed with near–unit
probability if their impact parameters with the other proton are ρ1,2 . 1 fm (see Fig. 2b). For
proton–proton impact parameters b < 1 fm about 90% of the strength in Phard(b) comes from
parton–proton impact parameters ρ1,2 < 1 fm (cf. Fig. 1a), so that this effect practically elimi-
nates diffraction at b < 1 fm. Since b < 1 fm accounts for 2/3 of the cross section [see Eq. (1)
and Fig. 1b)], and the remaining contributions at b > 1 fm are also reduced by absorption, we
estimate that inelastic interactions of hard spectators in the BDR reduce the RGS probability at
LHC energies to about 20% of its soft–interaction value.

In the above argument one must also allow for the possibility of trajectories with no gluon
emission. Mathematically, they correspond to the Sudakov form factor–suppressed δ(1−x)–term
in the evolution kernel. While such trajectories are not affected by absorption, their contributions
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are small both because of the Sudakov suppression, and because they effectively probe the gluon
density at the soft input scale, Q2

0 ∼ 1 GeV2. The probability for a gluon not to emit a gluon
when evolving from virtuality Q2

0 to Q2, is given by the square of the Sudakov form factor,

C =
[
SG(Q2/Q2

0)
]2 = exp

(
−3αs

π
ln2 Q

2

Q2
0

)
. (2)

At the same time, each of the parton densities in the trajectory without emissions is suppressed
compared to those with emissions by a factor g(x,Q2)/g(x,Q2

0), where Q2 ∼ 4 GeV2. The
overall relative suppression of trajectories without emission is thus by a factor

R = C2

[
g(x,Q2)
g(x,Q2

0)

]2

∼ 1
10
. (3)

Although this contribution is suppressed, it is comparable to that of average trajectories with
emissions because the latter are strongly suppressed by the absorption effect described above.
Combining the two, we find an overall suppression factor of the order ∼ 0.3. In order to make
more accurate estimates one obviously would need to take into account fluctuations in the number
of emissions more carefully. In particular, trajectories on which only one of the partons did not
emit gluons, which come with a suppression factor of

√
R, may give significant contributions.

The approach to the BDR in hard spectator interactions described here “pushes” diffractive
pp scattering to even larger impact parameters than are allowed by soft–interaction RGS (except
for the Sudakov–suppressed contribution discussed in the previous paragraph). This should man-
ifest itself in a shift of the final–state proton transverse momentum distribution to smaller values,
which could be observed in pT –dependent measurements of diffraction at the LHC.

The estimates reported here are based on the assumption that DGLAP evolution reasonably
well describes the gluon density down to x ∼ 10−6; the quantitative details (but not the basic
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picture) may change if small–x resummation corrections were to significantly modify the gluon
density at such values of x (see Ref. [5] and references therein). The effect of hard spectator
interactions described here is substantially weaker at the Tevatron energy.

4 Color fluctuations in the colliding protons

In the approximation where hard and soft interactions in the diffractive process are considered to
be independent, the RGS probability can be expressed through the pp elastic scattering amplitude,
and effects of inelastic diffraction do not enter into consideration, see Ref. [4] and the discussion
above. It is important to investigate how accurate this approximation is in practice, and how
correlations between hard and soft interactions modify the picture. Such correlations generally
arise from correlations between partons in the wave functions of the colliding protons, which
can be caused by several physical mechanisms, see Ref. [4] for a discussion. Here we focus on
one mechanism which is closely related to the presence of inelastic diffraction channels, namely
fluctuations of the size of the interacting configurations (color fluctuations). Our study of this
effect here is of exploratory nature; details will be reported in a forthcoming publication.

The basic idea is that in diffractive high–energy scattering the colliding hadrons can be
regarded as a superposition of configurations of different size, which are “frozen” during the
time of the interaction. In the well–known approach of Good and Walker [6] this is implemented
by expanding the incident hadron state in eigenstates of the T–matrix of the same quantum
numbers. A more general formulation uses the concept of the cross section distribution, P (σ),
which can be interpreted as the probability for the hadron to scatter in a configuration with given
cross section, with

∫
dσ P (σ) = 1 [7]. It is defined such that its average reproduces the total

cross section,

〈σ〉 ≡
∫
dσ σ P (σ) = σtot, (4)

while its dispersion coincides with the ratio of the differential cross sections for inelastic (pp→
p+X) and elastic (pp→ p+ p) diffraction at t = 0 [8],

ωσ ≡
〈σ2〉 − 〈σ〉2
〈σ〉2 =

dσinel

dt

/
dσel

dt

∣∣∣∣
t=0

. (5)

The dispersion and the third moment of P (σ) have been extracted from analysis of the pp and pd
data up to s ≈ 8× 102 GeV2; at higher energies the shape of the distribution is not well known.
Extrapolation of a parametrization of the Tevatron data [9] suggests that between the Tevatron
and LHC energy ωσ should drop by a factor ∼ 2, while at the same time the total cross section is
expected to grow, indicating that the relative magnitude of fluctuations decreases with increasing
energy (see Figs. 3a and b). Generally, one should expect that the different configurations in
diffractive scattering are characterized by a different parton density. In hard diffractive processes
pp → p + H + p this effect would then lead to a modification of the “independent interaction”
result for the RGS probability, Eq. (1).

The theoretical description of the role of cross section fluctuations in hard diffraction is a
complex problem, which requires detailed assumptions about the proton’s partonic wave func-
tion. Here we aim only for a simple phenomenological estimate, which illustrates the sign and
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Fig. 3: (a) Graphical representation of the cross section distributions in diffraction at the Tevatron and LHC energy.

The area of the inner and outer disk at given energy is proportional to (1 ± √ωσ)〈σ〉, i.e., the average area repre-

sents the average cross section 〈σ〉 = σtot, the difference (ring) the range of the fluctuations ±√ωσ〈σ〉. (b) The
s–dependence of the total cross section σtot (left y–axis) and the dispersion ωσ (right y–axis), as predicted by a

Regge–based parametrization of σtot [10] and a parametrization of the inelastic diffractive cross section dσinel/dt|t=0,

measured up to the Tevatron energy [9]. The weak energy dependence of the width of the ring in figure (a) reflects the

slow variation of the diffractive cross section with energy.

order–of–magnitude of the effect, as well as its energy dependence. Our basic assumption is that
the strength of interaction in a given configuration is proportional to the transverse area occupied
by color charges. To implement this idea, we start from the cross section distribution P (σ) at
fixed–target energies (s . 8× 102 GeV2), which can be related to the fluctuations of the size of
the basic “valence quark” configuration in the proton wave function and is known well from the
available data [7]. We then assume that

(a) The parton density is correlated with the parameter σ characterizing the size of the inter-
acting configuration. One simple scenario is to assume that the parton density changes
with the size of the configuration only through its dependence on the normalization scale,
µ2 ∝ R−2

config ∝ σ. This is analogous to the model of the EMC effect of Ref. [11], and
leads to a simple scaling relation for the σ–dependent gluon density,

g(x,Q2 |σ) = g(x, ξQ2), ξ(Q2) ≡ (σ/〈σ〉)αs(Q2
0)/αs(Q2) , (6)

where Q2
0 ∼ 1 GeV2. In Higgs boson production one expects Q2 ≈ 4 GeV2, and x =

MH/
√
s = 0.007 (LHC), 0.05 (Tevatron) with MH = 100 GeV. An alternative scenario

— the constituent quark picture — will be discussed below.
(b) The size distribution in soft high–energy interactions is correlated with the parameter σ

characterizing the valence quark configuration. As a minimal model we assume that soft
interactions in a configuration with given σ are described by a profile function of the form

Γ(b, s |σ) = exp
[
− 2πb2

σtot(s, σ)

]
, with σtot(s, σ) = α(s) + β(s)

σ

〈σ〉 , (7)
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in which the parameters α(s) and β(s) are chosen such as to reproduce the average cross
section and dispersion of the high–energy cross section distribution (see Fig. 3a and b)
when averaging over the (given) σ distribution P (σ). Note that the profile in Eq. (7) ap-
proaches the black–disk limit at b→ 0, and that the average elastic profile 〈Γ(b, s |σ)〉 ob-
tained in this way is very close to that found in the standard phenomenological parametriza-
tions of the pp elastic and total cross section data. More sophisticated parametrizations
could easily be constructed but would not change our qualitative conclusions.

With assumptions (a) and (b) we can estimate the effect of color fluctuations in the protons in
hard diffraction in a simple way. In the presence of correlations between the parton density and
the strength of soft interactions, the RGS probability is now given by

S2
corr =

∫
d2b

〈
Phard(b |σ) |1− Γ(b, s |σ)|2

〉
, (8)

where Phard(b |σ) is the normalized impact parameter distribution for the hard process obtained
with the σ–dependent gluon density Eq. (6), and 〈. . .〉 denotes the average over the σ distribution.
This should be compared to the RGS probability without correlations,

S2
uncorr =

∫
d2b

〈
Phard(b |σ)

〉〈
|1− Γ(b, s |σ)|2

〉
, (9)

which corresponds to the expression obtained previously in the approximation of independent
hard and soft interactions, Eq. (1), if we identify the functions there with the average distribu-
tions.1 For a quantitative estimate, we first consider fluctuations of the interacting configurations
in only one of the colliding protons, leaving the other protons unchanged. In this case we obtain

S2
corr − S2

uncorr

S2
uncorr

= −0.15 at
√
s = 2 TeV (Tevatron). (10)

If one could consider the fluctuation effect as a small correction, the total effect would be additive
and thus proportional to the number of protons, i.e., Eq. (10) would have to be multiplied by 4,
corresponding to the two protons in both the amplitude and the complex-conjugate amplitude in
the cross section. While the magnitude of the correction Eq. (10) does not really justify such ad-
ditive treatment, we can at least to conclude that the overall effect from correlations in this model
should be a reduction of the RGS probability by ∼ 1/2. Note that the sign of the correlation
effect simply reflects the fact that smaller configurations, which have higher transparency and
thus larger survival probability, have a lower density of small–x partons in model adopted here.

Our treatment of color fluctuations here assumes that the basic picture of independent hard
and soft interactions in RGS is still valid, and that the fluctuations can be incorporated by way
of an “external” parameter controlling the size of the interacting configurations. As explained
above (Sec. 3) and in Ref. [4], this assumption breaks down at the LHC energy, where hard
spectator interactions approach the BDR. The correction described here thus should be valid at

1Note that there are small differences between the functional forms of the σ–averaged distributions in Eq. (9) and
the original (σ–independent) distributions used previously in evaluating Eq. (1). This is only the result of imperfect
modeling of the σ–dependent distributions and immaterial for the physical correlation effect discussed here.
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RHIC and Tevatron energies but not at the LHC. In particular, this can be seen in the fact that the
correlation effect of Eq. (10) is obtained from modification of the impact parameter distribution
of hard diffraction at b . 1 fm, where we expect hard spectator interactions to be “black” at
the LHC, see Sec. 3. Thus, corrections from inelastic diffractive channels of the kind discussed
here play a minor role at the LHC energy. This is a welcome conclusion, as it means that our
predictions for the RGS probability at the LHC are not substantially modified by such corrections.

The numerical estimate of correlation effects reported here was obtained with the assump-
tion that the gluon density in the interacting configurations scales with the size of the configu-
ration as in Eq. (6). Physically, this corresponds to the assumption that the valence quark con-
figuration in the proton acts coherently as source of the gluon field, and that there are no other
physical scales in the proton besides the size of that configuration. This is clearly an extreme
scenario and does not take into account the physical scales generated by the non-perturbative
vacuum structure of QCD. An alternative scenario would be a constituent quark picture, in which
the normalization scale of the gluon density is determined by the “size” of the constituent quark
(related to the spontaneous breaking of chiral symmetry) and not related to the size of the multi–
quark configuration in the nucleon. For this picture the relation between the gluon density and the
size of the interacting configuration would be very different from Eq. (6). It leads to a different
kind of correlation between hard and soft interactions, see Ref. [4] and Section 5 below.

5 Transverse spatial correlations between partons

R

r

uncorrelated correlated

Fig. 4: Transverse parton correlations.

The partonic approach to RGS of Ref. [4] also allows
one to incorporate effects of correlations in the partonic
wavefunction of the protons. They can lead to corre-
lations between hard and soft interactions in diffrac-
tion, which substantially modify the picture of RGS
compared to the independent interaction approximation.
The analysis of the CDF data on pp̄ collisions with mul-
tiple hard processes indicate the presence of substantial
transverse correlations between partons with x & 0.1
[1]. Such correlations naturally arise in a constituent
quark picture of the nucleon with rq � R (see Fig. 4).

It is interesting that the observed enhancement of the cross section due to correlations seems to
require rq/R ∼ 1/3, which is the ratio suggested by the instanton vacuum model of chiral sym-
metry breaking (see Ref. [12] for a review). Such correlations modify the picture of RGS in hard
diffractive pp scattering compared to the independent interaction approximation in two ways [4].
On one hand, with correlations inelastic interactions between spectators are much more likely in
configurations in which two large–x partons collide in a hard process than in average configura-
tions, reducing the RGS probability compared to the uncorrelated case. On the other hand, the
“lumpiness” implies that there is generally a higher chance for the remaining spectator system
not to interact inelastically compared to the mean–field approximation. A quantitative treatment
of correlations in RGS, incorporating both effects, remains an outstanding problem.

L FRANKFURT, C.E HYDE, M. STRIKMAN, C. WEISS

246



6 Summary

The approach to the BDR at high energies profoundly influences the physics of RGS in exclu-
sive diffractive scattering. The onset of the BDR in soft spectator interactions at

√
s & 2 TeV

eliminates diffractive scattering at small impact parameters and determines the basic order–of–
magnitude of the RGS probability at the Tevatron and LHC. At LHC energies, the BDR in hard
spectator interactions pushes diffractive scattering to even larger impact parameters and further
reduces the RGS probability by a factor of 3 (likely more, 4–5), implying that S 2 < 0.01, much
smaller than initial estimates reported in the literature, see Ref. [4] and references therein. At
the same time, this effect reduces the relative importance of color fluctuations related to inelas-
tic diffraction, making our theoretical predictions of the RGS probability more robust. At the
Tevatron energy, we have seen that color fluctuations lower the RGS probability compared to the
approximation of independent hard and soft interactions. The simple model estimate presented
in Sec. 5 suggests reduction by a factor of the order 1/2; however, more refined estimates are
certainly needed. Finally, spatial correlations between partons are likely to modify the picture
of RGS both at the Tevatron and the LHC energy; a detailed study of this effect would be of
principal as well as of considerable practical interest.

The total RGS probability is an “integral” quantity, which combines contributions from
very different trajectories of the interacting pp system. It is also difficult to determine experi-
mentally, as its extraction requires precise knowledge of the cross section of the hard scattering
process (gluon GPD, effective virtualities, etc.). Much more detailed tests of the diffractive re-
action mechanism can be performed by studying the transverse momentum dependence of the
diffractive cross section, which can be interpreted without knowledge of the hard scattering pro-
cess. In particular, the predicted onset of the BDR in hard interactions between the Tevatron and
LHC energy (Sec. 3) should cause substantial narrowing of the pT distribution, which could be
observed experimentally. At RHIC and Tevatron energies, the correlation effects described in
Sec. 5 imply that the pT distribution is narrower than predicted by the independent interaction
approximation, allowing one to test this picture experimentally. This underscores the importance
of planned transverse momentum–dependent measurements of diffraction at RHIC and LHC.
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Pomeron intercept and slope: the QCD connection

Konstantin Goulianos
The Rockefeller University, 1230 York Avenue, New York, NY 10065-6399, USA

Abstract
We present a model for the ratio of intercept to slope of the Pomeron
trajectory as measured from elastic, diffractive and total cross sections.

1 Regge approach to diffraction

Hadronic diffraction has traditionally been treated in the framework of Regge theory [1–3].
In this approach, the key player mediating diffractive processes is the Regge trajectory of the
Pomeron, presumed to be formed by a family of particles carrying the quantum numbers of the
vacuum. Although no particles were known (and have yet to be found!) to belong to this family,
the Pomeron trajectory was introduced in the 1970s to account for the observations that the K+p
cross section was found to be increasing with energy at the Serpukov 70 GeV (

√
s = 11.5 GeV

for pp collisions) proton synchrontron, and the elastic and total pp cross sections, which at low
energies were falling with increasing energy, started to flatten out and then rose with energy as
collision energies up to

√
s=60 GeV became available at the Intersecting Storage Rings (ISR) at

CERN.

In the Regge approach, high energy cross sections are dominated by Pomeron exchange.
For pp interactions, the Pomeron exchange contribution to total, elastic, and single diffractive
cross sections is given by

σtot(s) = β2
IPpp(0)

(
s

s0

)αIP (0)−1

(1)

dσel(s, t)
dt

=
β4
IPpp(t)
16π

(
s

s0

)2[αIP (t)−1]

(2)

d2σsd(s, ξ, t)
dξdt

=
β2
IPpp(t)
16π

ξ1−2αIP (t)

︸ ︷︷ ︸
fIP/p(ξ,t)

βIPpp(0) g(t) (
s

s◦
)αIP (0)−1

︸ ︷︷ ︸
σIPp(sξ,t)

, (3)

where αIP (t) = αIP (0) + α′t = (1 + ε) + α′t is the Pomeron trajectory, βIPpp(t) the coupling
of the Pomeron to the proton, g(t) the IPIPIP coupling, s′ = M2 the IP -p center of mass energy
squared, ξ = 1− xF = s′/s ≈M2/s the fraction of the momentum of the proton carried by the
Pomeron, and s0 an energy scale parameter traditionally set to the hadron mass scale of 1 GeV2.
The single diffractive cross section, Eq. (3), factorizes into two terms, the one on the right which
can be viewed as the IP -p total cross section, and the other labeled fIP/p(ξ, t), which may be
interpreted as the Pomeron flux emitted by the diffracted proton [4].

Regge theory worked reasonably well in describing elastic, diffractive and total hadronic
cross sections at energies of up to

√
s ∼ 60 GeV, with all processes accommodated in a simple
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Pomeron pole approach, as documented in Ref. [5]. Results from a Rockefeller University ex-
periment on photon dissociation on hydrogen published in 1985 [6] were also well described by
this approach.

The early success of Regge theory, however, was precarious. The theory was known to
asymptotically violate unitarity, as the ∼ sε power law increase of total cross sections would
eventually exceed the Froissart bound of σT < π

m2
π
· ln2 s based on analyticity and unitarity. But

the confrontation with unitarity came at much lower energies than what would be considered
asymptopia by Froissart bound considerations. As collision energies climbed upwards in the
1980s to reach

√
s = 630 GeV at the CERN Sp̄pS collider and

√
s = 1800 GeV at the Fermilab

Tevatron p̄p collider, diffraction dissociation could no longer be described by Eq. (3), signaling
a breakdown of factorization.

The first clear experimental evidence for a breakdown of factorization in Regge theory
was reported by the CDF Collaboration in 1994 [7]. In a measurement of the single diffractive
cross section in p̄p collisions at

√
s =546 and 1800 GeV CDF found a suppression factor of

∼ 5 (∼ 10) at
√
s =546 GeV (1800 GeV) relative to predictions based on extrapolations from√

s ∼20 GeV.

2 Scaling properties and renormalization of diffraction

The breakdown of factorization in Regge theory was traced back to the expected energy de-
pendence of the single diffractive cross section, σtotsd (s) ∼ s2ε, which is faster than that of the
total cross section, σtot(s) ∼ sε, so that as s increased unitarity would have to be violated if
factorization held. This is reflected in the s2ε dependence of dσsd(M2, t)/dM 2|t=0:

Regge theory: dσsd(M2, t)/dM |2t=0 ∼ s2ε/(M2)1+ε. (4)

In a paper first presented by this author in 1995 at the La Thuile [8] and Blois [9] winter
conferences and later published in Phys. Lett. B [10], it was shown that unitarization could be
achieved, and the factorization breakdown in single diffraction fully accounted for, by interpret-
ing the Pomeron flux of Eq. (3) as a probability density and renormalizing its integral over ξ and
t to unity,

fIP/p(ξ, t)⇒ N−1
s · fIP/p(ξ, t), Ns ≡

∫ ξ(max)

ξ(min)
dξ

∫ −∞

t=0
dt fIP/p(ξ, t) ∼ s2ε/ ln s, (5)

where ξ(min) = M 2
0 /s, with M 2

0 = 1.4 GeV2 being the effective threshold for diffraction dis-
sociation, and ξ(max) = 0.1. The s-dependence introduced into the Pomeron flux through the
renormalization factor N−1

s replaces the power law factor s2ε in Eq. (4) with ln s ensuring unita-
rization. In Fig. 1, σtotsd (s) is compared with Regge predictions using the standard or renormalized
Pomeron flux. The renormalized prediction is in excellent agreement with the data.

The elastic and total cross sections are not affected by this procedure. Unitarization may be
achieved in these cases by using the eikonal approach, e.g. as reported in Ref. [11], where
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Fig. 1: Total pp/p̄p single diffraction dissociation cross section data ( both p̄ and p sides) for ξ < 0.05 compared

with predictions based on the standard and the renormalized Pomeron flux [10].

excellent agreement is obtained between elastic and total cross section data and predictions based
on Regge theory and eikonalization.

An important aspect of renormalization is that it leads to an approximate scaling behavior,
whereby dσsd(M2)/dM2 has no power law dependence on s. This ‘scaling law’ holds for the
differential soft single diffractive cross section as well, as shown in Fig. 2 [12].

14   GeV    (0.01  < ξ < 0.03)

20   GeV    (0.01  < ξ < 0.03)

546  GeV   (0.005 < ξ < 0.03)

1800 GeV  (0.003 < ξ < 0.03)

1____

(M2)1+∆
.....

←_____ 546 GeV   std.
flux prediction

← 1800 GeV  std.
flux prediction

∆ = 0.05 ________→
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renorm. flux
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|↑

Fig. 2: Cross sections d2σsd/dM
2dt for p+ p(p̄)→ p(p̄) +X at t = −0.05 GeV2 and

√
s = 14, 20, 546 and 1800

GeV. Standard (renormalized) flux predictions are shown as dashed (solid) lines. At
√
s=14 and 20 GeV, the fits using

the standard and renormalized fluxes coincide [12].
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3 Parton model approach to diffraction

The Regge theory form of the rise of the total pp/p̄p cross section at high energies, σ totpp/p̄p(s) =
σ0 · sε, which requires a Pomeron trajectory with intercept α(0) = 1 + ε, is precisely the form
expected in a parton model approach, where cross sections are proportional to the number of
available “wee” (lowest energy) partons: σtotpp/p̄p = N × σ0, where N is the flux of wee partons
and σ0 the cross section of one wee parton with the target proton (see Ref. [13]). The wee partons
originate from emissions of single partons cascading down to lower energy partons in tree-like
chains. The average spacing in (pseudo)rapidity1 between two successive parton emissions is
∼ 1/αs. This spacing governs the wee parton density in the region of particle production, ∆η ′ =
ln s, leading to a total pp cross section of the form

σtotpp/p̄p = σ0 · eε∆η
′
. (6)

Since from the optical theorem σtotpp/p̄p is proportional to the imaginary part of the forward (t = 0)
elastic scattering amplitude, the full parton model amplitude may be written as

Im fel
pp/p̄p(t,∆η) ∼ e(ε+α′t)∆η, (7)

where α′(t) is added as a simple parameterization of the t-dependence.

The parameter α′ reflects the transverse size of the cluster of wee partons in a chain, which
is governed by the ∆η spacing between successive chains, and therefore must be related to the
parameter ε. For the relationship between α′ and ε, we turn to single diffraction, which through
the coherence requirement isolates the cross section from one wee parton interacting with the
proton, since all possible interaction of other wee partons are shielded by the formation of the
diffractive rapidity gap.

Based on the above amplitude, the single diffractive cross section is expected to have the
form

d2σsd(s,∆η, t)
dt d∆η

=
1

Ngap(s)
· Cgap · F 2

p (t)
{
e(ε+α′ t)∆η

}2

︸ ︷︷ ︸
Pgap(∆η,t)

· κ ·
[
σ0 e

ε∆η′
]
, (8)

where, from right to left, the factor in square brackets represents the cross section due to the
partons in the region of particle production, ∆η ′ = ln s-∆η, κ is a QCD color factor selecting
color singlet di-gluon or qq̄ exchanges to form the rapidity gap, Pgap(∆η, t) is a gap probability
factor representing the scattering between the cluster of dissociation particles and the surviving
proton - with Fp(t) being the proton form factor and Cgap a constant, and Ngap(s) is the integral
of the gap probability over all phase space in t and ∆η. As ∆η = − ln ξ, the form of Eq. (8) is
identical to the Regge form of Eq. (3).

3.1 The ratio r = α′/ε

In terms of M 2, Eq. (8) takes the form

d2σ(s,M2, t)
dM2dt

=

[
σpp0

16π
σIPp0

]
s2ε

N(s)
1

(M2)1+ε e
bt s→∞→

[
2α′ e

εb0
α′ σIPp0

]
ln s2ε

(M2)1+ε e
bt

︸ ︷︷ ︸
b=b0+2α′ ln s

M2

. (9)

1We assume pT = 1 GeV, so that ∆y′ = ∆η′.
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Integrating this expression over M 2 and t yields the total single diffractive cross section,

σsd
s→∞→ 2σIPp0 e

ε b0
2α′ = σ∞sd= constant. (10)

The remarkable property that the total single diffractive cross section becomes constant
as s → ∞ is a direct consequence of the coherence required for the recoil proton to escape
intact, which results in selecting one out of the many possible wee partons available for interac-
tion, while another parton provides the color shield to form the diffractive rapidity gap. Since
diffraction selects the interaction of one of the partons of the outgoing proton, the constant σ ∞sd
is identified as the σ0 of Eq. (6), which is specific to the dissociating particle, in this case the
proton, and therefore equals σpp0 . We thus have

2σIPp0 e
ε b0
2α′ = σpp0 , (11)

which is the sought after relationship between ε and α ′ in terms of constants which can be
deduced from fundamental QCD parameters through the relationships

σIPp0 = βIPpp(0) · g(t) = κσpp0 (12)

κ = f∞g
N2
c−1 + f∞q

Nc
(13)

b0 = R2
p/2 = 1/(2m2

π), (14)

where the color factor κ is expressed in terms of the gg and qq̄ color factors weighted by the
corresponding gluon and quark fractions, and Rp is the radius of the proton expressed in terms
of the pion mass, mπ. Inserting these parameters in Eq. (10) yields

r =
α′

ε
= −[16m2

π ln(2k)]−1. (15)

Numerically, using mπ = 0.14 GeV and κ = 0.18, as respectively obtained for gluon and quark
fractions of f∞g = 0.75 and f∞q = 0.25 (see Ref. [14]), yields r = 3.14 - which coincidentally
is equal to π! This result is in excellent agreement with the ratio calculated from the values of
ε = 0.08 and α′ = 0.25 GeV−2 for the soft Pomeron trajectory obtained from fits to experimental
data of total and elastic pp and p̄p cross sections for collision energies up to

√
s =540 GeV,

rexp = 0.25/0.08 = 3.13 [15]. The smaller value of r obtained from the global fit of Ref. [11] to
pp, p̄p, π±p, and K±p cross sections, r = 0.26/0.104 = 2.5, could be attributed to the increase
of the intercept due to the additional radiation from hard partonic exchanges at higher energies,
as for example in the two-Pomeron model of Ref. [16].

4 Summary

In a QCD based parton model approach to elastic, diffractive, and total cross sections, interactions
occur through the emission of partons, which cascade down to wee partons in chains of tree-like
configurations. As the spacing between successive emissions is controlled by the strong coupling
constant, the total cross section, which is proportional to the number of wee partons produced,
assumes a power law behavior similar to that of Regge theory, thereby relating the Pomeron
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intercept to the underlying parton distribution function. The transverse size of the cluster of
wee partons in a chain originating from one emission, which is the source of the parameter
α ′, depends on the distance in rapidity of the next emission and thereby on the parameter ε.
Exploiting single diffraction, which through the coherence requirement isolates a chain from
a single parton emission, a relationship between ε and α ′ is obtained, which is in excellent
agreement with experimental values.
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Exclusive J/ψ and Υ hadroproduction as a probe of the QCD
Odderon∗
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Abstract
We study the exclusive production of J/ψ or Υ in pp and p̄p colli-
sions, where the meson emerges from the pomeron–odderon and the
pomeron–photon fusion. We estimate the cross sections for these pro-
cesses for the kinematical conditions of the Tevatron and of the LHC.

1 Introduction

The new analysis of exprimental data on the exclusive hadroproduction processes by the CDF
collaboration [1] shows that these types of processes can be objects of detailed study at the
Tevatron and in the near future at the LHC. Up to now, the most intensively studied exclusive
hadroproduction processes include the dijet or the γγ production in the central rapidity region
and the Higgs meson production [2], see Fig. 1. Here, we discuss the exclusive hadroproduction
of J/Ψ and Υ mesons, i.e.

pp (p̄) → p′ V p′′ (p̄′′ ) , where V = J/ψ, Υ . (1)

The main motivation of our recent study [3] of the process (1) is that the production of a char-
monium V , with the quantum numbers JPC = 1− −, occurs as the result of a pomeron-odderon
or pomeron-photon fusion. Such studies can thus probe the dynamics of the odderon [4], i.e.
the counterpart with negative charge parity of the pomeron. Odderon escapes experimental ver-
ification and until now has remained a mystery, although various ways to detect it through its
interference with a pomeron mediated amplitude [5] have been recently proposed (for a review
see [6]).

2 The scattering amplitude

In the lowest order of perturbative QCD, the pomeron and the odderon are described by the
exchange of two and three non-interacting gluons, respectively. The lowest order contribution to
the hadroproduction

h(pA) + h(pB)→ h(pA′) + V (p) + h(pB′) (2)

is illustrated by diagrams of Fig. 2, from which the diagrams (a,b) describe the pomeron-odderon
fusion and (c,d) the photon-pomeron fusion. The momenta of particles are parametrized by the
Sudakov decompositions

pA′ = (1− xA)pA +
lll2

s(1− xA)
pB − l⊥ , pB′ =

kkk2

s(1− xB)
pA + (1− xB)pB − k⊥ , (3)

∗Dedicated to the memory of Leszek Łukaszuk, co-father of the odderon, who recently passed away.
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Fig. 1: Kinematics of the exclusive meson production in pp (pp̄) scattering.

a)

1

1 2 3

2

2 21

p

p

k

l l

k k

1 2

3 1 2

b)

1 2
p

k

l3

3

k

l l21

2 1 2

p
1 2

21

c)

21

p

p
2

1

1

2
~

d)

p

p

~

1 2

1 2

1 2

Fig. 2: The lowest order diagrams contributiong to the pomeron-odderon fusion (a,b) and the pomeron–photon fusion

(c,d) for vector meson production.

with lll2 = −l⊥ · l⊥ ≈ −(pA − pA′)2 ≡ −tA, kkk2 = −k⊥ · k⊥ ≈ (pB − pB′)2 ≡ −tB and

p = αppA + βppB + p⊥

αp = xA −
kkk2

s(1− xB)
≈ xA , βp = xB −

lll2

s(1− xA)
≈ xB , p⊥ = l⊥ + k⊥ , (4)

which lead to the mass-shell condition for the vector meson, V = J/ψ,Υ,
m2
V = sxAxB − (lll + kkk)2 .

The scattering amplitude written within the k⊥-factorization approach is a convolution in trans-
verse momenta of t−channel fields. For instance, the contribution of Fig. 2a reads:

MP O = (5)

−is 2 · 3
2! 3!

4
(2π)8

∫
d2lll1
lll21

d2lll2
lll22

δ2(lll1 + lll2 − lll)
d2kkk1

kkk2
1

d2kkk2

kkk2
2

d2kkk3

kkk2
3

δ2(kkk1 + kkk2 + kkk3 − kkk)

×δ2(kkk3 + lll1)kkk2
3 δ

λ1κ3 · Φλ1λ2
P (lll1, lll2) · Φκ1κ2κ3

P (kkk1, kkk2, kkk3) · Φλ2κ1κ2

J/ψ (lll2, kkk1, kkk2) ,

where Φλ1λ2
P (lll1, lll2) and Φκ1κ2κ3

P (kkk1, kkk2, kkk3) are the impact factors describing the coupling of the
pomeron and the odderon to scattered hadrons, respectively, whereas Φλ2κ1κ2

J/ψ (lll2, kkk1, kkk2) is the
effective J/ψ-meson production vertex.

The proton impact factors are non-perturbative objects and we describe them within the Fukugita-
Kwieciński eikonal model [7]. For the pomeron exchange the impact factor of the proton is the
product

Φλ1λ2
P (lll1, lll2) = 3 Φλ1λ2

q (lll1, lll2) FP (lll1, lll2) , (6)
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of the impact factor of a quark

Φλ1λ2
q (lll1, lll2) = −ᾱs · 8π2 · δ

λ1λ2

2Nc
, (7)

and the phenomenological form-factor FP describing the proton internal structure

FP (lll1, lll2) = F (lll1 + lll2, 0, 0) − F (lll1, lll2, 0) , (8)

which vanishes when any of llli → 0, as required by colour gauge invariance. The function
F (kkk1, kkk2, kkk3) is chosen in the form

F (kkk1, kkk2, kkk3) =
A2

A2 + 1
2 ((kkk1 − kkk2)2 + (kkk2 − kkk3)2 + (kkk3 − kkk1)2)

, (9)

with A a phenomenological constant chosen to be half of the ρ meson mass, A = mρ/2 ≈
384 MeV. The analogous impact-factor for the odderon exchange reads

Φκ1κ2κ3
P (kkk1, kkk2, kkk3) = 3 Φκ1κ2κ3

q (kkk1, kkk2, kkk3)FO(kkk1, kkk2, kkk3) , (10)

where
Φκ1κ2κ3
q (kkk1, kkk2, kkk3) = i ᾱ

3
2
s 25 π

7
2
dκ3κ2κ1

4Nc
, (11)

and the form-factor FO has a form

FO(kkk1, kkk2, kkk3) = F (kkk = kkk1 + kkk2 + kkk3, 0, 0) −
3∑

i=1

F (kkki, kkk − kkki, 0) + 2 F (kkk1, kkk2, kkk3) . (12)

The derivation of the effective production vertex of J/ψ, Φλ2κ1κ2

J/ψ (lll2, kkk1, kkk2), in Eq. (5) is one of
the main results of our study. The charmonium is treated in the non-relativistic approximation
and it is described by the c̄c→ J/ψ vertex

〈c̄ c|J/ψ〉 =
gJ/ψ

2
ε̂ ∗(p)

(
p · γ +mJ/ψ

)
, mJ/ψ = 2mc , (13)

with the coupling constant gJ/ψ related to the electronic width ΓJ/ψ
e+e− of the J/ψ → e+ e− decay

gJ/ψ =

√
3mJ/ψΓJ/ψ

e+e−

16πα2
emQ

2
c

, Qc =
2
3
. (14)

The effective vertex g + 2g → J/ψ is described by the sum of the contributions of the diagrams
in Fig. 3 which has the form

Φλ2κ1κ2

J/ψ (lll2, kkk1, kkk2) = α
3
2
s 8π

3
2
dκ1κ2λ2

Nc
VJ/ψ(lll2, kkk1, kkk2),

VJ/ψ(lll2, kkk1, kkk2) = (15)

4πmcgJ/ψ


− xBε

∗ · pB + ε∗ · l2⊥
lll22 + (kkk1 + kkk2)2 + 4m2

c

+
ε∗ · l2⊥ + ε∗ · pB

(
xB − 4kkk1·kkk2

sxA

)

lll22 + (kkk1 − kkk2)2 + 4m2
c


 .
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Fig. 3: The six diagrams defining the effective vertex g + 2g → J/ψ.

In the numerical analysis we set αs(mc) = 0.38 and αs(mb) = 0.21.

The analogous formula which describes the photon-pomeron fusion in Fig. 2c has the form

Mγ P = (16)

− 1
2!
· s · 4

(2π)4 lll2
Φγ
P (lll)

∫
d2kkk1

kkk2
1

d2kkk2

kkk2
2

δ2(kkk1 + kkk2 − kkk) Φκ1κ2
P (kkk1, kkk2) Φ̃κ1κ2

J/ψ (lll, kkk1, kkk2) ,

where Φγ
P (lll) is the phenomenological form-factor of the photon coupling to the proton chosen

as Φγ
P (lll) = −ie · F (lll, 0, 0). The pomeron impact factor Φκ1κ2

P (kkk1, kkk2) is given by Eq. (6)
and Φ̃κ1κ2

J/ψ (lll, kkk1, kkk2) is the corresponding effective vertex expressed through VJ/ψ(lll, kkk1, kkk2) in
Eq. (15)

Φ̃κ1κ2

J/ψ (lll, kkk1, kkk2) = αs eQc 8π
δκ1κ2

Nc
VJ/ψ(lll, kkk1, kkk2) . (17)

The phases of the scattering amplitudes describing the two mechanisms of J/ψ-meson produc-
tion differ by the factor i = eiπ/2. Consequently, they do not interfere and they contribute to the
cross section as a sum of two independent contributions.

3 Estimates for the cross sections

We analyse the contributions of pomeron-odderon fusion and the photon-pomeron fusion sepa-
rately. DenotingMtot

PO =MPO+MOP andMtot
γP =MγP +MPγ we calculate the differential

cross sections with respect to the rapidity y ≈ 1
2 log(xA/xB), the squared momentum transfers

in the two t-channels, tA, tB , and the azimuthal angle φ between kkk and lll

dσ
(ε)
i

dy dtA dtB dφ
=

1
512π4s2

|Mtot
i |2 i = PO, γP , (18)

and the partially integrated cross sections

dσi
dy

=
∑

ε

∫ tmax

tAmin

dtA

∫ tmax

tBmin

dtB

∫ 2π

0
dφ

dσ
(ε)
i

dy dtA dtB dφ
, (19)

with tAmin = 0 = tBmin for the PO-fusion and tAmin = m2
px

2
A, tBmin = m2

px
2
B for the γP -fusion,

and we set tmax = 1.44 GeV2. This leads to the naive predictions shown in the Table 1. More
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dσ/dy J/ψ Υ
odderon photon odderon photon

pp̄ 20 nb 1.6 nb 36 pb 1.1 pb
pp 11 nb 2.3 nb 21 pb 1.7 pb

Table 1: Naı̈ve cross sections dσ/dy given by (19) for the exclusive J/ψ and Υ production in pp and pp̄ collisions

by the odderon-pomeron fusion, assuming ᾱs = 1 and analogous cross sections dσγ/dy for the photon contribution.

realistic cross-sections are obtained by taking into account phenomenological improvements,
such as related to the BFKL evolution (which is very important for the pomeron exchange and
which may be omitted for the odderon exchange [3]), the effects of soft rescatterings of hadrons,
and the precise determination of the value of the model parameter ᾱs in the impact factors. For
that we write the corrected cross-sections in the form

dσcorr
PO

dy

∣∣∣∣
y=0

= ᾱ5
s S

2
gap E(s,mV )

dσPO
dy

,
dσcorr

γP

dy

∣∣∣∣
y=0

= ᾱ2
s E(s,mV )

dσγP
dy

, (20)

where dσPO/γP/dy are the cross sections given by (19) at ᾱs = 1. The BFKL evolution for
pomeron exchange is taken into account by inclusion of the enhancement factor, which for the
central production (i.e. for the rapidity y = 0) has the form

E(s,mV ) = (x0

√
s/mV )2λ. (21)

Here, x0 is the maximal fraction of incoming hadron momenta exchanged in the t−channels
(or the initial condition for the BFKL evolution) and it is set x0 = 0.1. The effective pomeron
intercept λ is determined by HERA data and it equals λ = 0.2 (λ = 0.35) for the J/ψ (Υ)
production [8].

The gap surviving factor S2
gap for the exclusive production via the pomeron-odderon fusion is

fixed by the results of Durham two channel eikonal model [9]: S2
gap = 0.05 for the exclusive

production at the Tevatron and S2
gap = 0.03 for LHC. In the case of production from the photon-

pomeron fusion, S2
gap = 1 [10].

The available estimates of the effective strong coupling constant ᾱs in the Fukugita–Kwieciński
model yield results with rather large spread: from ᾱs ≈ 1 [7], through ᾱs ≈ 0.6−0.7 determined
from the HERA data [3] to ᾱs ≈ 0.3 determined from data on elastic pp and pp̄ scattering [11].
This led us to introduce three scenarios which differ by the values of ᾱs and of S2

gap. In the
optimistic scenario we use a large value of the coupling, ᾱs = 1, combined with the gap survival
factors obtained in the Durham two-channel eikonal model. We believe that the best estimates
should follow from the central scenario defined by ᾱs = 0.75, and Durham group estimates
S2

gap = 0.05 (S2
gap = 0.03) at the Tevatron (LHC). The pessimistic scenario is defined by

ᾱs = 0.3 and S2
gap = 1.

Table 2 shows our predictions for the phenomenologically improved cross sections in all three
scenarios. Their magnitudes justify our hope that the process (1) is a subject of experimental
study in the near future at the Tevatron and at the LHC [12]. The encouraging feature of our
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dσcorr/dy J/ψ Υ
odderon photon odderon photon

Tevatron 0.3–1.3–5 nb 0.8–5–9 nb 0.7–4–15 pb 0.8–5–9 pb
LHC 0.3–0.9–4 nb 2.4–15–27 nb 1.7–5–21 pb 5–31–55 pb

Table 2: The phenomenologically corrected cross sections dσcorr/dy|y=0 for the exclusive J/ψ and Υ production

in pp and pp̄ collisions by the pomeron–odderon fusion, and analogous cross sections dσcorr
γ /dy|y=0 for the photon

contribution for the pessimistic–central–optimistic scenarios.

results is due to the fact, that the measurement of the ti dependence of the cross section partially
permits filtering out the γ P contributions and to uncover the PO ones.
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Abstract
The hard pomeron component needed to reproduce small-x data seems
to be present in elastic scattering at moderate energy. If this is the case,
it is likely that the total cross section at the LHC will be appreciably
larger than previously expected.

1 The effective trajectory

Historically, hadronic exchanges have been remarkably well described by the simple-pole model
of Donnachie and Landshoff [1], which assumes that, at high energy, the hadronic amplitude is
dominated by a simple-pole pomeron:

A(s, t) = C(t)s1.08+0.25t (1)

The first question is whether this simple model extends to other processes, and in particular to
those measured at HERA.

H1 and ZEUS have done amazingly good and useful measurements, and extracted very
precise information on F2, as well as on pomeron-dominated processes such as quasi-elastic
vector-meson production, or DVCS. This means that we have a very precise picture of the
pomeron, and of the dependence of its properties on Q2 and t. If we represent pomeron ex-
change by a simple pole corresponding to a trajectory α(t) = α(0) + α′t, its contribution to F2

would be proportional to xα(0)−1 while its contribution to quasi-elastic scattering would go as
σ ∼W 4(α(t)−1) . All the data lead to the following effective properties (see e.g. [2]):

• the intercept varies with Q2 and with the mass M of the produced meson. Its value is
always constrained by 1.08 < α(0) < 1.45, and increases with Q2 and M2.

• The slope α′ of the trajectory is not universal: it is lower in processes containing a hard
scale, such as J/ψ production, and is constrained by 0.16 GeV−2 > α′ > 0.08 GeV−2.

Unfortunately, because the masses and Q2 are external variables, it is not possible that the tra-
jectory associated with a simple pole depends on them. One may get such a behaviour via more
complicated singularities in the complex j plane. Nevertheless, it is striking to observe that dif-
ferent processes lead to the same bounds on the effective intercept, and that both intercept and
slope join smoothly with the original Donnachie-Landshoff soft pomeron.

† speaker
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2 Regge theory and the two-pomeron picture

This observation prompted Donnachie and Landshoff to extend their original model by adding a
new contribution to it [3]: the hard pomeron. The hadronic elastic amplitude thus becomes

A2→2(s, t) =
∑

i

Ci(Q2,M2, t)sαi(t)

In general, several trajectories are needed to reproduce all the data, but the two dominant ones at
high energy are the hard and the soft pomerons. Both are supposed to have universal trajectories.
The effective intercept thus comes from mixing these two pomerons with coefficients that depend
on Q2 and M . Following these ideas, Donnachie and Landshoff were able to reproduce all the
data from HERA. The hard pomeron intercept was fitted to αH(0) = 1.4372, so that the small-x
measurements of F2 were reproduced [4]. The fit was then extended to higher values of x [5], and
was made compatible with DGLAP evolution [6], so that partonic distributions could be obtained
from it [7]. These ideas were also applied to vector-meson quasielastic photoproduction [8],
which are also well reproduced in a 2-pomeron model, when the couplings of the pomerons
depend on the mass of the produced meson. The fits to these processes, which now involve
an interference between the hard and the soft pomeron, lead to compatible values for the hard-
pomeron intercept, and to an estimate for its slope: α′H ≈ 0.1 GeV−2, while the soft pomeron
trajectory remains as in Eq. (1).

So the addition of a hard pomeron leads to a good description of the data at HERA. But
if the hard pomeron is a universal exchange, then one would expect it to be present even in soft
data. It is indeed unlikely that the couplings become exactly zero for all on-shell light hadrons,
especially if we remember that they vary in photoproduction with the mass of the produced
mesons. This prompted us to reconsider the fits to total cross sections and to the real part of the
elastic amplitude.

3 The hard component of soft data

The main motivation of [9] was in fact to understand why the soft pomeron model of Eq. (1)
could provide a good fit to total cross sections for

√
s ≥ 5 GeV, while it failed to reproduce the

data for ρ(0) [10]. Hence the paper used integral dispersion relations in a rather careful way, and
tried to check whether lifting totally the degeneracy of the dominant meson trajectories would
help. It was then found that if one added a new crossing-even trajectory, its intercept would
automatically go to a value around 1.4, and the quality of the fit would become comparable to
that of the best parameterisations of [10]. A careful analysis of the results shows that the main
improvement comes from the fit to πp and Kp data, while the pp and p̄p fit is not affected. In
fact the coefficient of the hard pomeron is essentially zero in this case, which explains why this
contribution was not considered before [11]. The reason for this decoupling is clear: the inclusion
of a hard pomeron makes the cross sections rise very fast, so that unitarity corrections must be
considered between the ISR and the Spp̄S energies1 .

So our strategy was to fit data below 100 GeV, which gave us the following results:
• the hard pomeron intercept is

αH = 1.45 ± 0.01;
1See O.V. Selyugin’s contribution to these proceedings.
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• if we write the coefficients of the amplitude for ab → ab elastic scattering as gagb, we
obtain an inverse hierarchy:

gK ≈ 1.1gπ ≈ 3.2gp.

The hard pomeron seems to couple more to smaller objects.
• As the amplitude is described by simple-pole singularities, its terms should obey Regge

factorisation, which can be tested by deriving the amplitude for γγ scattering from the
amplitudes for pp and γp scattering. The resulting cross section does reproduce the LEP
measurement, favouring the deconvolution with PHOJET. The hard pomeron singularity
must then be rather close to a simple pole.

After this study, three of us considered the off-forward case [12]. We limited ourselves to
the first cone |t| < 0.5 GeV2, so that we would not have to deal with multiple exchanges, or with
the question of the odderon, and found that many data sets had problems at small |t|, so that we
also used |t| > 0.1 GeV2. The elastic ap amplitude is then given by

Aap2→2 = CapH F
p
H(t)F aH(t)sαH + CapS F

p
S(t)F aS (t) + meson contributions,

with Fi(0) = 1. The dataset we fitted to includes all the available data for pp, p̄p, Kp and πp
elastic scattering, which we extracted from the HEPDATA system [13], checked, and compiled
in a unique format. The resulting database2 , contains about 10000 points, more than 2000 of
which fall in the t interval considered here, and at

√
s ≤ 100 GeV. Because of this large number

of points, we were able to extract the form factors Fi(t) directly from the data, by fitting small
intervals tj ± ∆tj to constant Fi(tj), and by later fitting smooth curves to these values. The
resulting form factors are shown in Fig. 1. There is enough data in the proton case to distinguish
between the hard pomeron and the soft pomeron, but we had to assume they were degenerate
in the πp and Kp cases. For the meson exchanges, we assumed that C = +1 and C = −1
trajectories were not degenerate, and found that both form factors had zeroes, which we took into
account by multiplying standard form factors by a function Z(t) which is asymptotically 1 but
changes sign at t ≈ −0.15 GeV2 for the C = −1 trajectory and at t ≈ −0.47 GeV2 for the
C = +1 trajectory.

Using direct extraction of the form factors from data produces a remarkably good fit, with
a χ2/dof = 0.95, partially shown in Fig. 2. Note that we had to exclude a few datasets which
had gross disagreements with the others (about 100 points). Besides the form factors, it also
produces trajectories for the pomerons. We find that

αS = 1.07 + 0.3t (2)

αH(t) = 1.45 + 0.1t (3)

Although the central value of the hard pomeron slope is in perfect agreement with [8], one must
mention that it has a large error, as it is correlated with the choice of form factor for the hard
pomeron.

2available at http://www.theo.phys.ulg.ac.be/˜cudell/data/
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Fig. 1: Form factors for the various exchange terms, for |t| ≤ 0.5 GeV2. The left figure gives the form factors of
the two pomeron, which are different in the proton case, but taken as identical for mesons (F (R) is the pomeron form

factor for both soft and hard pomerons in that case). The right figure shows the form factor of the dominant meson

exchanges.

4 Unitarisation and high energies

As explained above, we have had to consider the hard pomeron at low energy
√
s ≤ 100 GeV. In

order to make contact with higher-energy data, and with LHC physics, it is clear that multiple ex-
changes have to be considered. The problem of their inclusion is however far from solved. Con-
siderable progress has been made recently in addressing the unitarisation of the BFKL pomeron
in a perturbative setting, based on the idea of the saturation of the gluon density. Although there
seems to be some relation between the equations describing parton saturation and conventional
unitarisation schemes [14], it is far from clear whether one can extend these perturbative methods
to a soft regime.

In [10], it was shown that a variety of analytic parameterisations leads to a total LHC
cross section between 85 and 117 mb. We showed in [9] that a model including a hard pomeron
could lead to a cross section compatible with these limits, provided one used an extended eikonal
scheme.

However, two of us have considered in [15] more traditional schemes, i.e. the saturation of
the profile function when it reaches the black-disk limit, or the standard one-channel eikonal. The
former has the advantage to keep the simple-pole nature of the hard pomeron, so that the low-
energy fit is not affected, whereas the latter implies a refitting, which however does not change
the parameters significantly. Interestingly, both schemes predict a large cross section at the LHC,
of the order of 150 mb, as show in Fig. 2. It thus seems possible to evade the bound presented
in [10], provided a universal hard pomeron trajectory is present even in soft scattering. Note that
such a trajectory would have consequences not only for the total cross section, but also for the
value of the ρ parameter and for the slope of the differential cross section B(t), hence it is very
important that all these be measured at the LHC.
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Fig. 3: The total cross section as a function of
√
s, for the bare amplitude (short dashes), a saturated amplitude (plain

curve), an eikonalised amplitude (dash-dot-dot), and for a refitted eikonal (long dashes).

5 Conclusion

The idea of universal exchanges of Regge trajectories is an old one, which has been very fruitful
in describing hadronic scattering data. It may in fact be the only way to get a grasp on these
processes, which escape perturbation theory. The data of HERA have taught us that a hard sin-
gularity is present in γ(∗)p scattering for large Q2 and for large masses. It is natural to assume
that such a singularity is also present in other hadronic processes, even at small Q2 or for small
masses. We have found that the inclusion of a hard pomeron in fits to soft data appreciably im-
proves the description of the data at energies below 100 GeV. The coupling of the hard pomeron
is then only a few percents of that of the soft pomeron, but this is enough to reach the black
disk limit around 1 TeV. One then needs to worry about multiple exchanges, and this makes
predictions for the LHC quite uncertain.

One can say that the observation of a cross section lower than 117 mb would disfavour the
ideas presented here, as the unitarisation scheme needed would have to use strong rescatterings,
which have no reason to disappear at low energy. On the other hand, the observation of a cross
section higher than 117 mb would be a strong indication that a hard singularity is there in soft
data. If this is the case, rescattering/saturation effects will modify not only σtot but also ρ and
B(t). It thus seems a good idea to devise a strategy to measure these quantities in an independent
way at the LHC.
Acknowledgements: The authors would like to thank for helpful discussions P.V. Landshoff. O.S.
gratefully acknowledges financial support from FRNS and would like to thank the University of Liège
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References
[1] A. Donnachie and P. V. Landshoff, Phys. Lett. B296, 227 (1992). hep-ph/9209205.

[2] ZEUS Collaboration, A. Levy, Acta Phys. Polon. B33, 3547 (2002). hep-ex/0206048;
H1 Collaboration, R. Devenish (2002). hep-ex/0208043.

[3] A. Donnachie and P. V. Landshoff, Phys. Lett. B437, 408 (1998). hep-ph/9806344.

[4] A. Donnachie and P. V. Landshoff, Phys. Lett. B518, 63 (2001). hep-ph/0105088.

THE SOFT AND THE HARD POMERONS: ELASTIC SCATTERING AND UNITARISATION

265



[5] A. Donnachie and P. V. Landshoff, Phys. Lett. B533, 277 (2002). hep-ph/0111427.

[6] J. R. Cudell, A. Donnachie, and P. V. Landshoff, Phys. Lett. B448, 281 (1999). hep-ph/9901222.

[7] A. Donnachie and P. V. Landshoff, Phys. Lett. B550, 160 (2002). hep-ph/0204165.

[8] A. Donnachie and P. V. Landshoff, Phys. Lett. B478, 146 (2000). hep-ph/9912312.

[9] J. R. Cudell, E. Martynov, O. V. Selyugin, and A. Lengyel, Phys. Lett. B587, 78 (2004). hep-ph/0310198.

[10] COMPETE Collaboration, J. R. Cudell et al., Phys. Rev. Lett. 89, 201801 (2002). hep-ph/0206172.

[11] J. R. Cudell et al., Phys. Rev. D65, 074024 (2002). hep-ph/0107219.

[12] J. R. Cudell, A. Lengyel, and E. Martynov, Phys. Rev. D73, 034008 (2006). hep-ph/0511073.

[13] M. R. Whalley, Comput. Phys. Commun. 57, 536 (1989);
M. Whalley. DPDG-97-02.

[14] O. V. Selyugin and J. R. Cudell, PoS DIFF2006, 057 (2006). hep-ph/0611077.

[15] J. R. Cudell and O. V. Selyugin (2006). hep-ph/0612046.

J-R CUDELL, A LENGYEL, E MARTYNOV, O.V SELYUGIN

266



pp Elastic Scattering at LHC in a Nucleon–Structure Model

M. M. Islama∗, J. Kašparb and R. J. Luddyc
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Abstract
We predict pp elastic differential cross sections at LHC at c.m. en-
ergy 14 TeV and momentum transfer range |t| = 0 – 10 GeV2 in a
nucleon-structure model. In this model, the nucleon has an outer cloud
of quark-antiquark condensed ground state, an inner shell of topolog-
ical baryonic charge (r ' 0.44F ) probed by the vector meson ω, and
a central quark-bag (r ' 0.2F ) containing valence quarks. We also
predict dσ/dt in the Coulomb-hadronic interference region. Large |t|
elastic scattering in this model arises from valence quark-quark scat-
tering, which is taken to be due to the hard-pomeron (BFKL pomeron
with next to leading order corrections). We present results of taking
into account multiple hard-pomeron exchanges, i.e. unitarity correc-
tions. Finally, we compare our prediction of pp elastic dσ/dt at LHC
with the predictions of various other models. Precise measurement of
pp dσ/dt at LHC by the TOTEM group in the |t| region 0 – 5 GeV2

will be able to distinguish between these models.

High energy pp and p̄p elastic scattering have been at the forefront of accelerator research
since the early seventies with the advent of CERN Intersecting Storage Rings (ISR) and mea-
surement of pp elastic differential cross section in the c.m. energy range

√
s = 23 – 62 GeV and

momentum transfer range |t| = 0.8 – 10 GeV2 [1]. This was followed by the Fermilab acceler-
ator where pp elastic scattering was measured at c.m. energy

√
s = 27.4 GeV in a fixed target

experiment at large momentum transfers: |t| = 5.5 – 14 GeV2 [2]. Next came the CERN SPS
Collider, where p̄p elastic scattering was measured at c.m. energies 546 GeV and 630 GeV – a
jump of one order of magnitude in c.m. energy from ISR [3–5]. The Fermilab Tevatron followed
next where p̄p elastic scattering was measured at c.m. energy 1.8 TeV, but in a rather small mo-
mentum transfer range: |t| = 0 – 0.5 GeV2 [6, 7]. We are now at the threshold of a new period
of accelerator research with the LHC starting up soon and with the planned measurement of pp
elastic scattering by the TOTEM group at c.m. energy 14 TeV and momentum transfer range
|t| ' 0 – 10 GeV2 [8, 9].

My collaborators and I have been studying pp and p̄p elastic scattering since late seventies.
From our phenomenological investigation, we have arrived at two results: 1) a physical picture
of the nucleon, 2) an effective field theory model underlying the physical picture [10]. The
physical picture shows that the nucleon has an outer cloud, an inner shell of baryonic charge,

∗speaker
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and a central quark-bag containing the valence quarks (Fig. 1). The radius of the shell is about
0.44 F and that of the quark-bag is 0.2 F. The underlying field theory model turns out to be a
gauged Gell–Mann–Levy linear σ-model with spontaneous breakdown of chiral symmetry and
with a Wess–Zumino–Witten (WZW) anomalous action. The model attributes the outer nu-
cleon cloud to a quark–antiquark condensed ground state analogous to the BCS ground state in
superconductivity– an idea that was first proposed by Nambu and Jona-Lasinio. The WZW ac-
tion indicates that the baryonic charge is geometrical or topological in nature, which is the basis
of the Skyrmion model. The action further shows that the vector meson ω couples to this topo-
logical charge like a gauge boson, i.e. like an elementary vector meson. As a consequence, one
nucleon probes the baryonic charge of the other via ω-exchange. In pp elastic scattering, in the
small momentum transfer region, the outer cloud of one nucleon interacts with that of the other
giving rise to diffraction scattering. As the momentum transfer increases, one nucleon probes the
other at intermediate distances and the ω-exchange becomes dominant. At momentun transfers
even larger, one nucleon scatters off the other via valence quark-quark scattering.

Our calculated pp elastic dσ/dt at c.m. energy 14 TeV is shown in Fig. 2 by the solid
line that includes all three processes: diffraction, ω-exchange, and qq scattering. The dotted
curve shows dσ/dt due to diffraction only. We see that diffraction dominates in the small |t|
region, but falls off rapidly. The dot-dashed curve shows dσ/dt due to ω-exchange only and
indicates that ω-exchange dominates in the |t| region 1.5 – 3.5 GeV2. Beyond that, the valence
quark-quark scattering takes over. The dashed curve for |t| > 3.5 GeV2 represents dσ/dt with
single valence quark-quark scattering, whereas the solid curve represents dσ/dt with all multiple
valence quark-quark scattering.

Let us next examine how the three processes are described in our calculations [10]. Diffrac-
tion is described by using the impact parameter representation and a phenomenological profile
function:

TD(s, t) = i pW
∫∞
0 b db J0 (b q)ΓD(s, b); (1)

q is the momentum transfer (q =
√
|t|) and ΓD(s, b) is the diffraction profile function, which is

related to the eikonal function χD(s, b): ΓD(s, b) = 1− exp(iχD(s, b)). We take ΓD(s, b) to be
an even Fermi profile function:

ΓD(s, b) = g(s)[ 1
1+e(b−R)/a) + 1

1+e−(b+R)/a − 1]. (2)
The parameters R and a are energy dependent: R = R0 +R1(ln s− iπ2 ), a = a0 + a1(ln s− iπ2 );
g(s) is a complex crossing even energy-dependent coupling strength.

The diffraction amplitude we obtain has the following asymptotic properties:
1. σtot(s) ∼ (a0 + a1 ln s)2 (Froissart-Martin bound)

2. ρ(s) ' πa1
a0+a1 ln s (derivative dispersion relation)

3. TD(s, t) ∼ i s ln2 s f(|t| ln2 s) (Auberson-Kinoshita-Martin scaling)
4. T p̄p

D (s, t) = T pp
D (s, t) (crossing even)

Incidentally, the profile function (2) has been used by Frankfurt et al. to estimate the ab-
sorptive effect of soft hadronic interactions (gap survival probability) in the central production of
Higgs at LHC [11].

The ω-exchange amplitude in our model has the form
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Tω(s, t) ∼ exp[i χD(s, 0)] s F 2(t)
m2
ω−t . (3)

where the factor s shows that ω is behaving like an elementary spin-1 boson. The two form
factors indicate that ω is probing two baryonic charge distributions – one for each nucleon. The
factor exp[i χD(s, 0)] represents the absorptive effect due to soft hadronic interactions.

We view large |t| elastic scattering as a hard collision of a valence quark from one proton
with a valence quark from the other proton (Fig. 3). Since this process involves high energy
quark-quark scattering at large momentum transfer, one would expect that it should be described
by perturbative QCD. In fact, in perturbative QCD, the two quarks would interact via BFKL
pomeron, that is, reggeized gluon ladders with rungs of gluons that lead to a fixed branch point in
the angular momentum plane at αBFKL = 1 + ω. The value of ω in next to leading order lies in the
range 0.13 – 0.18 as argued by Brodsky et al. [12]. We refer to the BFKL pomeron with next to
leading order corrections included as the “hard-pomeron”. In our calculations, we approximate
the hard-pomeron by a fixed pole and take the corresponding qq amplitude as [13]

T̂1(ŝ, t) = i γqq ŝ
(
ŝ e−i

π
2

)ω
1

|t|+r−2
0

, (4)

where ŝ is the square of the c.m. energy of qq scattering.

Our pp elastic dσ/dt calculation at 14 TeV reported earlier [10,13] included only a single
hard-pomeron exchange in qq scattering. However, Eq. (4) shows that the hard-pomeron predicts
a qq asymptotic total cross section σ̂tot(ŝ) ∝ ŝω, i.e. σ̂tot(ŝ) grows like a power of ŝ and therefore
violates unitarity and the Froissart-Martin bound. To restore unitarity in the qq channel, we use
the eikonal representation and write the full qq scattering amplitude as

T̂ (ŝ, t) = ip̂Ŵ
∫∞

0 b db J0 (bq)
[
1 − e iχ̂(ŝ ,b)

]
. (5)

Taking T̂1(ŝ, t) in Eq. (4) as the Born or single-scattering amplitude, we obtain by inverting it

χ̂(ŝ, b) = 2 i γqq

(
ŝ e−i

π
2

)ω
K0( b

r0
). (6)

Expanding the exponential in (5), we get

T̂ (ŝ, t) = −i p̂ Ŵ ∫∞
0 b db J0 (bq)

[
i χ̂− χ̂2

2 ! − i χ̂3

3 ! + χ̂4

4 ! + ...
]
. (7)

The nth term in the series is

T̂n(ŝ, t) = −i (−1)n 2n−1

n! γnqq ŝ
(
ŝ e−i

π
2

)nω ∫∞
0 b db J0 (bq) K n

0

(
b
r0

)
. (8)

Now, ŝ ' xx′s, where x and x′ are the longitudinal momentum fractions of the protons carried by
the valence quarks (Fig. 3). This leads to the following pp elastic amplitude due to qq scattering:

Tqq(s, t) = T̂1(s, t) F2
1 (q⊥) + T̂2(s, t) F2

2 (q⊥) + ... + T̂n(s, t) F2
n(q⊥); (9)

F1, F2 , ... Fn are the structure factors that take into account momentum distributions of the
valence quarks inside the proton. Our earlier calculation kept only the first term in Eq. (9). Fig.
2 shows that the effect of multiple hard-pomeron exchange in pp scattering is to decrease dσ/dt
at large |t| compared to dσ/dt due to single hard-pomeron exchange (dashed line in Fig. 2). For
|t| < 3.5 GeV2, there is little effect due to multiple scattering, i.e. unitarization.

Results of some of our quantitative calculations are shown in Figs. 4–7. The solid curve in
Fig. 4 represents our calculated total cross section as a function of

√
s. Dotted curves represent

the error band given by Cudell et al. [14]. In Fig. 5, solid and dashed curves represent our
calculated ρp̄p and ρpp respectively (ρ = Re T (s, 0)/ Im T (s, 0)). Dotted curves, as before,
represent the error band given by Cudell et al. At

√
s=14 TeV, our values of σtot and ρpp are
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109.4 mb and 0.12 respectively. Fig. 6 shows our calculated dσ/dt for p̄p elastic scattering
at
√
s = 541 GeV in the Coulomb–hadronic interference region using the Kundrát–Lokajı́ček

formulation (upper curve) and West–Yennie formulation (lower curve). Experimental data are
from Augier et al. [15]. Fig. 7 shows our predicted dσ/dt for pp elastic scattering at

√
s = 14

TeV in the Coulomb–hadronic interference region. Finally, in Fig. 8, we compare our predicted
pp elastic dσ/dt at LHC with the predictions of other models proposed by various groups: Avila
et al. [16], Block et al. [17], Bourrely et al. [18], Desgrolard et al. [19], and Petrov et al. (three
pomeron) [20].

Conclusions
1. Precision measurement of pp elastic dσ/dt at LHC by the TOTEM group in the region |t| = 0
– 5 GeV2 will be able to distinguish between various proposed models (see Fig. 8).
2. In our nucleon-structure model, the qualitative saturation of the Froissart-Martin bound is due
to soft hadronic interactions.
3. Large |t| elastic scattering in our model is due to valence quark-quark scattering. This has
been described by us as due to the exchange of a hard-pomeron (BFKL pomeron plus next to
leading order corrections).
4. Unitarization of the hard-pomeron exchange leads to a decrease of dσ/dt at large |t|, but has
little effect on forward dσ/dt .
5. The nucleon structure that we find embodies salient features of many leading models– such
as Nambu-Jona-Lasinio model, Skyrmion model, nonlinear σ-model, chiral-bag model– but, at
the end, it presents a unique description of the nucleon.
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To the theory of high-energy elastic nucleon collisions

Vojtěch Kundrát∗, Jan Kašpar, Miloš Lokajı́ček
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Abstract
The commonly used West and Yennie integral formula for the relative
phase between the Coulomb and elastic hadronic amplitudes requires
for the phase of the elastic hadronic amplitude to be constant at all
kinematically allowed values of t. More general interference formula
based on the eikonal model approach does not exhibit such limitation.
The corresponding differences will be demonstrated and some predic-
tions of different phenomenological models for elastic pp scattering at
energy of 14 TeV at the LHC will be given. Special attention will be
devoted to determination of luminosity from elastic scattering data; it
will be shown that the systematic error might reach till 5 % if the lumi-
nosity is derived from the values in the center of the interference region
with the help of West and Yennie formula.

1 Limited validity of West and Yennie integral formula

It has been shown in our earlier papers (see [1] and [2]) that the integral formula of West and
Yennie [3] for the real relative phase between Coulomb and hadronic amplitudes

αΦ(s, t) = ∓α
[

ln
(−t
s

)
−
∫ 0

−4p2

dτ

|t− τ |

(
1− FN (s, τ)

FN (s, t)

)]
(1)

requires for the hadronic amplitude FN (s, t) to have the constant phase at any kinematically
allowed value of t; s being the value of the total CMS energy, t the four momentum transfer
squared, p the value of the CMS momentum and α = 1/137.036 the fine structure constant. The
upper (lower) sign corresponds to the pp (p̄p) scattering. It follows in such a case

∫ 0

−4p2

dτ

|t− τ |=
(
FN (s, τ)
FN (s, t)

)
≡ 0 (2)

and further

0∫

−4p2

dτ

|t− τ | [<F
N (s, t)=FN (s, τ)−<FN (s, τ)=FN (s, t)] ≡ 0. (3)

Introducing then
FN (s, t) = i|FN (s, t)|e−iζN (s,t), (4)
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it is possible to write further
t∫

−4p2

dτ
sin[ζN (s, t)− ζN (s, τ)]

t− τ |FN (s, τ)| −
0∫

t

dτ
sin[ζN (s, t)− ζN (s, τ)]

t− τ |FN (s, τ)| ≡ 0

(5)
for any t ∈ [−4p2, 0]. Both the integrals in Eq. (5) are proper integrals provided the first deriva-
tive of the hadronic phase [ζN (s, t)]′ according to t variable is finite. It is evident that Eq. (5) is
fulfilled if the phase is t independent, i.e., if

ζN (s, t) = ζN (s, τ) ≡ ζN (s). (6)

It has been shown in Ref. [2] that Eq. (6) represents the unique solution of Eq. (5), if the relative
phase between the Coul. and hadr. amplitudes is to be a real quantity as commonly assumed.

The problem of the t independence of hadronic phase was mentioned for the first time
in Ref. [4]. However, this independence was used as an assumption only. Adding the other
important assumption concerning purely exponential t dependence of the modulus of hadronic
amplitude in the whole kinematically allowed region of t it was possible to perform analytically
the integration in Eq. (1) (accepting also other approximations valid at asymptotic energies only
- for detail see Ref. [1]). For the total elastic scattering amplitude the simplified West and Yennie
formula

FC+N (s, t) = ±αs
t
f1(t)f2(t)eiαΦ +

σtot
4π

p
√
s(ρ+ i)eBt/2 (7)

was then obtained. Here f1(t) and f2(t) are the dipole form factors (added by hand only),
B is the constant diffractive slope, σtot the value of the total cross section and the constant
ρ = <FN (s, 0)/=FN (s, 0). These three quantities may depend on s only. The relative phase
αΦ(s, t) exhibits then logarithmic t dependence

αΦ(s, t) = ∓α
[

ln
(−Bt

2

)
+ γ

]
, (8)

where γ = 0.577215 is Euler’s constant.

2 General eikonal model approach

The contemporary experimental data as well as the phenomenological models of high-energy
elastic nucleon scattering show, however, convincingly that the quantity ρ cannot be t indepen-
dent. Consequently, the West and Yennie approach [3] is not a convenient tool for description of
interference between the Coulomb and elastic hadronic interactions of charged nucleons. How-
ever, the approach based on the eikonal model removes such troubles. The general formula for
the total elastic scattering amplitude proposed in Ref. [5] may be valid at any s and t; it may be
written as

FC+N (s, t) = ±αs
t
f1(t)f2(t) + FN (s, t)

[
1∓ iαG(s, t)

]
, (9)

where

G(s, t) =
0∫

−4p2

dt′
{

ln
(
t′

t

)
d

dt′

[
f1(t′)f2(t′)

]
+

1
2π

[
FN (s, t′)
FN (s, t)

− 1

]
I(t, t′)

}
, (10)
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and

I(t, t′) =
2π∫

0

dΦ′′
f1(t′′)f2(t′′)

t′′
, t′′ = t+ t′ + 2

√
tt′ cos Φ′′. (11)

Instead of the t independent quantities B and ρ, it is now necessary to consider t dependent
quantities being defined as

B(s, t) =
d

dt

[
ln
dσN

dt

]
=

2
|FN (s, t)|

d

dt
|FN (s, t)|, ρ(s, t) =

<FN (s, t)
=FN (s, t)

. (12)

The total cross section is then given with the help of the optical theorem as

σtot(s) =
4π
p
√
s
=FN (s, t = 0). (13)

3 Experimental data and West and Yennie formula

It is the differential cross section that is determined in corresponding experiments. In our nor-
malization it equals

dσ(s, t)
dt

=
π

sp2
|FC+N (s, t)|2. (14)

In the past practically in all actual experiments the simplified West and Yennie elastic amplitude
defined by Eqs. (7) - (8) has been used for the analysis of data at |t| ≤ 0.01 GeV2, in spite of the
fact that the theoretical assumptions under which the amplitude was derived are not fulfilled at all
kinematically allowed values of t but only in its narrow region in forward direction. Generally,
some important discrepancies exist. The analysis of corresponding behavior has been performed
in Ref. [6] where the general formula (Eqs. (9) - (11)) has been applied to data for pp scattering at
energy of 53 GeV under different limitations of some free parameters specifying the modulus and
the phase of the hadronic amplitude (as used in Ref. [5] - Eqs. (40) and (42)). The corresponding
results were derived in Ref. [6]) and are represented in Fig. 1. First, only the phase has been
fixed by putting tan ζN(t) = ρ = 0.077 according to the earlier fit [7] (based on West and
Yennie formula), while the modulus parameters have been fitted. This fit has been compared to
the case when only ρ has been assumed to be constant, but free; the optimum in such a case has
been obtained with ρ = 0.065. In both the cases the experimental data have been represented
by the square of the modulus fitted in the whole measured interval; see the solid line in Fig. 1.
In addition to, in the other case the modulus formula has been limited to a simple exponential
form (with two free parameters). Fundamental differences from experimental data exist now;
only unsubstantial difference being obtained when ρ has been fixed (ρ = 0.077) and when it has
been left free and fitted to ρ = 0.021; see dotted and dashed lines in Fig. 1. It is evident that
the assumption of constant diffractive slope B is in strong contradiction to the experimental data.
The curves corresponding to the fits with constant and t dependent quantities ρ are nearly the
same, if the modulus is fitted and only weak dependence of ρ on t is allowed. Better χ2 quantity
is obtained if strong dependence on t is allowed.
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model σtot σel B(0) ρ
√
< b2tot >

√
< b2el >

√
< b2inel >

[mb] [mb] [GeV−2] [fm] [fm] [fm]
Islam 109.17 21.99 31.43 0.123 1.552 1.048 1.659

Petrov et al.2P 94.97 23.94 19.34 0.097 1.227 0.875 1.324
Petrov et al.3P 108.22 29.70 20.53 0.111 1.263 0.901 1.375
Bourrely et al. 103.64 28.51 20.19 0.121 1.249 0.876 1.399

Block et al. 106.74 30.66 19.35 0.114 1.223 0.883 1.336

Table 1: The values of basic parameters predicted by different models
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Fig. 2: dσ
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predictions at low |t| for pp scattering at

14 TeV corresponding to different models

4 Model predictions for pp elastic scattering at the LHC

In connection with the TOTEM experiment that will investigate the elastic pp scattering at energy
of 14 TeV [8] we have studied the predictions of four models proposed by the following authors:
Islam, Luddy and Prokhudin [9], Petrov, Predazzi and Prokhudin (with hadronic amplitude corre-
sponding to the exchange of two, resp. three pomerons - labelled as 2P, resp. 3P) [10], Bourrely,
Soffer and Wu [11] and Block, Gregores, Halzen and Pancheri [12]. All the given models have
contained some free s dependent parameters that have been established in these papers by fitting
the experimental data on pp differential cross sections at several lower energies. Using these
fitted values we have established the dynamical quantities: the total cross section, momentum
transfer distribution dσ

dt , the t dependent diffractive slope B(t) and the t dependent quantity ρ(t)
at higher energy values. The values of σtot, σel, B(0) and ρ(0) for 14 TeV can be found in Table
1. The corresponding model predictions are shown in Figs. 2 - 5. It is evident that the predictions
of all the models differ rather significantly. Fig. 2 shows different predictions for values of the
differential cross sections at small |t| values. Great differences concern the values for total cross
sections that are in direct relation to the values of differential cross section at t = 0; they run
from 95 mb to 110 mb and differ rather significantly from the value predicted by COMPETE col-
laboration [13] σtot = 111.5 ± 1.2 +4.1

−2.1 mb which has been determined by extrapolation of
the fitted lower energy data with the help of dispersion relations technique. The predictions of dσ

dt
values for higher values of |t| are shown in Fig. 3. Let us point out especially the second diffrac-
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tive dip demonstrated by Bourrely, Soffer and Wu momentum transfer distribution. The different
predictions for t dependence of the diffractive slopes B(t) are shown in Fig. 4. Fig. 5 exhibits
the t dependence of the quantity ρ(t). Table 1 contains also the values of the root-mean-squares
calculated for each of the analyzed models with the formulas published in Ref. [14].

5 Luminosity estimation on the basis of pp elastic scattering at the LHC

The accurate determination of the elastic amplitude is very important in the case when the lumi-
nosity L is to be calibrated on the basis of elastic process; it holds that [15]

1
L
dNel

dt
=

π

sp2
|FC+N (s, t)|2, (15)

where dNel
dt is the counting rate established experimentally at the given t. The so called Coulomb

calibration in the region of smallest |t| where the Coulomb amplitude is dominant (reaching
nearly 100 %) can be hardly realized due to technical limitations. The approach allowing to
avoid corresponding difficulties may be based on Eq. (15), when the elastic counting rate can be,
in principle, measured at any t which can be reached, and the total elastic scattering amplitude
FC+N (s, t) may be determined with required accuracy at any |t|, too. Then the luminosity L
could be determined using Eq. (15). However, in this case it is very important which formula
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Fig. 4: t dependence of the slope predictions for pp

scattering at 14 TeV for different models

for the total elastic amplitude F C+N (s, t) is made use of. In the following we will demonstrate
possible differences which can be obtained at different t values in comparison with the commonly
used West and Yennie approach. For this reason let us calculate the quantity

R(t) =
|FC+N
eik (s, t)|2 − |FC+N

WY (s, t)|2
|FC+N
eik (s, t)|2

, (16)

where FC+N
eik (s, t) is the total elastic scattering eikonal model amplitude calculated for an in-

vestigated hadronic amplitude FN (s, t) while FC+N
WY (s, t) is the West and Yennie total elastic

scattering amplitude calculated for the same hadronic amplitude. The calculation was performed

TO THE THEORY OF HIGH-ENERGY NUCLEON COLLISIONS

277



)2-t   (GeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(t
)

N
(t

) /
 Im

 F
N

(t
) =

 R
e 

F
ρ

-4

-3

-2

-1

0

1

2

3

4
Islam

Petrov-Predazzi-Prokudin, 2 pomerons

Petrov-Predazzi-Prokudin, 3 pomerons

Bourrely-Soffer-Wu

Block-Halzen

)2-t   (GeV
-510 -410 -310 -210

R
(t

)  
 (%

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Islam
Petrov-Predazzi-Prokudin, 2 pomerons
Petrov-Predazzi-Prokudin, 3 pomerons
Bourrely-Soffer-Wu
Block-Halzen

Fig. 5: ρ(t) predictions for pp scattering at 14 TeV

corresponding to different models

Fig. 6: R(t) quantity predictions for pp scattering at

14 TeV corresponding to different models

for pp elastic scattering at the LHC energy of 14 TeV; in the former case Eqs. (9) - (11) were used,
in the latter one Eqs. (7) - (8). The t dependence of R(t) for different models is shown in Fig.
6. The maximum values lie approximately at t = −0.006 GeV2, showing that the differences
of physically consistent eikonal models from West and Yennie formula may be almost 5 %. In
the preceding case only the models with a weak dependence of ρ(t) on t have been considered.
Yet larger difference may be obtained when the cases with weak and strong dependences will be
compared; i.e., the cases for central and peripheral distribution of elastic hadron scattering - see
the analysis of pp scattering at ISR energies [14]. It means that the luminosity determined for
the central and peripheral distributions of elastic pp scattering at LHC energy of 14 TeV may be
burdened by a non-negligible mutual systematic error.
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Abstract

The problems linked to the extraction of the basic parameters of the
hadron elastic scattering amplitude at the LHC are explored. The im-
pact of the Black Disk Limit (BDL)− which constitutes a new regime
of the scattering processes − on the determination of these values is
examined.

1 Introduction

The diffraction processes will occupy an important place in the experimental program at the LHC.
Firstly, we will need to know the luminosity and the total cross section with a high precision.
Secondly, the diffraction processes will be directly explored at the LHC and will contribute to
many different observable reactions. The planned analyses very clearly have problems from the
theoretical view point. For example, the definition of the differential cross sections of the elastic
proton-proton scattering, as presented in [1]

dN

dt
= L[

4πα2

|t|2 −
αρσtote

−b|t|/2

|t| +
σ2
tot(1 + ρ2)e−b|t|

16π
] (1)

does not contain the electromagnetic form factor and the Coulomb-hadron interference phase
ΦCH . Such terms have to be included: all the corrections to φCH were calculated in [2]. More
importantly, Eq. (1) is based on the assumption of an exponential behavior of the imaginary and
real parts of the hadron scattering amplitude, which is at best an approximation.

Furthermore, the TOTEM experiment has announced the extraction of σtot from the ex-
perimental data, assuming a fixed value of ρ(s, t = 0) = 0.15. Indeed, the impact of ρ on σtot is
connected with the term (1 + ρ2), and is very small when ρ is small. However the most impor-
tant correlation between ρ and σtot enters the analysis through the Coulomb-hadron interference
term, the size of which remains unknown if we do not know the normalization of dN/dt and the
size and t-dependence of ρ(s, t) and φCH .

In [1], it was shown that there would be large correlations between the value of ρ and that
of σtot. However, these correlations and the error estimates were obtained using an exponential
behavior of the imaginary and real part of the hadron scattering amplitude. Several models
predict an increase in the slope B(t) as t → 0, which effectively leads to an additional term in
the description of the hadron scattering amplitude. We shall return to this question later.
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Collaboration σtot (mb) σel/σtot ρ(t = 0) B(t = 0)

[3] 103 0.28 0.12 19
[4] 110.5 0.229 20.5
[5] 111 0.11
[6] 123.3 0.103
[7] 128 0.33 0.19 21
[8] 150 0.29 0.24 21.4
[9] 230 0.67

Table 1: Predictions of different models at (
√
s = 14 TeV, t = 0)

ρ̄ (
√
s = 540 GeV, 0.000875 ≤ |t| ≤ 0.12 GeV2)

experiment experimental analysis global analysis I [10] global analysis II [11]
UA4 0.24 ± 0.02 0.19 ± 0.03 -
UA4/2 0.135 ± 0.015 - 0.17± 0.02

Table 2: Average values of ρ, derived with fixed total cross section (first two columns), and from a global analysis

(last two columns).

One should realise that the theoretical predictions are somewhat uncertain. We show in
Table 1 recent estimates of the cross section at the LHC. This is partially due to the fact that the
dispersion of the experimental data for σtot at high energy above the ISR energies is very wide.
We must note that, except for the UA4 and UA4/2 collaborations, the other experiments have
not published the actual numbers for dN/dt. We can only hope that the new results from the
LHC experiments will not continue this practice. In this context, we must remember the eventual
problems that may arise if one fixes σtot or ρ to decrease the size of the errors: indeed, this is what
the UA4/2 Collaboration did when they extracted ρ(0), fixing σtot from the UA4 Collaboration
(σtot = 61.9 mb), or from their own measurement (σtot = 63.0 mb). As shown in Table 2, the
resulting values for ρ(0) appear inconsistent. A more careful analysis [10,11] shows that there is
no contradiction between the measurements of UA4 and UA4/2.

2 Fitting procedure for σtot(s) and Black Disk Limit (BDL)

The situation is complicated by the possible transition to the saturation regime, as the Black Disk
Limit (BDL) will be reached at the LHC [8, 12]. The effect of saturation will be a change in
the t-dependence of B and ρ, which will begin for

√
s = 2 to 6 TeV, and which may drastically

change B(t) and ρ(t) at
√
s = 14 TeV [8]. As we are about to explain, such a feature can be

obtained in very different models.

The first model is based on a fit to soft data which includes a hard pomeron component
[13] of intercept 1.4, which is linked to the growth of the gluon density at small x in inelastic
processes [14]. This growth leads to non-linear effects, which saturate the BDL. Such effects
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Fig. 1: Results of the ESHPM. Left panel: The ratio of the real to the imaginary part of the amplitude as a function
of t, for the bare and the saturated amplitudes at various energies: 100 GeV (plain curve), 500 GeV (long dashes),

5 TeV (short dashes) and 14 TeV (dash-dotted curve). Right panel: The slope of the elastic differential cross section

as a function of t, for the bare and saturated amplitudes at various energies: 100 GeV (plain curve), 500 GeV (long

dashes), 5 TeV (short dashes) and 14 TeV (dash-dotted curve).

t = 0 t = −0.1 GeV 2

DDM ESHPM DDM ESHPM
0.19 0.24 0.08 0.05

Table 3: Results of the DDM and of the ESHPM for ρ at
√
s = 14 TeV

were obtained in [8, 12] and predict that B(t) will increase with t at small t for LHC energies
(see Fig. 1). We also show that the saturation of the BDL will heavily change the t-dependence
of ρ(t), as shown in Fig. 1. The hard pomeron component will lead to a decrease of the energy
at which the BDL regime appears, and the effect on the growth of the total cross section in
uncertain. We show in Fig. 1 and Table 3 the results coming from an eikonal unitarisation of
the amplitude, and we shall refer to this model [8] as the Eikonalized Soft+Hard Pomeron Model
(ESHPM).

The second model in which such effects appear is the Dubna Dynamical model (DDM) of
hadron-hadron scattering at high energies [15]. It is based on the general principles of quantum
field theory (analyticity, unitarity and so on) and takes into account basic information on the
structure of a hadron as a compound system with a central region in which the valence quarks are
concentrated, and a long-distance region filled with a color-singlet quark-gluon field. As a result,
the hadron amplitude can be represented as a sum of a central and a peripheral part. The DDM
predicts that the interaction of the Pomeron with the meson cloud of the hadrons will give an
additional term growing like

√
s. This term will become important for energies

√
s ≥ 500 GeV.

This peripheric effect will lead to a saturation of the overlapping function G(b), see Fig. 2. At
small momentum transfer, the DDM predictions agree with the experimental data at

√
s = 1.8

TeV. Interestingly, as shown in Fig. 2, the DDM predicts that the differential cross sections at
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Fig. 2: Predictions of the DDM. Left panel: Overlapping function at
√
s = 2 TeV (solid line) and at

√
s = 14 TeV

(dashed line). Right panel: Differential cross sections at
√
s = 23.4 GeV (solid thin line) and at

√
s = 1.8 TeV

(dashed line) and at
√
s = 14 TeV (solid thick line).

∑
χ2
i σtot(mb) ρ(t = 0) B(0) (GeV−2) normalization coefficient

91.2 82.3 ± 0.3 0.15fixed 18.1 ± 0.2 1fixed
88.3 85.± 1.7 0.15fixed 18.16 ± 0.2 0.94± 0.04
89.3 82.3 ± 0.3 0.18± 0.02 18.3 ± 0.2 1fixed
88.1 85.2 ± 3. 0.147 ± 0.04 18.1 ± 0.25 0.93± 0.07

Table 4: Fits at
√
s = 2 TeV [Input ρ(0) = 0.23; σtot = 82.7 mb; B(0) = 18.3 GeV−2 )].

−t ≈ 0.3 GeV2 will coincide for all high energies. Here again, the t-dependence of the slope-
B(s, t) will change its behavior at LHC energies because of saturation effects.

Let us now examine what the standard fitting procedure might give at the LHC in the case
of saturation of the BDL, which leads to a behaviour of the scattering amplitude very far from
an exponential. As an input, we shall use the predictions for the differential cross sections in the
framework of the DDM for two energies

√
s = 2 TeV and

√
s = 14 TeV. For the first energy,

the deviation from an exponential is small, whereas it becomes essential at the LHC. We can
simulate the future experimental data from this theoretical differential cross sections and assume
that 90 points will be measured in a t interval identical to that of the UA4/2 experiment. We
then randomize the theoretical curve assuming Gaussian errors similar to those of UA4/2. After
that, we can fit the simulated data with an exponential amplitude. The results of this exercise are
shown in Tables 4 and 5. It is clear that at

√
s = 14 TeV, the simulated data differ significantly

from the results of the fit, especially if one allows for a refitting of their normalisation.

Saturation of the profile function will surely control the behaviour of σtot at higher energies
and will result in a significant decrease of the LHC cross section. However, it is clear that the
simple saturation considered here is not enough, as the total cross section at the Tevatron will be
85 mb, which is 2 standard deviations from the CDF result. However, the increase of the slope
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∑
χ2
i σtot (mb) ρ(t = 0) B(0) (GeV−2) normalization coefficient

133 155.3 ± 0.5 0.15fixed 23.1 ± 0.2 1fixed
120 180. ± 8.6 0.15fixed 23.2 ± 0.15 0.74± 0.07
109 153.4 ± 0.7 0.26 ± 0.03 23.5 ± 0.17 1fixed
108 142.3 ± 2.8 0.29 ± 0.05 23.6 ± 0.2 1.15± 0.05

Table 5: Fits at
√
s = 14 TeV [Input ρ(0) = 0.24; σtot = 152.5 mb; B(0) = 21.4 GeV−2 ].

with t at small t is a generic feature of all saturating models.

3 Oscillations and additional method

As the standard fitting procedure can give misleading results, we need to find an additional
method to define or check the basic parameters of the hadron scattering amplitude. Especially
as there can be additional specific features in the t-dependence of the different parts of the am-
plitude. For example, there can be some oscillations in the differential cross sections which can
come from different sources. It was shown [16] that if the Pomeranchuk theorem is broken and
the scattering amplitude grows to a maximal possible extent, the elastic scattering cross section
would exhibit a periodic structure in q =

√
|t| at small −t. It was shown [17] that the oscila-

tions in the UA4/2 data over
√
|t| can be connected with a rigid-string potential or with residual

long-range forces between nucleons. These small oscillations in the differential cross section are
difficult to detect by the standard fitting method. Another method was proposed, which consists
in the comparison of two statistically independent samples built by binning the whole t-interval
in small intervals, proportional to

√
|t|, and by keeping one interval out of two. The deviations

of the experimental values from theoretical expectations, weighted by the experimental error, are
then summed for each sample k: [18].

∆Rk(t) =
∑

|ti|<|t|
∆Rki =

∑

|ti|<|t|
[(dσk/dti)exp − (dσ/dti)th]/δexpi , (2)

where δexpi is the experimental error. This method gives two curves which statistically coincide
if oscillations are absent and which grow apart with t if the oscillations are present.

If the theoretical curve does not precisely describe the experimental data, (for example, if
the physical hadron amplitude does not have an exactly exponential behavior with momentum
transfer), the sum ∆Rk(t) will differ from zero, going beyond the size of a statistical error.
This method thus gives the possibility to check the validity of the model assumptions and of the
parameters which describe the hadron scattering amplitude. Note that another specific method
was proposed in [19, 20].

4 Conclusion

As the cross section of proton elastic scattering will be measured at the LHC, we need to know
more about the behaviour of the hadron scattering amplitude at small t. The analysis of soft data,
taking into account the integral dispersion relations, shows a contribution of the hard pomeron
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in elastic scattering. In this case, it is very likely that at the LHC we shall reach the saturation
regime called the BDL It will manifest itself in the behavior of B(t) and of ρ(t) and lead to a
non-exponential behavior of the hadron scattering amplitude at small t, which will depend on the
form of the unitarization procedure. In other words, different impact parameter dependences of
the scattering amplitude will lead to different energy dependences of the ratio of the elastic to the
total cross sections.

The regime of the BDL may correspond to parton saturation in the interacting hadrons,
which is described by a non-linear equation. Indeed, there is a one-to-one correspondance be-
tween non-linear equations and the different forms of the unitarization schemes.

The possibility of a new behaviour of ρ(s, t) and B(s, t) at LHC energies has to be taken
into account in the procedure extracting the value of the total cross sections by the standard fitting
method. It is needed to use additional specific methods for the determination of the size of the
total cross section and of ρ(s, t), such as calculating ∆R and comparing independent choices.

The authors would like to thank for helpful discussions E. Martynov and P.V. Landshoff. O.S.
gratefully acknowledges financial support from FRNS and would like to thank the University of Liège
where part of this work was done.
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Elastic pp and p̄p scattering in the models of unitarized pomeron

E. Martynov
Bogolyubov Institute for Theoretical Physics, 03143 Kiev, Ukraine
e-mail: martynov@bitp.kiev.ua

Abstract
Elastic scattering amplitudes dominated by the Pomeron singularity
which obey the principal unitarity bounds at high energies are con-
structed and analyzed. Actually the good agreement with the data is
received for both models. The predictions made for the LHC energy
values display, however, the quite noticeable difference between the
predictions of models at t ≈ −0.4 GeV2. Apparently the future results
of TOTEM will be more conclusive to make a true choice.

1 Unitarized pomeron models

The purpose of the talk is to demonstrate the description of the data on elastic pp and p̄p scattering
at low and middle t in the dipole (σt(s) ∼ σel(s) ∼ ln s) and tripole (σt(s) ∼ σel(s) ∼ ln2 s)
pomeron models. They are constructed taking into account unitarity and analytical requirements
from the beginning as well experimental information on the cross sections, therefore they can be
named as models of unitarized pomeron.

As it was shown [1–3] the total cross sections of meson and nucleon interactions are de-
scribed with the minimal χ2 in the dipole and tripole models. Without entering the details we note
here these models describe also the small-|t| differential cross sections with the same level of pre-
cision (χ2/dof ∼< 1.05, dof ≡ degrees of freedom) as the model of the soft+hard pomerons [4,5]
did.

We would like to note the important fact (see more details in [6]). If the partial wave
amplitude develops the form

ϕ(j, t) = η(j)
β(j, t)

[(j − 1)m − kt]n , η(j) =
1 + e−iπj

− sinπj
,

then σel ∝ ln2mn−2−m s, σt ∝ lnmn−1 s, and one can derive from the obvious inequality
σel(s) ≤ σtot(s) {

mn ≤ m+ 1,
mn ≤ 3.

(1)

If m = 1 then n ≤ 2. It means that linear at t ≈ 0 trajectory is incompatible with σtot ∝ ln2 s.
In another words the unitarity limit for a linear trajectory is σtot ∝ ln s.

If σel ∝ σt then n = 1 + 1
m . Furthermore, if σt ∝ ln s then m = 1 and n = 2

what corresponds just to the dipole pomeron model. In the tripole pomeron model m = 2 and
n = 3/2 what means σt ∝ ln2 s.
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2 Dipole Pomeron Model

The dominating and subleading terms at high energy in this model are double and simple poles
with α(0) = 1 and possibly different slopes αd ′ and αs ′

ϕ(j, t) = η(j)
βd(t)

(j − 1− α′dt)2
+ η(j)

βs(t)
j − 1− α′st

.

We consider the simplest, exponential form factors (or residues). Then the pomeron terms in
(s, t) representation has the form

a(s, t) = gdln(−iz)(−iz)1+α′dt exp(bdt) + gs(−iz)1+α′st exp(bst),

where the variable z is proportional to cosine of scattering angle in t-channel

z = (t+ 2(s− 2m2
p))/z0, z0 = 1GeV2.

Let us consider two effective reggeons: crossing-even, R+(s, t), and crossing-odd, R−(s, t))
instead of f, ω and ρ, a2 (the latter two reggeons are of less importance at high energy). We take
into account their contribution in the standard form. However, we insert additional factor ZR(t)
that changes a sign at some t 1.

R(s, t) = ηRgRZR(t)(−iz)αR(t) exp(bRt), ZR(t) =
tanh(1 + t/tR)

tanh(1)
,

where ηR = −1/ sin(0.5πα+(0)) forR+-reggeon and ηR = i/ cos(0.5πα−(0)) forR−-reggeon.
Obviously these terms should be close to f - and ω-reggeons, respectively.

Going to extend wide regions of s (
√
s ≥ 5 GeV) and t (0.1 ≤ |t| ≤ 6 GeV2) 2 we

certainly need a few extra terms in amplitude to reach a good fit to the data. First of all it
concerns the odderon contribution. The existing data on total cross section and parameters ρ =
<ea(s, 0)/=ma(s, 0), as well known, do not show any visible odderon contribution. However,
it appears definitely to provide the difference of pp and p̄p differential cross sections at

√
s = 53

GeV and t around the dip. So, we add the odderon contribution vanishing at t = 0

O(s, t) = t2zZR−(t)
{
o1ln

2(−iz) exp(bo1t) + o2ln(−iz) exp(bo2t) + o3 exp(bo3t)
}

(−iz)1+α′ot.

At high energy and at t = 0 two main rescattering terms (or cut terms) in dipole model have
the same form as the input amplitude - double pole plus simple pole. It means that comparing the
model to experimental data we are not able to distinguish unambiguously input terms and cuts.
Then as result, at t = 0 one can use the input amplitude only. At t 6= 0 the situation occurs more
complicated because the slopes of trajectories in the cut terms are different from the input one.
These terms are important at large |t| but, in fact, they are already taken into account at t = 0.

1For crossing-odd term of amplitude such a factor is well known and describes crossover effect, i.e. intersection of
the ab and āb differential cross sections at t ≈ −0.15 GeV2. Our analysis [5] has shown that similar factor is visible
in crossing-even reggeon term.

2A more sophisticated form for residues should be considered for larger |t|.
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Keeping in mind the above arguments and willing a good description of the data at t = 0
we take pomeron, pomeron-pomeron and pomeron-reggeons cuts vanishing at t = 0. Certainly
they are not ”genuine” rescatterings but mimic them quite efficiently. Thus we write down

the pomeron contribution

P (s, t) = −gP (−iz)1+α′P t [exp(bP1t)− exp(bP2t)] ,

the pomeron-pomeron cut

CP (s, t) = − t

ln(−iz)gPP (−iz)1+α′P t/2 exp(bPP t), (2)

the pomeron-even reggeon cut

CR+(s, t) = − tZR+(t)
ln(−iz) ηR+gP+(t)(−iz)α+(0)+α′P+t exp(bP+t), α′P+ =

α′Pα
′
R+

α′P + α′R+

, (3)

and the pomeron-odd reggeon cut

CR−(s, t) = −i tZR−(t)
ln(−iz) ηR−gP−(−iz)α−(0)+α′P−t exp(bP−t), α′P− =

α′Pα
′
R−

α′P + α′R−
. (4)

3 Tripole Pomeron Model

The partial wave amplitude in the Tripole pomeron model (n = 2, m = 3/2 in Eq.(1) we take as

ϕtr(j, t) = η(j)

{
β1(j, t)

[(j − 1)2 − kt]3/2
+

β2(j, t)
[(j − 1)2 − kt] +

β3(j, t)

[(j − 1)2 − kt]1/2

}

where the second and the third terms are subleading contributions. The amplitude in (s, t)-
representation has the form

atr(s, t) = iz
{
g+1 exp(b+1t)ln(−iz) 2J1(ξ+τ+)

τ+
+ g+2

sin(ξ+τ+)
τ+

exp(b+2t)

+g+3J0(ξ+τ+) exp(b+3t)
}

where ξ+ = ln(−iz) + λ+, z is defined by Eq.(2), τ+ = r+

√
−t/t0, t0 = 1 GeV2, λ+, r+ are

constants.

Similar expression for odderon contribution (but introducing the factors t and ZR−(t)) is
given by

O(s, t) = ztZR−(t)
{
g−1ln(−iz) 2J1(ξ−τ−)

τ−
exp(b−1t)

+g−2
sin(ξ−τ−)

τ−
exp(b−2t) + g−3J0(ξ−τ−) exp(b−3t)

}
.

where ξ− = ln(−iz) + λ− and τ− = r−
√
−t/t0.
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Again, as in the dipole model, we add the “soft” pomeron

P (s, t) = −gP (−iz)1+α′P t exp(bP t),

the reggeon and cut contributions which are of the same form as Eqs. (2,3,4) in Dipole pomeron
model.

Another version of tripole pomeron model with the different subleading and odderon terms
was presented in the papers [7, 8]. Because of the chosen form of signature factors and residues
the amplitude in this model (AGLN model) has poles in physical region of t, that limits the region
of t, namely |t| ≤ 2.6 GeV2 [8], where the model can be considered. Besides, it leads to the
intercept value for the crossing-odd reggeon, α−(0) = 0.34. It is in a contradiction with the value
known from meson resonance spectroscopy data on ω-trajectory, αω(0) ≈ 0.43 − 0.46 [9]. In
the next Section we demonstrate the curves for differential cross sections obtained in the AGLN
model in comparison with the results of our Dipole and Tripole models at energies available and
future LHC.

4 Comparison with experimental data

The fitting pp and p̄p data on σt and ρ gives the parameters which are different from those
derived from the fit all (p, p̄, π- and K-meson) the data. Therefore at the first stage we fit the data
on all hadronic cross sections. We use the standard data set for the π±p and K ± p total cross
sections and the ratios ρ (at 5 GeV≤ √s <2000 GeV) [10] to find intercepts of C±-reggeons
and couplings of the reggeon and pomeron exchanges. There are 542 experimental points in the
region under consideration. They are described with χ2

tot/dof = 0.994 in the Dipole Pomeron
model and 0.993 in the Tripole Pomeron model.

At the second stage of the fitting procedure we fix all the intercept and coupling values
obtained at the first stage. The other parameters are determined by fitting the dσ/dt data (2532
points, [11]) in the region 0.1 ≤ |t| ≤ 6GeV2,

√
s ≥ 5GeV. As to the AGLN-model, it

Results for the quality of fitting are given in Table 1. In
the Figs. 1 - 5 we show experimental data at some en-
ergies and theoretical curves obtained in three models:
AGLN [8], Dipole and Tripole.

Table 1: Quality of the fit to dσ/dt
Number of χ2

tot/Np
points, Np Dipole Tripole

dσpp/dt 1857 1.512 1.815
dσp̄p/dt 675 1.418 1.67

was fitted in [8] to differential cross sections at
√
s > 9.7 GeV and |t| < 2.6 GeV2. Therefore

a disagreement between curves and data behaviours at lowest energies is not surprising in the
given model.

5 Conclusion

We compare three unitarized models of elastic scattering amplitude fitting the Dipole and Tripole
models to all existing data. We emphasize that the amplitude leading to the behaviour of σt ∝
ln2 s should be parameterized with a special care of the unitarity and analyticity restrictions on
properties of the leading partial wave singularity.
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The Figures demonstrate good description of the data within the considered models. How-
ever, the obtained χ2 hints that the Dipole pomeron model looks like more preferable.

We believe the most interesting and instructive result for further search of more realistic
model is shown in Fig. 5. Our predictions of the compared models (together with AGLN model)
for pp cross section at LHC energy are crucially different at |t| around 0.3 - 0.5 GeV2. Certainly
the future TOTEM measurement will allow to distinguish between three considered models.

I would like to thank Prof. B. Nicolescu and Dr. J.R. Cudell for many useful discussions.
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Fig. 2: p̄p at low energies
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Forward Physics with BRAHMS in pp annd dAu collisions at RHIC

Dieter Röhrich for the BRAHMS collaboration
1Department of Physics and Technology, University of Bergen, Norway

Abstract
Measurements of elementary pp collisions are an integral component
to understand heavy ion collisions. Results for pp collisions at 200 and
62.4 GeV are presented. At both energies NLO pQCD describes pion
production well. The nuclear modification factor for d+Au collisions at√
sNN = 200 GeV changes from a Cronin-like enhancement of pions

(and charged hadrons) at midrapidity to an increasing suppression at
forward rapidities. In central Au+Au collisions at 200 GeV a strong
pion suppression is observed in RAuAu at all rapidities, while protons
are enhanced at all rapidities; the nuclear modification factor does not
depend on rapidity.

1 Nuclear Modification factors

One of the goals of the relativistic heavy ion program is to study the properties of matter at high
temperature and high density. The explorations at the Relativistic Heavy Ion Collider (RHIC)
indicate that that at c.m. energies of 200 GeV per nucleon pair indeed such system is formed
with novel properties [1–4]. Part of these conclusions rely on comparison to elementary pp
collisions, where effects of a deconfined matter should not be present.

The high-pT spectra of particles produced in nuclear collisions are subject to various initial
and final state effects. Initial state effects like the Cronin effect enhance the yield in p+A and
A+A collisions as compared to nucleon-nucleon reactions at intermediate transverse momenta,
nuclear shadowing and gluon saturation suppress the yield. Parton energy loss due to gluon
bremsstrahlung during their passage through a dense medium with free color charges - created
in central Au+Au collisions - suppresses the hadron yield at high-pT. This final state effect
is also called jet-quenching. The degree of suppression/enhancement is quantified by means
of the nuclear modification factor RAA using p+p reference spectra scaled up with the average
numberNcoll of binary nucleonic collisions in the heavy-ion system (or byRCP where peripheral
collisions are used as a reference):

RAA =
(
d2NAA/dydpT

)
/
(
Ncoll · d2Npp/dydpT

)
. (1)

2 The BRAHMS experiment

The data used for this analysis were collected with the BRAHMS detector system. The BRAHMS
detector consists of two movable magnetic spectrometers, the Forward Spectrometer (FS) that
can be rotated from 2.3◦to 15◦, and the Mid-Rapidity Spectrometer (MRS) that can be rotated
from 34◦to 90◦relative to the beam line, and several global detectors for measuring multiplicities
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and luminosity, and determining the interaction vertex, and providing a start time (T0) for time-
of-flight measurement. The MRS is a single-dipole-magnet spectrometer with a solid angle of
6 msr and a magnetic bending power up to 1.2 Tm. Most of the pp data presented here were
recorded at magnetic field settings of 0.4 and 0.6 Tm. The MRS contains two time projection
chambers, TPM1 and TPM2 sitting in field free regions in front of and behind the dipole (D5).
This assembly is followed by two highly segmented scintillator time-of-flight walls, one (TOFW)
at 4.51 m and a second (TFW2) at either 5.58 m (90◦setting) or 6.13 m (other angle settings).
The FS consists of 4 dipole magnets D1, D2, D3 and D4 with a bending power of up to 9.2 Tm.
The spectrometer has 5 tracking stations T1 through T5, and particle identifying detectors: H2,
a segmented time-of-flight wall, and a Ring Imaging Cherenkov Detector (RICH) [5].

3 Inclusive pp measurements

The minimum bias trigger used to normalize these measurements is defined with a set of Cherenkov
radiators (CC) placed symmetrically with respect to the nominal interaction point and covering
pseudo-rapidities that range in absolute value from 3.26 to 5.25. This trigger required that at least
one hit is detected in both sides of the array.
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Fig. 1: Invariant cross section distributions for pion, kaons protons and anti-protons produced in p+p collisions at
√
s = 200 GeV at rapidities y=2.95 (left panels) and y = 3.3 (right panels). In all panels, positive charged particles

are shown with filled triangles and negative ones with open circles. The errors displayed in these plots are statistical.

The present analysis was done with charged particles that originated from collisions of
polarized protons with interaction vertices in the range of±40 cm. For the 200 GeV data invariant
cross sections were extracted in narrow (∆y = 0.1) rapidity bins centered at y=2.95 and y = 3.3,
respectively. Narrow rapidity bins are required to reduce the effects of rapidly changing cross
sections in particular at higher pT . Each distribution is obtained from the merging of up to
five magnetic field settings. The data are corrected for the spectrometer geometrical acceptance,

FORWARD PHYSICS WITH BRAHMS IN PP AND DAU COLLISIONS AT RHIC

293



 [GeV/c]
T

p
0.5 1 1.5 2 2.5 3 3.5 4 4.5

 y=3.3 

 [GeV/c]
T

p
0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

π
p

0

0.2
 p

p

0

0.5

1

1.5

2

y=2.95
 +π

-π
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(red circles) and antiproton/π− (blue squares). The shaded rectangles indicate an overall systematic error (17%)

estimated for these ratios. The dashed line shows an upper limit for the (proton + antiproton)/ π− + π+ ratio from

e+e− collisions.

multiple scattering, weak decays and absorption in the material along the path of the detected
particles. The overall tracking and track matching efficiency is about 80-90% and is included in
the extraction of the cross sections. Particles are identified by the RICH. The low momentum
part of the proton spectra is measured using the RICH in veto mode.

Data for y=2.95 and y=3.3 are presented for pions, kaons and protons in Fig.1. The pions
exhibit a power law behavior. The upper panels of Fig. 2 show the ratio π−/π+ at y=2.95 and
3.3 respectively. Within systematic errors both ratios display a falling trend as a function of pT .
This may be an indication of the dominance of valence quark fragmentation at these rapidities
and reflects the ratio of d to u quarks in the proton. The antiproton to proton ratios shown in the
middle panels are much smaller than unity. This is a clear indication that the fragmententation of
gluons cannot dominate the production of protons and anti-protons at these high rapidities. The
difference between proton/π+ (red circles) and antiproton/π− at both rapidities is remarkable
and caused by an unexpectedly large proton yield at these rapidities. Such large yield may be
related to the mechanism that transfers a conserved quantity, the baryon number, from beam
to intermediate rapidities i.e. baryon number transport. What remains as an open question is
how a mechanism that is thought to be mainly restricted to the longitudinal component of the
momentum, gives these protons such high transverse momenta.

The measured differential cross-sections are compared with NLO pQCD calculations [6]
evaluated at equal factorization and renormalization scales, µ ≡ µF = µR = pT . These calcu-
lations use the CTEQ6 parton distribution functions [7] and a modified version of the “Kniehl-
Kramer-Potter” (KKP) set of fragmentation functions (FFs) [8] referred to here as mKKP, as well
as the “Kretzer” (K) set [9]. The KKP set includes functions that fragment into the sums π++π−,
K+ +K− and proton + antiproton. Modifications were necessary to obtain functions producing
the separate charges for both π and K . Figure 3 shows that the agreement between the NLO cal-
culations that include the mKKP FFs and the measured pion cross section is remarkable (within
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Fig. 3: (Top) Comparison of π− and K+ invariant spectra at rapidity 2.95 to NLO pQCD calculations at 200 GeV.

The mKKP set of fragmentation functions (solid red line on-line) produce the best agreement with the pion and kaon

data. The protons and antiprotons are compared with the calculation using the AKK set divided by 2 (dashed red line),

see text for details. (Bottom) Relative differences between data and calculations. The top smooth curves show the
effect of setting µ = 2pT and the bottom curves µ = 1/2pT . For the baryons the (red) filled triangles show proton

data vs the AKK/2 set.

20% above 1.5 GeV/c). Similar good agreement was obtained for neutral pions at y=0 [11] and at
y=3.8 [12] at RHIC. The agreement between the calculated and the measured kaon cross-sections
is equally good. The difference between the mKKP and Kretzer parametrizations is driven by
higher contributions from gluons fragmenting into pions. This difference has been identified as
an indication that the gg and gq processes dominate the interactions at mid-rapidity [11]. The
present results indicate that such continues to be the case at high rapidity. The calculation that
uses the Kretzer set underestimates the pion yields by a factor of ∼ 2 at all values of pT while
for positive kaons the agreement is good at low momentum but deteriorates at higher momenta.
An updated version of FFs that we refer to as the “Albino, Kniehl and Kramer” (AKK) set has
been extracted from more data made available recently [10]. It reproduces well the proton + an-
tiproton distributions measured at midrapidity by the STAR collaboration [12]. At high rapidity,
the contribution from gluons fragmenting into proton or antiproton is dominant in this new set
of FFs ( 80% for pT less than 5 GeV/c [6]), and the calculated cross sections for both particles
consequently have nearly the same magnitude. We thus compare the measured cross sections for
proton and antiproton to the NLO calculation using the AKK FFs divided by 2 in the right-most
panel of Fig. 3. The calculation is close to the measured proton cross section but it is almost an
order of magnitude higher than the measured antiproton distribution. We conclude that the AKK
FFs cannot be used to describe baryon yields at high rapidity because they fail to reproduce the
measured abundance of antiprotons with respect to protons. Additional details can be found in
Ref. [13].

At 62.4 GeV, where the beam rapidity is 4.2, the spectrometer at forward angle samples
produced particle that carries a significant fraction of the available momenta (31.2 GeV/c). Thus
particle production is influenced by the kinematic limit. Data for identified charged hadrons were
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Fig. 4: Invariant cross section for π− at rapidity 2.7 and 3.3 at 62.4 GeV. The curves are NLO pQCD calculations as

described in the text.

collected at 2.3◦,3◦, 4◦, and 6◦. Figure 4 shows differential cross sections for π− for rapidities
2.7 and 3.3 [14]. The cross sections changes rapidily with rapidity at high pT where xF values
up to 0.5 are probed. The data are compared to NLO pQCD in the same figure. The calculation
are done in the same manner as for the 200 GeV using the KPP fragmentation function evalauted
at µ = pT scale. The calculation describe the overall magnitude and shape quite well, though at
the highest rapidity there is a tendency for the calculation to fall below the data at the highest pT .
This may be in agreement with the analysis [15] of 53 GeV π0 data from the ISR at a fixed angle
of 5◦ , comparable to the conditions for present measurements (2.3◦and 4◦), but at larger xF
where NLO pQCD is considerably below the data and with increasing discrepancy with xF . In
contrast to the aforementioned paper we do though conclude that NLO pQCD gives a satisfactory
description of the charged pion data at high rapidity.

4 Nuclear modification factors for cold nuclear matter

Particle production at forward rapidities probes partons at smaller x scales. Suppression effects
due to nuclear shadowing and/or gluon saturation are expected in d+Au collisions at large y.
Fig. 5 shows the nuclear modification factor RdAu for minimum bias d+Au events as a function
of pT and η [16]. RdAu rises with pT and falls with η. At midrapidity, RdAu goes above 1. The
so-called Cronin enhancement at η = 0 has been attributed to multiple scattering of the incoming
partons during the collision. At more forward rapidities the data show a suppression of the hadron
yields.

The suppression at forward rapidities is already visible at SPS energies, RpPb exhibits a
similar suppression trend, the suppression increases with increasing xF [17, 18].

4.1 CGC saturation models
Saturation effects should increase with the thickness of nuclear material traversed by the incom-
ing probe and indeed we see a greater suppression for more central collisions [16]. Both, RdAu

and RCP , as well as the pseudorapidity distribution of charged hadrons and the invariant cross
section of π0 production in d+Au collisions at RHIC can be quantitatively described by gluon
saturation within the framework of a Color Glass Condensate [19, 20].
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4.2 pQCD models
At higher pT pQCD based models which implement a Glauber-type collision geometry and in-
clude the standard nuclear shadowing and initial state incoherent multiple scattering agree rea-
sonably well with the measured RdAu and cannot be ruled out [21] (see also [22]). However, the
centrality dependence of RCP is underestimated [23] and there are doubts that nuclear shadow-
ing is strong enough to describe the data [24]. On the other hand, coherent multiple scattering of
a parton with the remnants of the nucleus in the final state can create an additional suppression
at low and intermediate pT which grows with rapidity and centrality [25].

4.3 Phenomenological models
RdAu has been studied in the framework of Gribov-Regge field theory [26], where shadowing in
dAu collisions is linked to diffraction. A parametrized gluonic parton distribution function (data
from H1 and ZEUS) can describe the suppression at forward rapidities at RHIC. Applying this
model to SPS data, gluonic shadowing, although present at SPS, cannot explain the observed sup-
pression effect at large xF . At SPS energies, shadowing due to valence quarks will dominate in
this kinematical region. In general, the large xF region is dominated by the fragmentation of va-
lence quarks, which may suffer from an induced energy loss via increased gluon bremsstrahlung
in cold nuclear matter [27]. In addition, momentum conservation at xF → 1 and final state
multiple scattering might modify RdAu and RCP (Fig. 6) [27, 28].

Fig. 6: Suppression due to large xF effects [27]: RdAu and RCP together with BRAHMS data.
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5 Final state effects in central nucleus-nucleus collisions

Pion (and charged hadron) transverse momentum spectra at midrapidity in central Au+Au colli-
sions at 200 GeV show a strong suppression at intermediate and high pT as compared to properly
scaled p+p interactions. This effect is attributed to the energy loss partons suffer while traversing
the hot and dense medium produced in these collisions.

Fig. 7 compares the (preliminary) nuclear modification factor for pions (left) and protons
(right) at midrapidity to the one at forward rapidities [29, 30] (central Au+Au collisions). The
pions are clearly suppressed, protons are enhanced and there is no dependence on rapidity.
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Fig. 7: Preliminary RAuAu for pions (left) and protons (right) at y=0 and y=3 (central Au+Au collisions).

The lack of the rapidity dependence is somewhat surprising since the bulk properties of
matter change considerably when going to forward rapidity: the rapidity density of pions drops
by a factor of three [31], the radial flow velocity decreases by 30% and the hadron chemistry
becomes ”SPS-like” [32]. However, a 3D-hydrodynamical simulation starting from a CGC initial
condition and including jets [33] can describe both the bulk properties as well as RAuAu. The
drop of the CGC initial parton distribution by a factor of two and the different time evolution of
the thermalized parton density - resulting in less jet energy loss at η = 3.2 -, is compensated by
a steeper pT -slope of the pQCD components at forward rapidities.

An alternative explanation for the constant RAuAu could be that the medium at RHIC is so
dense that only particles produced close to the surface can escape and that therefore the corona
effect masks the lower parton density at η = 3.2 [34].

6 Conclusion

Unbiased invariant cross sections of identified charged particles as function of pT were mea-
sured at high rapidity in p+p collisions at

√
s = 200 GeV and

√
s = 62.4 GeV. NLO pQCD

calculations reproduce reasonably well the produced particle (pions and kaons) distributions.

Suppression phenomena at forward rapidities in d+Au collisions have been seen at RHIC
(and SPS); a variety of processes can result in suppression. A strong pion suppression is ob-
served at all rapidities in central Au+Au collisions at 200 GeV, while protons are enhanced at all
rapidities (RAuAu); the nuclear modification factor does not depend on rapidity.

References
[1] I. Arsene et al., (BRAHMS collaboration), Nucl. Phys. A757 1 (2005).
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Manifestations of gluon saturation at RHIC

Javier L. Albacete
The Ohio State University

Abstract
The experimental results from RHIC provide accumulated evidence for
the discovery of the Color Glass Condensate. I present a brief review
of the saturation-based phenomenological works aimed at describing
various aspects of heavy ion collisions. I discuss the success of such
models in describing bulk features of multiparticle production in Au-
Au collisions as well as the rapidity dependence of the nuclear modi-
fication factor in d-Au collisions as the most compelling indication for
the presence of gluon saturation effects at RHIC.

1 Introduction

During the last years, the Relativistic Heavy Ion Collider (RHIC) has carried out an extensive
experimental program in Au-Au, Cu-Cu, d-Au and p-p collisions over an broad range of colli-
sion energies, from 19.2 to 200 GeV per nucleon, with the ultimate goal of forming and study-
ing the Quark Gluon Plasma (QGP). Besides the success of the RHIC program in this line of
research [1–3], its discovery potential has reached other areas of QCD. Thus, the analyses of
experimental data strongly suggest that RHIC collisions probe a novel regime of QCD governed
by coherent non-linear phenomena and gluon saturation: the Color Glass Condensate (CGC).
The CGC physics (for a review see, e.g. [4]) describes hadronic and nuclear wave functions at
small values of the Bjorken-x variable. In such regime the gluon occupation numbers reach the
maximal values allowed by unitarity i.e. they saturate. Further growth of the gluon densities is
suppressed by gluon-gluon repulsive interactions. Very succinctly, the CGC comprises classi-
cal (the McLerran-Venugopalan model [5] and Glauber-Mueller rescatterings [6]) and quantum
evolution (nonlinear JIMWLK [7] and BK [8] equations) effects both in small-x hadronic wave
functions and in scattering process, leading to a universal description of high energy QCD scat-
tering.

The presence of saturation effects in RHIC collisions could be argued a priori: At high en-
ergies, the colliding nuclei are highly Lorentz contracted along their direction of motion, leading
to the spatial superposition of the gluon fields associated to their constituent nucleons or, equiv-
alently, to large transverse gluon densities. Alternatively, the coherence length at small enough
values of Bjorken-x is eventually larger than the nuclear radius, lc∼ 1/2mNx>RA, so coher-
ent phenomena may play an important role in the collision dynamics. Actually, the theoretical
estimations for the saturation scale of the gold nucleus at RHIC were Q2

sA∼1÷2 GeV2, in prin-
ciple large enough for saturation effects to be important. However, the complicated dynamics of
Au-Au collisions at the highest RHIC energies, including the QGP formation and its subsequent
expansion, raises the question of whether such effects would have a clear experimental manifes-
tation or whether they would be blurred by the strong final state effects induced by the presence
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of the QGP. It turns out that some of the bulk features of multiparticle production in Au-Au col-
lisions, such as the collision energy, rapidity and centrality dependence of particle multiplicities,
seem to be mostly controlled by the initial state of the collision and, therefore, describable in
terms of CGC physics.

The RHIC program also includes d-Au reactions at collision energy
√
s= 200 GeV. The

d-Au program can be considered as an control experiment: the smaller energy densities involved
in d-Au reactions do not suffice for the formation of a QGP. This reduces significantly the role
of final state effects, allowing a clearer exploration of the initial state saturation effects. The
situation is also more favourable on the theoretical side. The problem of calculating the evolution
equations and production processes is better understood for dilute-dense scattering processes
(i.e. proton-nucleus) than for dense-dense (nucleus-nucleus) scattering. Actually, one of the
clearest signals of the presence of saturation effects at RHIC is given by suppression of the
nuclear modification factor with increasing rapidity in d-Au collisions, which was predicted by
CGC based calculations [9, 10].

2 Collision energy, rapidity and centrality dependence of hadron yields in d-Au and Au-
Au collisions

CGC physics offers a natural explanation to the lower-than-predicted multiplicities measured at
RHIC, namely the reduced flux of scattering centers, i.e. gluons, participating in the collision
(for a review of predictions in the pre-RHIC era see, e.g. [11]). Thus, theoretical investigations
[12] suggest a proportionality between the number of produced particles in A-A collisions and
the number of partons in the wave function of the colliding nuclei, mostly dominated by semi-
hard gluons with transverse momenta of the order of the saturation scale k ∼ Qs. Besides, the
largeness of the saturation scale Qs >> ΛQCD allows the use of weak coupling methods. The
phenomenological implementation of these ideas was pioneered by Kharzeev, Levin and Nardi
(KLN) [13–15], who extended the kt-factorization formalism of [16] to describe multiparticle
production at RHIC. In this approach primary gluon production in A-B collisions is given by the
convolution of the unintegrated gluon distributions (udg’s) of the projectile and target, ϕA(B),
according to

dNAB

dη d2pt d2b
=

4πNc αs
N2
c − 1

∫
d2kt d

2sϕA(x1, k, s)ϕB(x2, p− k, b− s) , (1)

where p and η are the transverse momentum and pseudo-rapidity of the produced gluon and b is
the impact parameter of the collision. The s integral in Eq. (1) extends over the collision area and
x1(2) = |p|/√s e±η , according to the 2 → 1 kinematics. Importantly, an analogous factorized
formula holds exactly for p-A collisions. The udg’s entering Eq. (1) present, at least, two distinct
regimes: a saturated one and a dilute or perturbative one. Very schematically:

ϕ(x, k) ∼
{
Cte for k < Qs(x)
Q2
s(x)
k2 for k > Qs(x)

(2)

The most important parameter in these calculations is the saturation scale, Qs(x), which provides
the separation between the two regimes. Its energy/rapidity dependence is modelled as

Q2
s(x) = Q2

0 (x0/x)λ , (3)
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where λ is often adjusted to the empirical value λ = 0.288 extracted from fits to small-x HERA
data on deep inelastic lepton-hadron processes in the framework of saturation models [17, 18].
The phenomenological connection between HERA and RHIC is motivated by the property of
geometric scaling displayed by small-x DIS data [19] and also exhibited by the solutions of the
BK equation [20]. Additionally, local parton-hadron duality is assumed in order to compare Eq.
(1), which describes primary gluon production, with the hadron spectra measured experimen-
tally. Such assumption relies on the expectation that final state effects, including hadronization,
do not modify substantially the angular distribution, and therefore the rapidity distribution of
produced particles. This approach provides an excellent description of the collision energy and
pseudo-rapidity dependence of the charged particle multiplicity data in d-Au and Au-Au colli-
sions at energies

√
s = 130 and 200 GeV, as shown in Fig 1. Importantly, the recent calculation

of running coupling corrections to the BK-JIMWLK kernel [21] allow to obtain a description of
the nuclear udg’s directly in terms of solutions of the BK equation which is in perfect agreement
with the energy and rapidity dependence of RHIC data [22], thereby reducing the uncertainties
associated to the parametrization of the nuclear udg’s. Moreover, the combination of CGC cal-
culations with subsequent hydrodynamic evolution of the system as carried out in [23] yields
an equally successful comparison with RHIC multiplicity data, confirming the dominance of the
initial state effects in this aspect of the collision.
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Fig. 1: Charged particle multiplicities in central Au-Au collisions at
√
s=130 and 200 GeV (left plot, figure from [22],

data from [2]) and in d-Au collision at
√
s = 200 GeV for two centrality classes: 0-30 % and 30-60 % (right plot,

figure taken from [24], Data from [25]).

The centrality dependence of RHIC multiplicities, normally discussed in terms of the num-
ber of participant nucleons in the collision area, Npart, is also naturally explained in saturation-
based calculations [14], as seen in Fig 2. Under the assumption of geometric scaling of the
nuclear udg’s, the mid-rapidity multiplicity resulting from Eq. (1) rises proportional to the satu-
ration scale which, as indicated by fits to DIS nuclear data, is roughly proportional to the number
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of participants, yielding, from [26]:

1
Npart

dNAA

d2b dη

∣∣∣∣∣
η=0

∝ √sλN
1−δ
3δ
part , (4)

with δ ≈ 0.8. Eq. (4) shows two important features: First, it yields an exact factorization
of the energy and centrality dependence of the mid-rapidity multiplicity. Second, it predicts
an approximate scaling of the multiplicity densities with respect to Npart. This is a distinctive
feature of saturation-based calculations with respect to the standard pQCD collinear approaches,
which predict scaling with the number of binary collisions. In the original KLN approach the
small violations of the Npart scaling rise as a consequence of running coupling corrections to Eq
(1). Both features of Eq (1) are exhibited by experimental data, as seen in Fig 2.
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Fig. 2: Right plot: Centrality dependence of charged particle multiplicities in Au-Au collisions at
√
s = 19.2, 130

and 200 GeV calculated in [27]. Data from [28]. Left plot: Transverse energy of produced gluons in Au-Au collisions

at
√
s = 130 GeV from the classical calculation in [29]. Data from [30].

An alternative approach to describe the multiplicities in Au-Au RHIC collisions was sug-
gested in [31]: The gluon fields immediately after the collision can be calculated via the classical
Yang-Mills equations of motion in the presence of a source term, given by the fast valence de-
grees of freedom of the colliding nuclei, [Dµ, F

µ,ν ] = Jν . Such approach has been intensively
pursued in numerical calculations, see e.g. [29, 32]. The results of these calculations are also
consistent with the bulk features of RHIC multiplicities discussed previously, as shown in in the
right panel of Fig 2, where centrality dependence of the transverse energy of produced gluons in
Au-Au collisions is compared to experimental data.

3 Nuclear modification factor in d-Au collisions

d-Au collisions are free of the highly distorting final state effects induced by the QGP, which
permits a better exploration of saturation effects in more exclusive observables, such as particle
spectra. The nuclear effects or, equivalently, the departure from superposition of incoherent
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nucleon-nucleon scatterings, are normally discussed in terms of the nuclear modification factor,
defined as

RAB =
dNAB

d2b dpt dy

Ncoll
dNpp

d2b dpt dy

, (5)

whereNcoll is the number of binary collisions. RdAu corresponding to charged particle spectra in
d-Au collisions (and in central over peripheral Au-Au collisions) at mid-rapidity exceeds unity
in an intermediate transverse momentum range of a few GeV, as seen in the left panel of Fig.
3. Such enhancement is commonly referred to as Cronin peak and admits a clear interpretation
in the semi-classical MacLerran Venugopalan model: the produced parton acquires an average
transverse momentum of the order of the saturation scale due to the multiple rescatterings in
the gluon field of the nucleus, which explains enhancement in the region pt ∼ Qs. At larger
rapidities towards the deuteron fragmentation function the Cronin enhancement turns gradually
into a uniform suppression in all the kinematic range accessible experimentally: RpA < 1. As
argued in [9, 10], such suppression is rooted in the shadowing built up by the non-linear small-x
evolution of the nuclear gluon densities. Thus, the suppression is originated in the slower growth
of nuclear densities with respect to those of the deuteron due to the relative enhancement of the
non-linear effects in denser systems. Presently, the agreement between theory and data is of semi
qualitative nature. Managing a more precise quantitative description of the suppression rate and
of the particle species dependence of RpA, which is different for e.g. pions and protons, remain
nowadays as challenging issues.

An important step in that direction was made in [35], where an excellent description of data
for charged particle production in d-Au collisions at different values of rapidity was achieved,
see Fig 3. The new ingredients in that calculation are a collinear treatment of the dilute pro-
jectile, i.e. described by means of standard parton distribution functions and DGLAP evolution,
plus an improved parametrization of the rapidity and transverse momentum dependence of the
nuclear udg’s, adjusted to reproduce HERA DIS data and some analytically known properties
of the solutions of BK-JIMWLK equations. The recent developments in the determination of
NLO corrections to the BK-JIMWLK equations also contribute largely to reduce the theoretical
uncertainties associated to the determination of the nuclear udg’s.

Contrary to d-Au collisions, the pt spectra in Au-Au collisions at midrapity is uniformly
suppressed, i.e. RAu−Au < 1. The empiric observation that RpA and RAA follow opposite
patterns with varying collision energy and centrality is crucial to interpret the suppression of the
latter as a final state effect due to jet quenching induced by the presence of a QGP.

4 Others

Another experimental result which suggests the presence of saturation effects is the phenomenon
of limiting fragmentation, the empirical observation that the rapidity distributions of produced
particles at various collision energies tend to some universal curve in the fragmentation region.
In the CGC framework, this property follows naturally from the unitarization of scattering ampli-
tudes in the dense target, and the approximate Bjorken scaling in the fragmenting nucleus. The
limiting curve then appears to be a reflection of the valence, large-x d.o.f of the projectile nu-
cleus [37]. Additionally, the calculations of valence quark production in d-Au collisions of [38]
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provide a qualitative explanation for the phenomenon of baryon stopping. The determination of
heavy flavour production of [39] for d-Au collisions is in agreement with available experimental
data. Other production processes have already been calculated in the framework of CGC (see [40]
for an extensive review): Electromagnetic probes (lepton and photon production), long range in
rapidity di-hadron correlations originated from di-gluon and gluon-valence quark production etc.
However, the experimental test of the predictions stemming from these calculations is not yet
possible due to the lack of the pertinent experimental data.

The definitive confirmation of the tentative conclusions drawn after the RHIC era awaits
until the start of operation of the CERN LHC, which will operate at unprecedentedly large col-
lision energies (5.5 TeV in Pb-Pb collisions and 7 TeV in p-Pb collisions). At such energies
saturation effects are expected to manifest at their best and the applicability of a purely high
energy formalism as the CGC is much better justified.
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Fig. 4: Charged particle spectra in minimum bias d-Au collisions at rapidities 0, 3.2 and 4, from [35]. Data from [36].
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Measurement of the cross section and the single transverse spin
asymmetry in very forward neutron production from polarized pp
collisions at RHIC

Manabu Togawa (on behalf of the PHENIX collaboration)
RIKEN Nishina Center and RIKEN Brookhaven Research Center (RBRC)

Abstract
A large single transverse spin asymmetry of forward neutron produc-
tion in polarized pp collision was discovered at RHIC. PHENIX exper-
iment will provide new data to discuss the production mechanism with
the polarized phenomenon. Results of the cross section and the sin-
gle transverse spin asymmetry of the forward neutron at

√
s=200 GeV

are presented. They may prefer the one pion exchange model which is
successful in explaining forward neutron cross section of other experi-
mental results.

1 Introduction

In 2001-2002, first polarized proton beams were accelerated to 100 GeV/c at the Relativistic
Heavy Ion Collider (RHIC). The 12 o’clock interaction point experiment (IP12) was searching
for single transverse spin asymmetries (AN ) which could be used as a monitor system for the
spin direction of proton beams. The IP12 experiment was originally designed to detect photon
and π0 asymmetries based on the large pion asymmetry at

√
s=19.4 GeV [1]. Unfortunately

their asymmetries had no significance in IP12 kinematics within the statistical error. However,
unexpected large single transverse spin asymmetry in forward neutron production was discovered
[2].

On the other hand, cross section measurements of the neutron production in such very for-
ward angle have been reported as interesting results by the ISR and HERA (ZEUS, H1) experi-
ments. ISR experiment performed unpolarized pp collision in

√
s between 30.6 to 62.7 GeV [3].

The forward cross section has peak structure at high Feynman-x (xF ) and scales well with xF ,
but not with center of mass energy. From the HERA, it is ep collision at

√
s ∼300 GeV, the cross

section of the forward neutron also has the peak structure [4].

These results are successfully described by One Pion Exchange (OPE) model [5]. Accord-
ing to this idea, one proton looks like meson-nucleon system and meson exchange is considered
as shown in Fig1. Two important variables, common for pp and ep in very forward kinematics
are,

xF = pL/pL(max) = En cos θn/Ep ∼ En/Ep (1)

pT = En sin θn ∼ xFEpθn (2)

From these variables, the squared momentum transfer from proton to neutron can be written as,

t ∼ − p
2
T

xF
− t0 t0 ≡

1− xF
xF

(m2
n − xFm2

p) (3)

308



X
a

p
N

R

t
θn

-Q 2

s’

(mp,Ep) (mn,En)

Fig. 1: A schematic diagram for forward neutron production with the

Reggeon (meson) exchange model for ap → nX reaction showing

with the Lorentz invariant variables s′, Q2, and t. a is proton or
positron for pp or e+p reaction. R indicates the Regge trajectory such

as π, ρ, a2 and Pomeron-π in the Regge theory. In case of the pion

exchange model, R should be π (OPE model).

OPE model could also help to understand the neutron asymmetry since it must arise from
an interference of spin-flip (g) and spin-nonflip (f ) amplitudes,

AN =
2Im(fg∗)
|f |2 + |g|2 (4)

and pion exchange is fully spin-flip interaction. This model was successfully applied to describe
the polarization of inclusive Λ production in pp collision [6]. The neutron asymmetry would
have the sensitivity for other Reggeon exchange which is spin-nonflip interaction even if it is
small amplitude. More precise measurement is expected to give a new knowledge in forward
physics.

PHENIX can make more precise measurements of neutron energy and position than that
of IP12 experiment. With the improved energy resolution, the cross section and xF dependence
of asymmetry can be extracted.

2 Experimental setup

A plan view of the experiment for the forward neutron physics at PHENIX is shown in Fig.2.

The PHENIX experiment has measured the forward neutrons by Zero-Degree Calorimeter
(ZDC) with position-sensitive Shower-Max Detector (SMD) which cover ±2.8 mrad of forward
and backward directions [7]. ZDC is composed of the W-Cu alloy plates and optical fibers.
One ZDC module has 1.7 interaction length and 51 radiation length. It can achieve 21% energy
resolution for the 100 GeV neutron with 3 ZDC modules in series (5.1 interaction length in total).
SMD is arrays of the fifteen plastic scintillators (for y-position : 8, for x-position : 7). Neutron
generates hadron-shower at the first ZDC module and position can be obtained by calculating
the center of gravity of SMD hits. ZDCs are placed on a production angle of 0 o downstream
of the RHIC Dx dipole magnets, which remove produced charged particles from pp collision.
For the safe operation, a scintillator has been installed in front of the ZDC to remove charged
particles from other sources. The correction values for taking cross section and asymmetry,
signal identification, efficiency and so on, have been studied by Monte-Carlo simulations which
are based on the GEANT3 with PYTHIA [8] and single-particle event generators.

In the OPE model frame work, it is interesting to study the other particles associated
with the forward neutron since they will be generated by the proton-pion scattering (X in the
Fig.1). For its study, we collected the data by not only the inclusive neutron trigger but also the
coincidence with charged particles detected in Beam Beam Counter (BBC). BBC is composed
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Fig. 2: A plan view of the experiment at PHENIX, not to scale. Shown are the principle components of the experiment.

of the 64 quartz radiators with photomultiplier tubes around beam pipe as a beehive structure.
BBCs are placed in up- and down-stream and they are covering ±(3.0 ∼ 3.9) and 2π in the
pseudo-rapidity and azimuthal angle, respectively.

The RHIC polarized proton beams were vertically polarized and bunched. The 120 bunches
in one beam had alternating spin directions, for example (↑,↓,↑,↓,..). We have collected the data
for spin up and down at the same time and reduce the systematic errors for the asymmetry mea-
surements by using these two spin patterns (square root formula, see equation (7)). The absolute
polarization was evaluated by the measurements of single transverse spin asymmetries caused by
Coulomb Nuclear Interference (CNI) in pC and pp scattering [9]. Average beam polarization is
∼48 % in this period.

We are using the data which were taken at SOUTH ZDC for neutron analysis. In this
case, we can define “forward asymmetry” (positive xF ) with the polarization of yellow beam.
When the measurement with the polarization of blue beam, asymmetry should be “backward
asymmetry” (negative xF ).

3 Analysis formulas

Since we do not estimate pT distribution from PHENIX data yet, the cross section was calculated
as a differential cross section,

dσ

dxF
=

1
dxF

Nneutron

L
(5)

where, Nneutron is the neutron yield corrected for efficiency, background and energy unfolding.
L is the integrated luminosity. pT distribution of ISR result was used for Monte-Carlo simulation
to estimate the efficiency with the assumption of the same pT distribution in both experiments.
To compare with ISR results, invariant cross section of ISR data were converted to the differential
one with same pT acceptance,

dσ

dxF
=

2π
xF

∫
E
d3σ

d3p
pTdpT (6)
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The single transverse spin asymmetry is defined as the differences over the sum of cross
sections in left and right regions with respect to the beam polarization direction (it is so called
left-right asymmetry). It can be calculated by square root formula which can cancel the detector
and luminosity asymmetries in the first order.

AN ≡
1
P

σL − σR
σL + σR

≈ 1
P

√
N↑LN

↓
R −

√
N↓LN

↑
R√

N↑LN
↓
R +

√
N↓LN

↑
R

(7)

where, N ↑L (N↑R) is experimental yield of left (right) part detector with colliding particles with
the up transverse spin. (Down transverse spin is assigned as ↓). P is beam polarization.

4 Results

4.1 Cross section
Obtained forward neutron cross section, dσ/dxF , at

√
s=200 GeV is plotted with the ISR results

in Fig.3. Acceptance cut is applied as radii from the center of the detector (r) less than 2 cm
for the measurement of very forward region (0 to 1.1 mrad). By equation (2), it is equivalent
pT range as 0 to 0.11xF GeV in each point and ISR invariant cross sections are converted to
differential cross section by equation (6). The PHENIX result is consistent with the ISR data.
There is no evidence for violation of the xF scaling at higher energy.

Fig. 3: Differential cross section of for-

ward neutron production from pp collisions at
√
s=200 GeV (circle points). Square points

show the results from ISR for various center of

mass energies.

4.2 Azimuthal angle dependence of single transverse spin asymmetry
For the first step of asymmetry result, its φ-dependence is shown in Fig.4. To measure a left-
right asymmetry, it is necessary to eliminate 0 o production. For the acceptance cut, we required
0.5<r<4.5 cm, or production angles 0.3 - 2.5 mrad. The ZDC hits are assigned coordinates (r,φ)
about the 0 o reference axis, and binned in φ counterclockwise, with φ=0 along the vertical axis.
A vertical beam polarization would give a left-right asymmetry for φ=±π/2 and a radial beam
polarization would give an asymmetry for φ = 0. Forward asymmetry is plotted in Fig.4 and there
is no significance for backward asymmetry. Data can be fitted by sine curve well.
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Fig. 4: φ-dependence of single transverse spin asymmetry for

forward neutron production from pp collisions at
√
s=200 GeV.

The sample was taken by the neutron trigger with charged parti-
cles detected in the BBC (3.0 < |η| < 3.9).

Fig. 5: xF -dependence of single spin asymmetries for forward neutron production from pp collisions at
√
s=200 GeV.

Left) Inclusive neutron trigger. Right) Neutron trigger with charged particles detected by the BBC (3.0 < |η| < 3.9).

4.3 xF dependence of single transverse spin asymmetry
Figure 5 shows xF dependence of neutron asymmetry for inclusive neutron with or without
charged particles in the BBC. xF is calculated using equation (1) after the energy unfold pro-
cess and assigned positive and negative sign to xF for the results from forward and backward
asymmetries respectively.

Significant negative asymmetries can be seen in the forward region in both trigger sets and
they look flat as a function of xF within the correlated errors due to the unfolding. From this
results, we can not see any differences between two trigger sets due to the large error bars.

4.4 Charged particles in the BBC tagged with the forward neutron
So far we investigated neutron measurement in forward kinematics. In addition, charged particles
associated with the forward neutron indicates interesting behaviors.

First, we show the multiplicity distribution observed by the BBCs in Fig.6. In case of the
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sample collected by requiring BBC self trigger, multiplicities of both BBCs are same distributions
(Left figure). However their distributions are changed in the neutron tagged sample; multiplicity
of forward BBC is lower than that of backward (Right figure).

This result may be explained by OPE model. In the OPE framework, charged particles
will be generated by the proton-pion scattering. Since energy of pion is lower than that of proton,
multiplicity of charged particles in the neutron direction may be lower.

 BBC hit multiplicity
0 5 10 15 20 25 30 35 40

1

10

210

310

410

510

BBC hit multiplicity (BBC trigger) 

 BBC hit multiplicity
0 5 10 15 20 25 30 35 40

1

10

210

310

410

510

BBC hit multiplicity tagged with forward neutron (neutron trigger) 

Fig. 6: The Multiplicity distributions of charged particles in BBC. Left) sample of the BBC self trigger (require at
least 1 hit for both BBCs). Right) sample of the neutron tagged trigger by SOUTH ZDC. The solid line shows that for

forward BBC in the neutron detection (SOUTH) and the dashed line shows that for backward BBC (NORTH).

The polarized phenomena were also observed in the charged particles for the sample of
the neutron association; we can observe the significant left-right asymmetries, especially in same
direction as neutron.

• Forward BBC (same direction as neutron) : -4.50 ± 0.50 ± 0.22 %
• Backward BBC (opposite direction as neutron) : 2.28 ± 0.55 ± 0.10 %

Without the neutron association, their asymmetries are consistent with 0.

In focus on the the asymmetry for same direction as neutron, its sign is negative as well as
neutron asymmetry. One possibility of its origin is that the neutron is generated via the excited
hadron state by the diffractive-like process, for example, ∆+ → n+π+. In this case, π+ can have
the same property of the neutron. Other consideration is that the information of polarization is
delivered to the proton-pion scattering directly. In this case, charged particle from the scattering
themselves can have asymmetry, but we may not know its sign. It is necessary to discuss with
the theoretical calculation.

5 Summary

The cross section and the single transverse spin asymmetry of forward neutron production in√
s=200 GeV polarized pp collision were measured at RHIC-PHENIX.

The cross section which is evaluated in 0-1.1 mrad is consistent with ISR results at very
forward region. There is no evidence of violation of xF scaling to higher energy. A significant
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Fig. 7: Overall view of the observes for the forward neutron physics at PHENIX. The heavy lines for neutron and

charged particles mean more hits than the thin lines. It indicates the particles have left-right asymmetry.

left-right asymmetry was seen in forward production, but not in backward. No xF -dependence
is found within the large correlated error due to unfolding. Charged particles which are detected
by BBC associated with the forward newton have also interesting behaviors; asymmetric multi-
plicity distributions at forward and backward BBC in the neutron direction and its finite left-right
asymmetries.

Let us summarize the phenomena for forward neutron production as follows.

1. Neutron cross section is scaled by xF from ISR energy to RHIC energy (
√
s=200 GeV)

and it has peak structure in high-xF
2. Finite AN of the forward neutron
3. Multiplicity of the charged particles associated with the forward neutron;

Forward (Same direction as neutron) < Backward (Opposite direction as neutron)
4. Finite AN of the charged particles associated with the forward neutron

and their schematic view is shown in Fig.7. By comparing with the OPE model which can explain
the previous experiments, it should also explain the cross section result, 1, as well as treatment
for ISR. For phenomenon of 2, left-right asymmetry will be generated by the interference of spin-
flip and spin-nonflip amplitudes, and pion exchange is fully spin flip interaction. Finite AN can
be explained by OPE. In case of 3, it will occur by the lower energy pion and proton scattering
in the OPE frame work (Fig.1). Last phenomenon, 4, two probabilities are shown. One is the
neutron production via the excited hadron state, for example, ∆+ → n + π+ and π+ can have
the same property as the neutron in this case. Other is the information of polarization which is
delivered to the proton-pion scattering directly.

OPE model can explain most of our results qualitatively and it is necessary to discuss it
quantitatively for the next step. Theoretical calculation is very welcome.
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Gluon saturation: from pp to AA

A. Kovner
Physics Department, University of Connecticut

Abstract
I briefly review the status of our understanding of the physics of satu-
ration as it is manifested in different scattering reactions.

1 Perturbative saturation - the basic approach

1.1 The setup
I start with a brief description of the basic perturbative approach to saturation physics. This line
of reseaech started with the seminal paper of Gribov, Levin and Ryskin[1]. My exposition will
however follow the logic stressed in the more recent developments of the last ten years or so. Our
aim is to describe hadronic processes at high energy. The picture is that of two objects which we
refer to as the ”projectile” and ”the target” colliding at large energy. The projectile moves to the
right, while the target to the left. We use throughout the ”projectile light cone gauge” A+ = 0.
In this gauge it is natural to think of the projectile as a bunch of color charges - partons. This
may be a pretty big bunch, especially if the projectile itself is a nucleus, but it nevertheless is the
natural light cone gauge perspective. The wave function of this bunch of charges is characterized
by the color charge density in the transverse plane ρa(x).

The interaction between the partons of the projectile and the target fields at high energy is
eikonal, so that the second quantized S-matrix operator can written as

Ŝ = e
i
∫
x⊥

ρa(x)αa(x)
(1)

and the forward scattering amplitude

S = 〈T |〈P | ei
∫
x⊥

ρa(x)αa(x) |P 〉|T 〉 (2)

1.2 Evolution
To discuss the evolution of the scattering amplitude with energy we boost the wave function of
the projectile. In a gauge theory like QCD, the boost results in ”materialization” of softer gluons
from the ”longitudinal field”. Formally this is described by acting with the evolution operator Ω
in the projectile state.

|P 〉 → ΩY [ρ, a, a†]|P 〉 (3)

The color charge density increases due to presence of these soft gluons:

ρa → ρa +
∫

Y
dη a†(η, x)T aa(η, x) (4)
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This process has two important aspects, both of which must be understood. First, the
evolution operator Ω[ρ] - has a nontrivial dependence on ρ. Thus the probability of emission
of soft gluons in the boosted wave function depends nonlinearly on the valence color charge
density. Secondly, emission of new gluons is associated with increased importance of multiple
scattering contributions to the cross section. The factor ei

∫
(ρa+a†Taa)αa - accounts for these

multiple scatterings. All gluons are allowed to scatter independently of each other.

The ”Holy Grail” of the perturbative saturation approach is to derive the evolution equation
which takes into account both effects without further approximations beyond that of the eikonal
nature of scattering. In the following I try to summarize how far are we from this goal at present,
in relation to different processes.

2 Where do we think we are.

2.1 Scattering of ”small” on ”large”: p-A scattering.
The situation when the projectile is a small object, and therefore its wave function can be treated
perturbatively has been well studied and the evolution equation for the scattering matrix has
been derived[2],[3],[4] In this case Ω turns out to be a coherent operator. It creates a ”classical”
Weizsacker-Williams field

Ω = e
i
∫
x,z

[
ρa(x)

(x−z)i
(x−z)2

(
aai (z)+a†ai (z)

)]
(5)

All multiple scattering effects in the evolution are taken into account: e.g. ALL soft gluons are
allowed to scatter.

In this limit the color charge grows according to BFKL evolution

ρ2
Y ∝ ρ2

0e
ωY (6)

At large enough rapidity Y ∼ 1
ω almost all gluons in the wave function are soft, that is have

rapidity closest to the target. Simultaneous scattering of these soft gluons is the leading effect
beyond the simple perturbative picture.

The scattering amplitude unitarizes (does not exceed unity) due to these multiple scattering
effects even though the color charge density in the wave function grows exponentially (BFKL
type growth).

2.2 Large on small: A - p scattering.
Physically of course this is the same situation as before. Technically however the evolution
now resides in the wave function of a large dense object. Thus we need to take into account
nonperturbative effects in the wave function evolution.

The equation which describes the evolution is the so called JIMWLK equation [5]. Schemat-
ically:

d

dY
S = αHJIMWLK[S]S (7)

where HJIMWLK is the evolution operator defined explicitly in [5].
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What goes into the derivation of this equation? First of all, the evolution of |P 〉 is fully
nonlinear[6]. In other words all nonperturbative corrections which are due to large charge density
have been resummed. On the other hand, since the target is assumed to be small, the multiple
scatterings are less important. Thus produced soft gluons in the JIMWLK equation are allowed
to scatter only via two gluon exchange. Thus only ”long range” multiple scatterings - that is only
processes in which particles at different rapidities scatter simultaneously are taken into account.

In fact it is the ”long range” scatterings that dominate the multiple scattering contributions
in the dense regime. To see this we note that in the saturated wave function the color charge
density grows slowly with rapidity:

ρ2
Y ∼ ρ2

0 + #Y (8)

Gluons are distributed homogeneously in rapidity. Likely multiple scatterings are when the glu-
ons sit far away from each other in rapidity, with ”short range” multiple scattering being sup-
pressed by powers of rapidity.

2.3 Small on small : p - p scattering.
This would seem to be the simplest of all possible situations, since both scattering objects are
perturbatively small. However if we want to follow the evolution to very high energy, the situation
is actually quite intricate. The point is that a small and dilute object when evolved to high rapidity
becomes dense, and the perturbation theory breaks down even in this case.

At low enough rapidity, Y < 1
ω lnαs, the evolution is indeed simple. It is just the BFKL

equation. However for larger rapidity neither JIMWLK nor KLWMIJ evolutions are adequate.

It is obvious why KLWMIJ breaks down. At Y ∼ 1
ω lnαs the density in the projectile

becomes large and the ”dilute” wave function evolution is not appropriate. It is a little less
obvious why JIMWLK evolution is no good. The reason is that there is a range of rapidities
(just before the saturation is reached) where ρ is not small but the evolution is still ”BFKL type”.
The density is still growing exponentially and thus the ”short range multiple scatterings” are
important. Since those are not incorporated in the JIMWLK evolution, the error made is of the
same order as the finite density corrections accounted for in the JIMWLK evolution.

So what do we do? We have to learn how to take into account properly both sets of
corrections, if we want to describe the scattering of two small objects at very high energy, This
has still not been achieved. There has been quite a bit of activity on this particular problem in
the last couple of years. In particular there has been much work on what has been known as the
”statistical model” approach [7]. In particular the recent paper [8] contains an inspiring analysis
of the front propagation in stochastic FKKP equation.

However my understanding is that the connection of this approach to QCD is at best tenu-
ous. If the conclusions of the ”statistical approach” are taken literally, one would have to conclude
that the BFKL equation does not hold even for small density (low energy) if the two scattering
objects are very different in size (e.g. two dipoles of different sizes). This is not the case in
QCD. In general the physics of this approach seems to be very different from the ”finite den-
sity+multiple scatterings”, and it is hard to see that QCD contains such additional physics. It
would be very interesting to pinpoint the relation of this approach to QCD, and in this context
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I would like to ask our colleagues who are working on the statistical models to try and provide
a more concrete and precise relation to QCD. Time will tell if these models can teach us about
QCD physics, but at the moment I am skeptical.

2.4 Large on large: A-A scattering.
This is obviously most complicated situation. The evolution must be accounted for in its full
nonlinear glory. This is still work in progress, and not much can be said yet. Except, that
calculating the scattering amplitude is kind of silly, since it is all saturated, S ≈ 0, and small
”preasymptotic” deviations from saturation are not really that interesting.

3 What should we calculate, and what can we calculate?

The total cross section is in fact not a good quantity to calculate in the perturbative saturation
approach. The reason is that we know [9] that the Froissart bound is violated by this approach,
since gluons are always massless. So peripheral events dominate the cross section and it grows
as a power of energy.

We thus need to extend the approach to calculate more infrared safe observables. Recently
there has been progress in this direction. The framework for calculation of semiinclusive observ-
ables has been developed in [10]. This includes various diffractive amplitudes and amplitudes at
fixed transverse momentum transfer.

Inclusive gluon production has also been addressed. In particular the expression for double
inclusive spectrum has been derived in [11]. This has been extended to an arbitrary number of
gluons in [12].

This is a good beginning, but its only the beginning. First, all the expressions so far have
been derived for the p-A scattering. And second, this program awaits numerical implementation
if some numbers and/or plots are to be obtained.

3.1 Towards AA
Some progress has been made recently in approaching the general AA scattering problem. In
particular [6] calculates the evolved wave function in the dense regime. The evolution operator
turns out to have the form

Ω = ei
∫
x

[
bai (x)

(
aai (x)+a†ai (x)

)]
e

∫
x,y

(aai (x)+a†ai (x))Mab
ij (x,y)(abj (y)+aj†b(y)) (9)

As opposed to the dilute case, the evolution produces many gluons in the wave function. It now
has to be understood how to include all the relevant multiple scattering effects. One expects that
the full evolution will incorporate the so called Pomeron loops. They must affect strongly the
more exclusive observables. In particular we expect the number of produced gluons below the
saturation momentum to grow with rapidity only very slowly:

dN

dY
∝ Y (10)

A very interesting program is being pursued in [13], where the problem of calculating
inclusive gluon production is being attacked starting with scattering of classical fields.
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3.2 Next to leading order.
Perhaps the most important set of corrections we need to calculate to be able to do sensible
phenomenology based on the saturation theory, is that due to next to leading order in αs. As is
well known, the BFKL equation suffers from large next to leading order corrections. The same
should be true in the present context.

The corrections due to quark-antiquark final states and the running of αs have been anal-
ysed recently [14],[15]. The effect of these corrections is indeed very large. The evolution is
slowed down considerably. Both the running of the coupling and the ”genuine” NLO effects
work in this direction. One can get a rough idea of the significance of the effect by looking
at the numerical results of [15]. E.g. the saturation momentum dependence on rapidity for a
fixed coupling case at αs = 0.25 is dQ2

s
dY ≈ 0.4, while for running coupling it is approximately

dQ2
s

dY ≈ 0.15.

It is important to understand the effects due to gluons, which presumably will be even
more significant.
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Photoproduction in Ultra-Peripheral Heavy-Ion Collisions

Joakim Nystrand
Department of Physics and Technology, University of Bergen, Bergen, Norway

Abstract
This presentation summarizes the results on ultra-peripheral collisions
obtained at RHIC. It also discusses some aspects of the corresponding
electromagnetic interactions in pp and pp collisions.

Ultra-peripheral nucleus-nucleus collisions are defined as collisions in which the distance
between the nuclei is large enough that no purely hadronic interactions can occur. This roughly
means impact parameters larger than the sum of the nuclear radii. The interaction is then instead
mediated by the electromagnetic field. For a recent review of ultra-peripheral collisions, see [1].

1 Ultra-peripheral collisions at RHIC

The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory began operating
in the year 2000. This meant an increase in the maximum center of mass energies for heavy-ion
collisions by more than an order of magnitude compared with the earlier fixed-target experiments.

At very high collision energies, the electromagnetic field surrounding a nucleus contains
photons energetic enough to produce new particles in ultra-peripheral collisions. This can hap-
pen in a purely electromagnetic process through a two-photon interactions or in an interaction
between a photon from one of the nuclei and the other (“target”) nucleus. The photon spectrum
for a minimum impact parameter, bmin, extends to ∼ γ/bmin, which corresponds to about 300
GeV in the rest frame of the target nucleus in a gold on gold collision at RHIC. These photon
energies are thus far above the threshold for particle production. The coherent contribution from
the Z protons in the nucleus, furthermore, enhances the number of equivalent photons by a factor
Z2.

The high photon energies and fluxes lead to large cross sections for several photon-induced
reactions; some have cross sections much larger than the total hadronic cross section and are ma-
jor sources of beam-loss at heavy-ion colliders [2]. For example, the cross section for breaking up
one of the nuclei in an Au+Au collision at RHIC through a photonuclear interaction is 95 b. The
cross section for exchanging two photons and thereby simultaneously breaking up both nuclei in
the same event is also large, about 4 b. The dominating fragmentation mechanism is excitation
to a Giant Dipole Resonance followed by emission of one or a few neutrons.

The mutual Coulomb dissociation has been studied at RHIC by detecting the forward
going neutrons in Zero-Degree Calorimeters [3]. These are located 18 m downstream from the
interaction point and have an angular acceptance of θ < 2 mrad with respect to the beam axis.
The relative contribution of the photon-induced fragmentation to the total cross section was found
to be in good agreement with calculations based on the method of equivalent photons combined
with measured γ+Au cross sections. The calculations also reproduced the neutron multiplicity
distribution for photon-induced events reasonably well.
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Another ultra-peripheral process with very high cross section is two-photon production
of electron-positron pairs. Of particular interest is the sub-class of events where the produced
electron binds to one of the beam nuclei. The captured electron changes the charge and thus
the rigidity of the ion, leading to a different deflection by the guiding magnets in the accelerator
ring and eventual loss. Under certain conditions, the ion with an attached electron will hit the
wall of the beam-pipe enclosure at a well-defined spot down stream of the interaction point. At
the Large Hadron Collider at CERN, because of the high beam flux and energy, this has the
potential to heat and quench the superconducting magnets near this area. The phenomenon was
recently observed for the first time at RHIC with Cu–beams [4]. The location of the point of
incidence (≈140 m downstream from the interaction point) and the multiplicity of secondary
particles resulting from the interaction of the 100 A GeV Cu beam with the beam-pipe and the
surrounding magnets were found to be in good agreement with theoretical calculations, although
the experimental uncertainties were large.

Particle production in ultra-peripheral collisions has been studied by both of the two large
experiments at RHIC, STAR and PHENIX. Some of these results will be discussed in the follow-
ing two sections.

2 Results from STAR

The first results on particle production in ultra-peripheral collisions at RHIC were studies of
coherent production of ρ0 mesons in Au+Au interaction by the STAR collaboration [5]. The
cross section to produce a ρ0 in an Au+Au collision at RHIC is about 10% of the total inelastic,
hadronic cross section.

STAR has also published final results on two-photon production of free e+e−–pairs [6] and
preliminary results on photo-production of ρ0 in d+Au collisions [7] and coherent production of
four pions in Au+Au collisions [8].

In d+Au collisions more than 90% of the photo-produced ρ0 mesons come from events
where the gold nucleus emitted the photon. The interactions can leave the deuteron intact γ+d→
ρ0 + d or lead to break-up γ+ d→ ρ0 +n+ p. Two triggers were implemented to study the two
cases. Both were based on triggering on low multiplicity combined with a “topology” cut to reject
cosmic rays. The multiplicity was measured in the STAR Central Trigger Barrel, which consists
of 240 scintillators covering the full azimuth in the pseudo-rapidity range |η| < 1. To trigger
on interactions where the deuteron breaks up, it was in addition required that the forward going
neutron should be detected in the Zero Degree Calorimeter. Examples of the π+π− invariant
mass distributions for the two samples are shown in Fig. 1.

The invariant mass distribution is well described by the sum of the amplitudes for a reso-
nant ρ0 term and a non-resonant (Söding) term:

dσ

dmππ
=

∣∣∣∣∣A
√
mππmρΓρ

m2
ππ −m2

ρ + imρΓρ
+B

∣∣∣∣∣

2

+ fp (1)

Here, Γρ = Γ0 · (mρ/mππ) · [(m2
ππ−4m2

π)/(m2
ρ−4m2

π)]3/2 is the momentum dependent width,
Γ0 the natural width, and fp is a second order polynomial describing the background (estimated
from the like-sign yield). The mass and width of the ρ0 are consistent with the Particle Data
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Fig. 1: Invariant mass distributions for photoproduction of π+π−–pairs in d+Au interactions at RHIC. The left (right)

figure is for reactions where the deuteron remains intact (breaks up). From [7].

Group values. The ratio A/B is a measure of the relative resonant to non-resonant contribution.
The values observed in d+Au interactions (0.544 and 0.547 GeV−1/2) are consistent, within
errors, with the value obtained in Au+Au interactions, 0.81 ± 0.08 ± 0.20 GeV−1/2 [5].

3 Results from PHENIX

The PHENIX experiment has studied the production of high-mass (minv > 1.6 GeV) e+e−-pairs
and J/Ψ mesons in ultra-peripheral Au+Au collisions [9]. A trigger was implemented for events
where at least one of the nuclei break up through Coulomb dissociation. The trigger required
a cluster with energy deposit E > 0.8 GeV in the Electromagnetic Calorimeter in coincidence
with a signal in one of the Zero Degree Calorimeters and in anti-coincidence with a signal in
the Beam-Beam Counters. The latter are Cherenkov counters covering 3.0 < |η| < 3.9 and the
absence of a signal corresponds to a rapidity gap on each side of the produced particles.

In the offline analysis, the electron and positron were identified by the Ring Imaging
Cherenkov Counters and Electromagnetic Calorimeters. These detectors are part of the PHENIX
mid-rapidity tracking arms and cover 2× 90o in azimuth and |η| < 0.35 in pseudo-rapidity. Sig-
nal events were defined as those events with exactly one reconstructed e+ and one reconstructed
e− in opposite tracking arms. Events with a like-sign pair were used to estimate the amount of
background.

The transverse momentum and invariant mass distributions with the background from like-
sign pairs subtracted are shown in Fig. 2. The transverse momentum is here the absolute value
of the vector sum of the transverse momenta of the the e+ and e−.

The results show that exclusive production of high-mass e+e−-pairs in Au+Au interactions
at RHIC can be understood as a continuum contribution from two-photon production γ + γ →
e+e− and a contribution from photoproduction of J/Ψs decaying into e+e−-pairs.

The cross section to produce a J/Ψ in a coherent interaction is much larger than the cross
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Fig. 2: Transverse momentum (left) and invariant mass (right) distributions for e+e−-pairs produced in ultra-

peripheral Au+Au collisions. The background estimated from events with like-sign pairs have been subtracted (hence

the negative entries in some bins). The curve in the left figure corresponds to the nuclear form factor. The solid curve

in the right figure is a fit to the sum of a continuum and J/Ψ distribution. The two additional dashed curves indicate

the maximum and minimum continuum contributions. From [9].

section to produce a continuum pair in the corresponding mass range, but the branching ratio for
J/Ψ→ e+e− (5.94 %) and the broadening of the J/Ψ peak because of the limited experimental
resolution make the rates comparable in the relevant mass range [10].

The transverse momentum distribution shows a clear peak at very low transverse momenta,
which is expected for coherent events where the momentum transfer is restricted by the nuclear
form factor. The signal events with pT > 100 MeV/c are believed to come from quasi-elastic
J/Ψ photoproduction, γ + nucleon→ J/Ψ + nucleon [11].

The total net number of e+e−-pairs in the sample (integrated luminosity 120 ± 10 µb−1)
is about 40, of which ≈10 are estimated to come from decay of J/Ψs. The observed rates are in
reasonable agreement with expectations for γγ → e+ + e− and photoproduction of J/Ψ [10].

4 Ultra-peripheral proton-proton collisions

Electromagnetic interactions can of course also be studied with beams of protons or anti-protons,
but there is then no enhancement (∝ Z2) in the photon flux. Although evidence for electro-
magnetic particle production in pp collisions were observed at the ISR almost 30 years ago [12],
electromagnetic interactions in pp collisions have so far attracted relatively little attention, much
less than particle production in doubly diffractive interactions, for example. The CDF Collabo-
ration has, however, recently published its first paper on two-photon production of e+e−–pairs
with minv > 10 GeV in pp collisions at the Tevatron [13].

The choice of minimum invariant mass is unfortunate, since it falls right in the range of
the Υ(1S), Υ(2S), and Υ(3S) vector mesons, and, as will be shown, these vector mesons are
expected to give a significant contribution to the exclusive production of e+e−–pairs through the
decay Υ→ e+e−.

CDF is also analyzing the exclusive production of µ+µ−–pairs, pp → pp + µ+µ−, at
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lower invariant masses [14]. The two main contributions to these events are, as with heavy-ion
beams, γγ → µ+ +µ− and γ+Pomeron→ J/Ψ or Ψ′, followed by decay of the vector meson to
a dilepton pair. There could also be a contribution from the elusive Odderon through the reaction
Odderon+Pomeron → V → µ+ + µ− [15, 16]. The size of this contribution is not very well
known; it is possible that it is comparable to the other two processes.

There could also be a background to the J/Ψ production from Pomeron+Pomeron inter-
actions producing a χc via the decay χc → J/Ψ + γ where the photon escapes detection. This
background is a problem only for the J/Ψ and not for the Ψ′.

Figure 3 shows the calculated yields for continuum µ+µ−–production and photoproduc-
tion of J/Ψ and Ψ′ followed by decay to µ+µ−–pairs for pp collisions at the Tevatron (

√
s =

1.96 TeV). It is required that both muons are within |η| < 2 to simulate the typical experimental
acceptance at high-energy colliders. The vector meson production is calculated as in [17], but
with a larger cut-off for the minimum impact parameter (b > 1.4 fm rather than 0.7 fm). This is
believed to better reproduce the condition of no accompanying hadronic interactions. The input
γ + p → p + Ψ′ cross section is taken from [18]. The continuum γ + γ → µ+µ− is calculated
under the same conditions as the vector mesons. The contribution from two-photon interactions
is much smaller in pp or pp collisions compared with in heavy-ion collisions (cf. Fig. 2). The
calculated cross sections are given in Table 1.
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Table 1: Cross sections for photoproduction of vector mesons and µ+µ−–pairs in pp collisions at the Tevatron (
√
s =

1.96 TeV). The rightmost column shows the cross section multiplied with the branching ratio for decay into µ+µ−.

σ [nb] σ · Br(µ+µ−) [nb]

p+ p→ p+ p+ J/Ψ 15 0.87
p+ p→ p+ p+ Ψ′ 2.4 0.018
p+ p→ p+ p+ µ+µ− (minv > 1.5 GeV) 2.4 2.4

5 Summary

The fact that particles are produced in ultra-peripheral collisions and that the experiments that
were designed to study central collisions can detect them have been shown by the STAR and
PHENIX experiments at RHIC. Hopefully, the increase in the cross sections with energy and the
extended trigger capabilities of future experiments will lead to an increased interest for ultra-
peripheral collisions in proton-proton and heavy-ion collisions at the Large Hadron Collider.
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Abstract
We argue that in the small x processes, in the black disc QCD regime
(BDR) a very forward parton propagating through the nuclear matter
should loose a significant and increasing with energy and atomic num-
ber fraction of its initial energy as a result of dominance of inelastic
interactions, causality and energy-momentum conservation. We eval-
uate energy losses of forward partons in the kinematics close to BDR
and find them to lead to the significant suppression of the forward jet
production in the central NA collisions at collider energies with a mod-
erate suppression of recoiling jet at central rapidities. We find our ex-
pectations to be in agreement with the recent RHIC data.

1 Introduction

It is well understood now that one of distinctive properties of hard processes in pQCD is the
fast increase with energy of cross sections of hard inelastic processes and their significant value.
Thus the interactions of the leading partons carrying finite fraction η of projectile momentum
and produced in the sufficiently small x hard processes should be highly inelastic. Dominance
of inelastic processes leads to the specific pattern of absorption for a parton propagating through
the nuclear medium which is the main subject of this talk. For a more detailed discussion and
extensive references see [1].

The difference between geometry of collisions dominated in the hard and soft QCD pro-
cesses should disappear in the limit of complete absorption-black disc regime (BDR ) i.e. at
x ≤ xBDR(Q2) where Q2 is the scale of hard processes and x = (Q2/ηs). Decomposition of
amplitude of DIS over powers of 1/Q2 disappears and therefore QCD factorization theorem is
violated and at smaller x � xBDR hard partons are completely absorbed. With increase of Q
leading partons leave kinematics of BDR and at sufficiently large Q conventional LT approxima-
tion will be restored. In this kinematics concept of fractional energy losses would become useful.
Thus propagation of parton carrying significant fraction of projectile momentum differs strongly
from that for the propagation of a parton in the center in rapidity where the elastic rescatterings
of a parton dominates. Such a parton looses a finite energy [2] while propagating a distance L:
∆E ≈ 0.02GeV L2/Fm2.

In contrast in the deep inelastic processes for example DIS off a proton the fraction of
initial photon energy lost by incident parton is ∼ 10% within DGLAP approximations, cf. dis-
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cussion in section 2. Numbers are probably similar within the NLO BFKL approximation corre-
sponding to the rapidity interval between the leading particle and next rung in the ladder of about
two. (It is equal to zero within the LO BFKL approximation which systematically neglects the
loss of energy by energetic particles.)

In the regime where x ≈ xBDR the contrast between the different patterns of energy losses
becomes dramatic. A parton with energy E propagating sufficiently large distance L through the
nuclear media should loose energy:

∆E/E = c(L/L0) (1)

with c ≈ 0.1 in small x processes, and L0 ∼ 3fm the mean free path for the interaction of a parton
in BDR and c(L/L0)→ 1 for x� xBDR. This energy loss exceeds by orders of magnitude the
losses in the large x regime.

Another subtle effect characteristic for a quantum field theory has been found long before
the advent of QCD: eikonal interactions of energetic particle are cancelled out as the conse-
quence of causality. This cancellation including additional suppression of eikonal diagrams due
to energy-momentum conservation is valid for the exchanges by pQCD ladders with vacuum
quantum numbers in the crossed channel. The cancellation of the contribution of eikonal dia-
grams has been demonstrated also for the exchanges by color octet ladders as the consequence
of bootstrip condition for the reggeized gluon. Thus sufficiently energetic parton may experi-
ence only one inelastic collision. To produce n inelastic collisions wave function of energetic
parton should develop component containing at least n constituents. This effect leads to the
additional depletion of the spectrum of leading partons in the kinematics close to BDR where
inelastic interactions of the energetic parton is important part of unitarization of amplitudes of
hard processes.

Since the number of inelastic collisions is controlled by the number of scattering centres
at given impact parameter the effect of the suppression of the yield of leading partons should be
largest at the central impact parameters. We evaluate energy losses of leading parton in small x
regime of QCD and show that blackening of pQCD interaction leads to dominance of peripheral
collisions in the production of the leading hadrons/jets in high energy hadron - nucleus inter-
actions and to a significant, increasing with energy and atomic number loss of finite fraction of
leading parton energy in the central collisions. Inclusive cross section is∝ A1/3 deep in the BDR
region with suppression of the recoil jets depending on x of jet. One of characteristic features of
BDR regime is that there is no suppression of recoil jet in the peripheral collisions. At moderately
small x which are reached at RHIC, suppression of recoil jet should depend on its rapidity and be
maximal if both jets carry a significant fraction of the projectile energy. We will show that this
prediction is supported by the recent RHIC data on leading hadron production in dA collisions.

It is instructive to compare the kinematics of partons involved in the production of leading
hadrons at RHIC with that for small x phenomena at HERA. Taking for example the STAR
highest rapidity (y=4) and 〈pT 〉 = 1.3GeV/c bin [3] we find that xN ≥ 0.7 for the incoming
parton. Hence, minimal xg resolved by such a parton are ∼ 4p2

T /(xNsNN) ∼ (2 ÷ 3) · 10−4.
This is very close to the kinematics reached at HERA. The analyses of the HERA data within the
dipole model approximation show that the partial amplitude for the quark interaction reaches at
HERA strength up to 1/2 of the maximal strength, see review in Ref. [4]. In the case of heavy
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nuclei one gets an enhancement factor ∼ 0.5A1/3 so the quark interaction with heavy nuclei
should be close to BDR for p2

t ≤ 1.5GeV 2 and xprojectile ∼ 0.5. In the LHC kinematics BDR
will cover much larger p2

t range, see for example Fig. 17 in Ref. [4].

Suppression of the forward spectra in the deuteron-gold collisions in the kinematics rather
close to the BDR was reported by several RHIC experiments. The suppression factor is signifi-
cantly larger than expected suppression due to the leading twist nuclear shadowing. Suppression
was observed in the kinematics where the hadron production in pp collisions is in a reasonable
agreement with the recent pQCD calculations based on the NLO DGLAP approximation [5].
Very recently STAR [3] has reported new results for the π0 ratios for y ∼ 4 and pt ≤ 2.0GeV .
They observed a larger suppression factor ∼ 1/3, which is consistent with a linear extrapolation
of the suppression factor for negatively charged hadrons, h− measured at smaller rapidities to
y = 4 taking into account the 2/3 factor due to the isospin effects [6]. The STAR experiment
also reported the first observation of the correlations between the forward π0 production with the
production of the hadrons at the central rapidities |ηh| ≤ 0.75. Such correlations provide a new
information about the mechanism of the suppression of the inclusive spectrum.

2 Energy losses of forward parton in the vicinity of black disk regime

The amplitude with color octet quantum numbers decreases with energy due to the gluon reggeiza-
tion in pQCD as:

Ag ∝ α2
ss
β(t) (i+ tan(πβ(t)/2)) (2)

where β(t) is the gluon Regge trajectory with β(t = 0) < 1. Infrared divergences of β(t) are
regulated by hadron wave functions. At the same time the amplitude due to exchange by a ladder
with the vacuum quantum numbers in the crossed channel rapidly grows with energy:

A ∝ α2
ss

(1+λ(t)) (i+ tan((π/2)λ(t))) (3)

where λ(t = 0) ≈ 0.2. (For the simplicity we restrict ourselves here by the phenomenological
fit to the theoretical formulae and to the HERA data on structure functions of a proton.) Hence
such amplitudes (modeled at moderately small x as the two gluon exchange ladder) fastly ex-
ceed single gluon exchange term and at larger energies achieve maximum values permitted by
probability conservation.

Single inelastic collision of the parton produced in a hard high energy NN collision off
another nucleon is described by the imaginary part of the two gluon ladder with the vacuum
quantum numbers. By definition, the inelastic cross section is calculable in terms of the prob-
ability of inelastic interaction, Pinel(b) of a parton with a target at a given impact parameter
b:

σinel =
∫
d2bPinel(b, s,Q2) (4)

Since σinel is calculable in QCD above equation helps to calculate Pinel(b, s,Q2) . The proba-
bility of inelastic interaction of a quark is cf. discussion in [4]:

Pinel(b, x,Q2) =
π2

3
αs(k2

t )
Λ
k2
t

xGA(x,Q2, b), (5)
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where x ≈ 4k2
t /sqN , Q

2 ≈ 4k2
t ,Λ ∼ 2GeV2 (for the gluon case Pinel(b) is 9/4 times larger). We

use gluon density of the nucleus in impact parameter space, GA(x,Q2, b) (
∫
d2bGA(x,Q2, b) =

GA(x,Q2)) . Above equation for the probability of inelastic interaction is valid only for the onset
of BDR when Pinel(b, s,Q2) < 1 (which is the unitarity limit for Pinel(b, s,Q2)).

If Pinel(b, x,Q2) as given by Eq.5 approaches one or exceeds one it means that average
number of inelastic interactions, N(b) becomes larger than one. Denoting as Gcr(x,Q2, b) for
which Pinel(b) reaches one we can evaluate N(b, x,Q2) as

N(b, x,Q2) = GA(x,Q2, b)/Gcr(x,Q2, b). (6)

As soon as Pinel becomes close to one, we can easily evaluate lower boundary for the
energy losses arising from the single inelastic interaction of a parton. This boundary follows
from the general properties of the parton ladder. Really, the loss of finite fraction of incident
parton energy ε arises from the processes of parton fragmentation into mass M which does not
increase with energy. For binary collision M 2 = k2

t
ε(1−ε) . For the contribution of small ε ≤ 1/4

ε ≈ k2
t /M

2 (7)

Here kt is transverse momentum of incident parton after inelastic collision. The spectrum over
the masses in the single ladder approximation (NLO DGLAP and BFKL approximations) is as
follows

dσ ∝
∫
dM2/M2(s/M2)λθ(M2 − 4k2

t ), (8)

where we accounted for the high energy behavior of the two gluon ladder amplitude Eq.(3). We
effectively take into account the energy momentum conservation i.e. NLO effects. Consequently
the average energy loss (for the contribution of relatively small energy losses (ε ≤ γ ∼ 1/4)
where approximation of Eq.(7) is valid):

εN ≡ 〈ε〉 =

∫ γ
0 εdε/ε

1−λ
∫ γ

0 dε/ε
1−λ = γ

λ

1− λ. (9)

For the realistic case γ = 1/4, λ = 0.2 this calculation gives the fractional energy loss of 6%.
This is lower limit since we neglect here a significant contribution of larger ε (it will be calculated
elsewhere).

In the kinematics of onset of BDR absorption at central impact parameters is due to
N(b) > 1 inelastic collisions (interaction with several ladders). The energy of initial parton
is shared before collisions at least between N constituents in the wave function of the incident
parton to satisfy causality and energy-momentum conservation. This quantum field theory effect
which is absent in the framework of eikonal approximation can be interpreted as an additional
energy loss [4]:

εA(b) ≈ N(b)εN . (10)

Here εN is the energy lost due to exchange by one ladder - Eq. (9). Above we do not subtract
scattering off nucleon since our interest in the paper is in energy losses specific for nuclear pro-
cesses in the regime when interaction with a single nucleon is still far from the BDR. If collision
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energies are far from BDR, the energy losses estimated above should be multiplied by small prob-
ability of secondary interactions. Inclusion of enhanced ”pomeron” diagrams will not change our
conclusions based on the necessity to account for the energy-momentum conservation law.

Yields of leading hadrons carrying fraction of projectile momentum ≥ xF are rapidly
decreasing with xN as ∝ (1 − xF )n. For pion production n ∼ 5 ÷ 6. Obviously for large
xF average values of x of the parton of the projectile involved in the production of the pion
are even larger, leading to strong amplification of the suppression due to the energy losses. The
spectrum of leading pions is given in pQCD by the convolution of the quark structure function,
∝ (1 − x)n, n ∼ 3.5 and the fragmentation function ∝ (1 − z)m,m ∼ 1.5 ÷ 2 leading to a
very steep dependence on xF , ∝ (1 − xF )n+m+1. As a result for the STAR kinematics x ∼ 0.7
and z ∼ 0.8 correspondingly energy losses of 10% lead to a suppression roughly by a factor
[(0.9 − xF )/(1 − xF )]6. For xF = 1/2 this corresponds to suppression by a factor of four. In
particular, introducing the energy loss of ∼ 6% in the NLO calculation of the pion production is
sufficient [6] to reproduce the suppression observed at y=3. Similar estimate shows that average
losses of ∼ 8 ÷ 10% reproduce the suppression of the inclusive yield observed by STAR [3].
This value is of the same magnitude as the above estimate. Also, Eq.(10) leads to much stronger
suppression for production at central impact parameters than in peripheral collisions.

In the kinematics of LHC the same kt(BDR) would be reached at xN which are smaller
by a factor sRHIC/sLHC ∼ 10−3, while for the same xN one expects much larger values of
kt(BDR) (see e.g. Fig.17 in [4]). Thus in the kinematics of LHC the regime of large energy
losses should extend to smaller xN .

There are two effects associated with the interaction of partons in the BDR - one is an
increase of the transverse momenta of the partons and another is the loss of the fraction of the
longitudinal momentum [8]. The net result is that distribution of the leading hadrons should drop
much stronger with xF than in the Color Glass Condensate (CGC) models [9] where only kt
broadening, change of the resolution scale and suppression of coalescence of partons in the final
state but not the absorption and related energy losses were taken into account. At the same time,
the kt distribution for fixed xF should be broader. Note here that the leading particle yield due
to the scattering with kt � kBDR is not suppressed and may give a significant contribution at
smaller kt via fragmentation processes. This discussion shows that selection in the final state of
the leading hadron (xF ≥ 0.3 ÷ 0.5 at RHIC) with moderately large kt should strongly enhance
the relative contribution of the peripheral collisions where BDR effects are much smaller. These
expectations are consistent [1] with the STAR data [3].

At extremely high energies where kinematics of the BDR will be achieved for a broad
range of the projectile’s parton light-cone fractions and virtualities, QCD predicts dominance of
scattering off the nuclear edge leading to inclusive pion production cross section ∝ A1/3for a
large enough xN and a wide range of pt. With increase of incident energy the range of pt for
fixed xN would increase. Also the suppression for a given pt would be extended to smaller xN .
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3 Interaction of leading partons with opaque nuclear medium

At high energies leading partons with light cone momentum xN , pt are formed before nucleus
and can be considered as plane wave if

(xNs/mN )(1/M2)� 2RA. (11)

Here M is the mass of parton pair (and bremstrahlung gluon) produced in the hard collision. If
sufficiently small x are resolved, the BDR regime would be reached:

4p2
t /xNs ≤ x(BDR). (12)

In the BDR interaction at impact parameters b ≤ RA is strongly absorptive as the medium
is opaque. As a result, interaction of leading parton lead to a hole of radius RA in the wave
function describing incident parton. Correspondingly, propagation of parton at large impact pa-
rameters leads to elastic scattering - an analogue of the Fraunhofer diffraction of light off the
black screen. However since the parton belongs to a nucleon, the diffraction for impact param-
eters larger than RA + rstr (where rstr is the radius of the strong interaction) will lead to the
proton in the final state - elastic p A scattering. Only for impact parameters RA+ rstr > b > RA
the parton may survive to emerge in the final state and fragment into the leading hadron. Cross
section of such diffraction is 2πRArstr. Another contribution is due to the propagation of the
parton through the media. This contribution is suppressed due to fractional energy losses which
increase with the increase of energy, leading to gradual decrease of the relative contribution of
the inelastic mechanism.

Thus we predict that in the kinematics when BDR is achieved in pA but not in pN scatter-
ing, the hadron inclusive cross section should be given by the sum of two terms - scattering from
the nucleus edge which has the same momentum dependence as the elementary cross section and
scattering off the opaque media which occurs with large energy losses:

dσ(d+A→ h+X)/dxhd2pt
dσ(d + p→ h+X)/dxhd2pt

= c1A
1/3 + c2(A)A2/3 (13)

The coefficient c1 is essentially given by the geometry of the nucleus edge - cross section for a
projectile nucleon to be involved in an inelastic interaction with a single nucleon of the target.
Coefficient c2(A) includes a factor due to large energy losses and hence it decreases with increase
of the incident energy for fixed xh, pt. Deep in the BDR the factor c2(A) would be small enough,
so that the periphery term would dominate.

It is worth to compare outlined pattern of interaction in the BDR with the expectations
of the CGC models for small x hard processes in the kinematics where transverse momenta of
partons significantly larger than that characteristic for BDR. These models employ the LO BFKL
approximation with saturation model used as initial condition of evolution in ln(xo/x). In these
models the dependence on atomic number is hidden in the ”saturation scale” and in the blackness
of interaction at this scale. In this model partons interact with maximal strength at small impact
parameters without significant loss of energy. Note that leading parton looses significant fraction
of incident energy in the NLO BFKL approximation but not in LO BFKL. As a result the cross
section is dominated by the scattering at small impact parameters and depends on A at energies
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of RHIC approximately as A5/6 [7]. Also, the process which dominates in this model at central
impact parameters is the scattering off the mean field leading (in difference from BDR where
DGLAP approximation dominates in the peripheral processes in the kinematics of RHIC) to
events without balancing jets. With increase of jet transverse momenta interaction becomes less
opaque, leading to a graduate decrease of the probability of inelastic collisions and hence to the
dominance of the volume term.

A natural way to distinguish between these possibilities is to study correlations between
production of forward high pt hadrons and production of hadrons at central rapidities. First such
study was undertaken by the STAR experiment [3]. In the pp case the rate of recoiled jets at
y ∼ 0 was found to be compatible with pQCD calculations. This suggests that the mechanism
for pion production in the STAR kinematics is predominantly perturbative so that it is legitimate
to discuss the propagation of a parton through the nucleus leading to pion production.

Our analysis indicates that the dA correlation data [3] for production of the balancing
hadron for the trigger with 〈pT 〉 ∼ 1.3GeV/c occurs with the same strength as in pp scattering,
corresponding to < xA >∼ 0.01. Lack of the suppression of the pQCD mechanism for these xA
puts an upper limit on the x range where coherent effects may suppress the pQCD contribution.
Since the analysis of [6] find that the pQCD contribution is dominated by xA ≥ 0.01, we can
conclude that the main contribution both to inclusive and the correlated cross section originates
from pQCD hard collisions at large impact parameters.

To ensure a suppression of the pion yield at central impact parameters for the discussed
kinematics one needs a mechanism which is related to the propagation of the projectile parton
which is generating a pion in a hard interaction with the x ∼ 0.01 parton. For example, the rate
of suppression observed by BRAHMS would require fractional energy losses ∼ 3% both in the
initial and final state [6]. Similar losses would produce a suppression of the pion yield in STAR
kinematics comparable with the inclusive data. Modeling performed in [1] indicates that for the
central impact parameters the fractional energy losses should be at least a factor of 1.5 larger.
Note here that such losses are sufficient only because the kinematics of the elementary process is
close to the limit of the phase space. At the same time, this estimate assumes that fluctuations in
the energy losses should not be large. For example, processes with energy losses comparable to
the initial energy (like in the case of high energy electron propagation through the media) would
not generate necessary suppression provided overall losses are of the order of few percent. Note
also that the second jet in the STAR kinematics has much smaller longitudinal momentum and
hence is far from the BDR. Therefore in the STAR kinematics one does not expect the suppression
of the correlation with production of the second jet. However a strong suppression is expected
for production of two balancing forward jets since both of them are interacting in the BDR.

Hence the data are qualitatively consistent with the scenario described in the introduction
that leading partons of the projectile (with x ≈ 0.7) interact at central impact parameters with
the small x nuclear gluon fields with the strength close to the BDR and do not contribute to the
inclusive π0 yield.

We also performed analysis of interplay of soft and hard QCD phenomena for correla-
tions between forward and central hadron production based on the geometry of deuteron-gold
collisions. This allowed us to determine average number of wounded nucleons, Nw, for the π0

trigger. We find Nw ∼ 3, which is much smaller than Nw ∼ 13 for central impact parameters.
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This strongly suggests dominance of the peripheral collisions in π0 production rather than the
central collisions as in the mechanism of [7]. The seeming suppression of the recoil reported
by [3] is due to soft interactions and does not indicate suppression of the pQCD mechanism of
the production of the recoil jets relative to other mechanisms.

Thus RHIC data are consistent with the pattern of energy losses in central collisions de-
scribed above. Further analyses along the lines suggested in [1] would allow to diminish model
dependence of comparison between the hard components of the interaction in pp and dAu cases,
quantitative study of the suppression on the number of wounded nucleons, which also will pro-
vide a probe of the color transparency effects as well as effects of large gluon fields.

We want to stress that the discussed mechanism of energy losses is operational only for
propagation of partons with transverse momenta ≤ than that typical for the BDR. At the same
time pion production with transverse momenta significantly larger than that typical for BDR
should be dominated by the scattering at central impact parameters. With increase of energy
from RHIC to LHC energy losses at large xN should strongly increase, while substantial losses
≥ 10% should persist for rapidities |y| ≥ 2. This effect should lead to suppression of the
production of the recoil jets at the rapidity intervals where no suppression is present at RHIC. It
may also lead to higher densities in the central collisions as compared to the current estimates. In
the forward direction we expect a significantly larger suppression than already large suppression
found in [9] where fractional energy losses were neglected. Fractional energy losses result in
modification of the form of the QCD factorization theorem at LHC energies. Similar effects will
be present in the central pp collisions at LHC. They would amplify the correlations between the
hadron production in the fragmentation and central regions discussed in Ref. [4].
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Abstract
The coherent inelastic processes of the type a → b, which may take
place in the collisions of hadrons and γ-quanta with nuclei at very high
energies (the nucleus remains the same), are theoretically investigated.
The influence of matter inside the nucleus is taken into account by us-
ing the optical model based on the concept of refraction index. Analyt-
ical formulas for the effective cross-section σcoh(a→ b) are obtained,
taking into account that at ultrarelativistic energies the main contribu-
tion into σcoh(a → b) is provided by very small transferred momenta
in the vicinity of the minimum longitudinal momentum transferred to
the nucleus.

1 Momentum transfer at ultrarelativistic energies and coherent reactions on nuclei

In the present work we will investigate theoretically the processes of inelastic coherent
scattering at collisions of particles with nuclei at very high energies. It is essential that at ultra-
relativistic energies the minimum longitudinal momentum transferred to a nucleus tends to zero,
and in connection with this the role of coherent processes increases.

Let fa+N→b+N(q) = [Zfa+p→b+p(q) + (A − Z)fa+n→b+n(q)]/A be the average am-
plitude of an inelastic process a + N → b + N on a separate nucleon in the rest frame of the
nucleus (laboratory frame). Here Z is the number of protons in the target nucleus, (A − Z) is
the number of neutrons in the target nucleus, q = kb − ka is the momentum transferred to the
nucleon, ka and kb are the momenta of the particles a and b, respectively. In the framework of
the impulse approximation [1], taking into account the interference phase shifts at the inelastic
scattering of a particle a on the system of nucleons, the expression for the effective cross-section
of the coherent inelastic process a→ b on a nucleus can be presented in the following form:

σcoh(a→ b) =
∫
|fa+N→b+N (q)|2P (q)dΩb, (1)

where dΩb is the element of the solid angle of flight of the particle b in the laboratory frame,
and the magnitude P (q) has the meaning of the probability of the event that at the collision with
the particle a all the nucleons will remain in the nucleus and the quantum state of the nucleus
will not change. Let us introduce the nucleon density n(r) normalized by the total number of
nucleons in the nucleus:

∫
V n(r)d3r = A, where the integration is performed over the volume

of the nucleus. Then

P (q) =
∣∣∣
∫

V
n(ρ, z) exp(−iq⊥ρ) exp(−iq‖z)d2ρ dz

∣∣∣
2
. (2)

† speaker
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Here the axis z is parallel to the initial momentum ka, q⊥ and q‖ are the transverse and
longitudinal components of the transferred momentum, respectively.

It is easy to see that the momenta |q| . 1/R, transferred to a nucleon (R is the radius
of a nucleus), give the main contribution to the effective cross-section of the coherent inelastic
process a → b on the nucleus. At ultrarelativistic energies, when Ea � 1/R, Eb � 1/R, the
recoil energy of the nucleon Erec ≈ |q|2/mN . (mNR

2)−1 and the much smaller recoil energy
of the nucleus can be neglected. In doing so, the effective flight angles for the particle b are very
small: θ . 1/kR � 1, where k = Ea ≈ Eb. Then it is possible to assume in Eqs. (1) and (2)
that the transverse and longitudinal transferred momenta are as follows:

|q⊥| = kθ, q‖ = qmin =
m2
a −m2

b

2k
, (3)

where ma and mb are the masses of the particles a and b, respectively. Here qmin is the minimum
transferred momentum corresponding to the ”forward” direction.

In most cases the characteristic momentum transferred to the nucleus at the inelastic coher-
ent scattering (|q| ∼ 1/R) is small as compared with the characteristic momentum transferred to
the nucleon in the process a+N → b+N . In connection with this, the amplitude fa+N→b+N (q)
in Eq.(1) can be replaced by its value fa+N→b+N (0) corresponding to the flight of the particle b
in the ”forward” direction. Taking into account that at small angles θ the solid angle in Eq. (1)
is dΩb = sin θdθdφ ≈ d2q⊥/k2 and using the properties of the two-dimensional δ-function, we
obtain, as a result of integrating the expression (1) over the transverse transferred momenta and
over the volume of the nucleus, the following equation:

σcoh(a→ b) =
4π2

k2
|fa+N→b+N (0)|2 ×

∫ (∣∣∣
∫ ∞

−∞
n(ρ, z) exp(−iqmin z) dz

∣∣∣
2
)
d2ρ, (4)

where qmin is determined by Eq. (3).

In the case of a spherical nucleus with the radius R and the constant density of nucleons
n0 = 3A/4πR3, Eq. (4) gives at sufficiently high energies, when qminR� 1:

σcoh(a→ b) =
8π3

k2
n2

0 |fa+N→b+N (0)|2R4 =
9π

2k2R2
A2 |fa+N→b+N (0)|2. (5)

In so doing, the magnitude ∆Ωb = 9π/2k2R2 has the meaning of the “effective” solid
angle of flight of the final particle b in the vicinity of the “forward” direction.

It should be noted that our consideration relates not only to binary reactions but also to
multiparticle coherent processes a → b1 + b2 + ...bi on nuclei at very high energies. In the
general case vector kb has the meaning of the total momentum of the system b = {b1, b2...bi}
with the effective mass mb. In so doing, the magnitude |fa+N→b+N (0)|2 determines the cross
section of the production of the system b, moving as a whole in the “forward” direction, at the
collision of particle a with the separate nucleon.
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2 Effect of matter inside the nucleus on coherent processes

In the relations obtained above the multiple scattering of the initial and final particles on
nucleons of the nucleus was neglected. This is possible when the mean free paths of particles a
and b inside the nucleus are much greater than the nuclear radius R. Actually, the role of matter
inside the nucleus may be essential,- especially in the case of medium and heavy nuclei. For the
analysis of the effects of matter inside the nucleus we will apply the optical model of the nucleus
at high energy based on the concept of refraction index [1, 2].

Further we will consider the influence of matter inside the nucleus for binary reactions.
According to the known formula for the refraction index, being close to unity, the renormalized
momenta of ultrarelativistic particles a and b inside the nucleus can be presented in the form:

k̃a = ka +
ka
|ka|

χa(r), k̃b = kb +
kb
|kb|

χb(r),

where

χa(r) =
2πn(r)
k

fa+N→a+N (0), χb(r) =
2πn(r)
k

fb+N→b+N (0). (6)

Here, as before, n(r) is the density of nucleons inside the nucleus, k = Ea is the initial
energy in the rest frame of the nucleus (laboratory frame); fa+N→a+N (0) and fb+N→b+N (0)
are the average amplitudes of elastic scattering of the particles a and b on a nucleon at the zero
angle in the laboratory frame; the complex magnitudes χa and χb describe the phase shifts and
the absorption of the particles a and b at their passage through the matter inside the nucleus,
connected with the difference of the refraction indices from unity. The relations (6) hold at
|χa|/k � 1, |χb|/k � 1.

Taking into account the refraction indices of the particles a and b, the influence of matter
inside the nucleus on the coherent inelastic processes implies the introduction of the additional
complex phase shift into Eq. (4): the exponential factor exp(−iqminz) is replaced by
Q = exp[−iqminz + iδ(ρ, z)] . In the case of the spherical nucleus with the constant density
n(ρ, z) = n0 inside the interval 0 ≤ |z| ≤

√
R2 − ρ2 (ρ = |ρ|) and n(ρ, z) = 0 outside this

interval, the additional phase inside the considered interval is described by the equation:

δ(ρ, z) = χa (z +
√
R2 − ρ2) + χb (

√
R2 − ρ2 − z) =

= (χa − χb) z + (χa + χb)
√
R2 − ρ2 , (7)

where the magnitudes χa and χb are determined by Eq. (6) at n(r) = n0 .

Using the optical theorem [3], we can rewrite the relations for χa, χb in the form:

χa = i n0(1− i αa)σaN/2, χb = i n0(1− i αb)σbN/2,

where σan and σbn are the total cross-sections of interaction of the particles a and bwith nucleons,
averaged over the protons and neutrons of the nucleus, αa and αb are the ratios of the real parts of
the amplitudes fa+N→a+N (0) and fb+N→b+N (0), respectively, to their imaginary parts. Let us
note that the quantity Re (χb−χa) determines the additional longitudinal transferred momentum
connected with the presence of the matter.
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Taking into account Eq. (7), after the replacement qminz → qminz−δ(ρ, z) in Eq. (4) and
the integration over z, we obtain the following expression for the cross-section of the coherent
reaction a→ b on a nucleus:

σcoh(a→ b) =
8π3

k2
n2

0

|fa+N→b+N (0)|2
|qmin + ∆χ|2 ×

×
∫ R

0

∣∣∣ exp
[
−2i (qmin − χa)

√
R2 − ρ2

]
− exp

[
2iχb

√
R2 − ρ2

]∣∣∣
2
ρ dρ, (8)

where ∆χ = χb − χa .

3 Dependence of cross-sections of inelastic coherent processes on the nuclear radius

The results of the section 1 are valid when all effects connected with the rescattering of
particles in the matter inside the nucleus are practically absent. In this situation the probabilities
of absorption of the particles a and b and the additional phase shifts at their passage through the
nucleus are close to zero. In the case of a spherical nucleus with the constant density of nucleons,
this leads to the restrictions: |χa|R� 1, |χb|R� 1 or La � R , Lb � R, where

La =
1

n0σaN
, Lb =

1
n0σbN

(9)

are the mean free paths inside the nucleus.

In the case of medium and heavy nuclei the radius of the nucleus R ≈ 1.1 ·10−13 A1/3 cm
then the density of nucleons, incorporated in Eq. (8), amounts to n0 ≈ 0.28 · 10 39 cm−3.

It follows from Eq. (8) that when both the mean free paths are small as compared with
the nuclear radius (La � R, Lb � R), the coherent processes are conditioned only by the
peripheral collisions of the initial particle a with the nucleons located in the surface layer of the
nucleus. In the considered case, neglecting in Eq. (8) the particle masses ( |qmin| � |∆χ| ), we
obtain at fb+N→b+N (0) 6= fa+N→a+N (0) :

σcoh(a→ b) = π
|fa+N→b+N (0)|2

|fb+N→b+N (0) − fa+N→a+N (0)|2×

×
[ L2

a

2
+
L2
b

2
+ 4L2

aL
2
b Re

(
1

La + Lb + i(Laαb − Lbαa)

)2 ]
. (10)

Let us consider now the situation when the total cross-section of the interaction of the
initial particle a with nucleons is small, so that σaN � σbN , La � R, Lb . R; in doing so,
the relation |fa+N→b+N (0)| � |fb+N→b+N (0)| should hold. In particular, we can deal with the
coherent production of vector mesons ρ0, ω, φ at the interaction of very high energy photons with
nuclei.
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In the considered case Eq. (8) (without the terms, depending on the masses ma and mb)
gives:

σcoh(a→ b) = πR2

∣∣∣∣
fa+N→b+N (0)
fb+N→b+N(0)

∣∣∣∣
2

×
{

1+
1
x2

[ 1
2

(1−e−2x)−4
1− α2

(1 + α2)2
(1−e−x cosαx)−

− 8α
(1 + α2)2

e−x sinαx
]

+
1
x

[ 4
1 + α2

e−x cosαx − 4α
1 + α2

e−x sinαx− e−2x
]}
, (11)

where α ≡ αb, x = n0σbNR = R/Lb. At x � 1 (large cross-sections σbN , heavy nuclei) we
obtain the simple expression

σcoh(a→ b) = πR2

∣∣∣∣
fa+N→b+N (0)
fb+N→b+N (0)

∣∣∣∣
2

. (12)

Let us emphasize that, according to Eq. (12), the effective cross-section of the coherent
process a → b on a nucleus at very high energies has the same dependence on the number of
nucleons ( proportional to A2/3 ) as the cross-section of scattering of the final particle b on the
”black” nucleus, despite the smallness of the cross-section of interaction of the initial particle a
( for example, γ-quantum ) with a separate nucleon ( in connection with this, see [4,5] ).

For the coherent process γ → ρ0 on the lead nucleus (R = 1.1 · 10−13 A1/3 cm ≈ 6.5
Fm, Lρ ∼ 1.5 Fm, |fγ+N→ρ+N (0)/fρ+N→ρ+N (0)|2 ∼ 10−3), the formula (11) is applicable at
the energies of γ-quanta above several tens of GeV in the nucleus rest frame (k � m2

ρLρ ∼ 4.5
GeV). In doing so, σcoh(γ + Pb→ ρ0 + Pb) ∼ 1.3 mb.

When, on the contrary, σaN � σbN , Lb � R, La ∼ R, |fa+N→b+N (0)| �
|fa+N→a+N (0)|, then the effective cross-section of the coherent production of the particle b
is described by the same formulas (11), (12), in which one should take x = R/La, α ≡ αa and
replace the amplitude fb+N→b+N (0) by fa+N→a+N (0).

It should be emphasized that at La � R, Lb � R the coherent process a → b is con-
ditioned by the interaction of particle a with nucleons located near the surface of the nucleus in
the back hemisphere. On the contrary, at La � R, Lb � R this coherent process is conditioned
by the interaction of particle a with nucleons located in the vicinity of the nuclear surface in the
front hemisphere.

Taking into account that

fb+N→b+N(0) = i k σbN (1− iαb)/4π, (13)

it is easy to verify that the expansion of the expression (11) into the power series over the
parameter x leads at x � 1 to the relation (5), just as one would expect at the conditions
La � R,Lb � R. In this limit σcoh(a→ b) is proportional to R4 ( or to A4/3 ).

Let us note that the ratio of the values of the cross sections calculated according to the
formulas (12) and (5), respectively, is the following, taking into account Eqs. (9), (13):

ηb =
k2

8π2|fb+N→b+N (0)|2 n2
0R

2
= 2

(
Lb
R

)2 1
1 + |αb|2

. (14)
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It is clear that the factor ηb has the magnitude of the order of the squared ratio of the
“transparency” volume for particle b in the vicinity of the back hemisphere of the nuclear surface
to the total volume of the nucleus. At La � R, Lb � R the ratio of the corresponding cross
sections ηa ∼ (La/R)2 has the analogous meaning with reference to particle a in the vicinity of
the front hemisphere of the nuclear surface.

In the given paper we have performed the concrete calculations for the case of a spherical
nucleus with the sharp boundary and the constant nucleon density. However, our general relations
contain the nucleon density depending on coordinates ( see Eqs. (4), (6) ) and make it possible,
in principle, to take into account the role of the nuclear surface. It is evident that when the
thickness of the boundary layer is very small as compared with the radius of the nucleus core,
then expression (5) at La � R, Lb � R does not change practically. But, in the case of very
small free paths, the “transparency” parameters ηb or ηa and, hence, the cross section of the
coherent inelastic process can depend essentially on the concrete structure of the surface of the
nucleus.

4 Summary

In the present work the coherent processes at the interaction of ultrarelativistic particles
with atomic nuclei are investigated. The role of these processes essentially increases at very
high energies due to the fact that the minimum momentum, transferred to a nucleon, tends to
zero with increasing energy. For the purpose of the analysis of the influence of matter inside the
nucleus on coherent reactions, the concept of refraction index is used. The relations, describing
the dependence of the effective cross-sections of the inelastic processes on the nuclear radius and
the mean free paths of the initial and final particles in the matter inside the nucleus, are obtained.

We did not consider the reverse transitions at the propagation of final particles in the matter
inside the nucleus. In principle, the contribution of these transitions could be studied in the
framework of the theory taking into account the distinction of the stationary states in the matter
from the stationary states in the vacuum due to the mixing of the vacuum states. One may expect
that really, with existing sizes of nuclei, the corresponding effects are relatively small.

This work is supported by Russian Foundation of Basic Research (Grant No. 05-02-16674).
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Low-x and Diffractive Physics at Future Electron-Proton/Ion
Colliders

Henri Kowalski
DESY
Notkestrasse 85, 22607 Hamburg, Germany

Abstract
In this talk we discuss the present and future low-x and diffractive
physics. The main topics are nuclear tomography and the investigation
of the different QCD evolution dynamics in the transverse plane.

1 HERA measurements

1.1 Introduction
Exclusive diffractive processes at HERA, such as exclusive vector meson production or deeply
virtual Compton scattering (DVCS), are excellent probes of the evolution and the proton structure
in the gluon dominated regime. Several investigations have already shown that these processes
can be well described within a QCD dipole approach with the vector meson wave functions
determined by educated guesses and the photon wave function computed within QED. For an
overview and the complete set of references see [1].

We start with a short description of the HERA data in terms of the dipole model. The
vector meson and DVCS processes are measured at HERA in the small-x regime where the
behaviour of the inclusive deep-inelastic scattering (DIS) cross section, or the structure function
F2, is driven by the gluon density. The dipole model allows these processes to be calculated,
through the optical theorem, from the gluon density determined by a fit to the total inclusive DIS
cross sections.

We base this talk on the impact parameter dipole model developed by Kowalski, Teaney,
Motyka and Watt [2], [1], since it takes the effects of the proton shape into account in a complete
way. The observed t-distributions in the vector meson and DVCS processes show clearly that the
proton has a Gaussian-like shape in the transverse plane. The gluon density is high in the center
and low on the outskirts of the proton. Usually, it is assumed that the evolution of the gluon
density is independent of the proton shape. The investigations of Ref. [2] and [1] show, however,
that the transverse variation of the gluon density has implications on the emerging pattern of
QCD evolution and saturation effects. The interplay of saturation and evolution effects was first
investigated by Bartels, Golec-Biernat and Kowalski [3], leaving out the effects of transverse
density variation. In this case the F2 data can be described, as a function of x and Q2, either
by strong saturation and weak evolution or by strong evolution and weak saturation effects. The
investigation of Ref. [1,2], which took into account also the proton shape in the transverse plane,
concluded that only the second scenario is in agreement with data. The Gaussian form implies
that a large contribution to the cross section has to come from the outskirts of the proton, where
the gluon density is diluted. Hence, the evolution effects (DGLAP-like) are dominating the
overall behaviour of the F2 data whereas the saturation effects are limited to the center of the
proton. In the center, however, saturation effects are substantial.
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Fig. 1: Total cross section for γ∗p→ V p for different vector mesons compared to predictions from the b-Sat model.

1.2 Description of the HERA data
Various cross sections measured as a function of Q2, W and t can be described by a model with
a minimal number of free parameters, namely the parameters µ2

0, Ag and λg of the initial gluon
distribution, xg(x, µ2

0) = Ag x
−λg (1 − x)5.6, and the proton width BG. The wave functions of

the virtual photon are known from QED, while the vector meson wave functions are obtained by
educated guesses. The long distance behaviour of the wave functions is also determined by the
assumed values of the quark masses, see Ref. [1].

The observed cross sections are obtained from the overlap integral of the wave functions
with the dipole cross section. The dipole cross section is assumed to be of the Glauber-Mueller
form:

dσqq̄
d2~b

= 2
[
1− exp

(
− π2

2Nc
r2αS(µ2)xg(x, µ2)T (b)

)]
. (1)

Here, the scale µ2 is related to the dipole size r by µ2 = 4/r2 +µ2
0. The gluon density, xg(x, µ2),

is evolved from a scale µ2
0 up to µ2 using LO DGLAP evolution, b denotes here the impact param-

eter. T (b) is the proton shape. This assumption, together with the form of the dipole cross section
defines the so called b-Sat model (called also KMW model on some plots below), described in
detailed in Ref. [1]. Note, that in this type of model the dipole cross section determines the (un-
integrated) gluon density [4]. The function xg(x, µ2) coincides with the gluon density when the
argument of the G-M exponent is small. The analysis of data in terms of the b-Sat model shows
that this is not always the case. If the argument of the G-M exponent is substantial the gluon
density saturates, with a strong impact parameter dependence.

The model parameters, which were fixed by the fit to the total inclusive DIS cross section
and the vector meson t-distributions, describe the measured Q2 and W dependence of vector
meson production and DVCS very well, together with the absolute normalization, as shown in
Figures 1 and 2. The data are compared to the results of the b-Sat model. Figures 3 shows the
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t-slope parameter BD vs. (Q2 + M2
V ). The plot for ρ mesons is taken from the recent ZEUS

publication [5]. The parameter BD is obtained by making a fit to the t-distributions of the form
dσ/dt ∝ exp(−BD|t|). It has a physical interpretation as the size of the interaction region.
For scattering of very small dipoles BD is connected to the proton radius Rp via BD = R2

p/3.
However, for larger dipoles the size of the interaction area depends not only on the proton radius
but also on the size of the produced vector meson or real photon, which were taken into account
following the work of Bartels, Golec-Biernat and Peters [4]. This allows the data for all vector
mesons and DVCS to be described using a unique Gaussian proton shape, independent of the
produced final state. The measured t-distributions agrees well with the model expectations. The
slight underestimation of the parameter BD by the model predictions for the ρ meson production
is presumably due to the underestimation of the meson size by the assumed ρ wave function.

Although the vector meson wave functions are just guessed, the observed distributions for
the J/Ψ and φ mesons are fairly insensitive to the particular assumptions and agrees well in all
aspects with data. For the ρ meson the ratio σL/σT is not well described, see Ref. [5] for more
details. This is presumably due to the lack of knowledge of the proper ρ meson wave function.
A more precise measurement of the ratio σL/σT and of the spin density matrix elements would
allow better constraints to be made on the form of the ρ wave function, as discussed in Ref. [1].

Figure 4 shows the power δ compared to the predictions from the b-Sat model. This power
is a measure of the rate of rise of the cross sections with increasing W or diminishing x. The
overall behaviour of data is well described by the b-Sat model which uses the Glauber–Mueller
dipole cross section with DGLAP evolution of the gluon density. The gluon density is obtained
from a fit to F2. This plot is an important test on the universality of the gluon density and its
evolution. The rate of rises are expected to depend on the sizes of the vector mesons, smaller
size corresponds to the larger rate of rise, δ. The most precisely measured points, for J/Ψ
photoproduction (the most left points with very small errors on the upper left plot), are very well
reproduced by the dipole model. The φ data are also well reproduced but are not very precise.
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Fig. 5: The t-slope parameter BD vs. W compared to predictions from the b-Sat and b-CGC models using the

“boosted Gaussian” vector meson wave function.

In the ρ case we observe a small systematic deviation between data and model predictions which
can be attributed to an underestimation of the size of ρ meson by the assumed wave function, as
also seen, independently, in the plots of BD, Fig. 3.

An important finding of this investigation is that the t-dependences of all three vector
mesons and the DVCS process can be simultaneously described with one universal shape of the
proton, see Figure 3. The parameter characterizing the size of the proton, BG = 4 GeV−2,
determined in this investigation, corresponds to the proton radius of Rp =

√
3BG = 0.67 fm.

This is smaller than the proton charge radius of 0.870 ± 0.008 fm [6]. This leads to a rather
surprising result that gluons are more concentrated in the center of the proton than quarks.

The b-Sat model, which gives the best description of data, uses the Glauber–Mueller dipole
cross section with DGLAP evolution of the gluon density. Although the overall description of
exclusive processes is very good, this approach has limitations, seen most clearly in the lack ofW
dependence of BD in J/ψ photoproduction, see Fig.5. The measurement precision is sufficient
to conclude that there is a coupling between the transverse and longitudinal evolution variables,
that is, α′P 6= 0. This indicates that DGLAP cannot be the only evolution schema in the low-x
region. Such a coupling is more natural in the BFKL evolution which is a basis of the CGC
evolution. The effect can be described by the impact parameter dependent CGC model. The
“b-CGC” model gives a better description of the α′P effect but it provides a considerably poorer
fit of F2 than the b-Sat model and a worse overall description of exclusive processes.

The strong enhancement of gluon bremsstrahlung at small x leads to the specific nature
of universal small-x dynamics in QCD. As x decreases, the occupation number of a transverse
momentum mode k⊥ in the hadron or nuclear wave-function grows rapidly. However, it can max-
imally be of order 1/αs in QCD and it is saturated by the competing dynamics of bremsstrahlung
and multi-parton recombination and screening contributions which deplete the gluon density at
small x. In particular, the occupation number is maximal for modes with k⊥ . QS, whereQS(x),
called the saturation scale, is a scale generated by the multi-parton dynamics. For a probe with
transverse resolution 1/Q2, this scale is manifest in a universal scaling form of observables as a
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function of Q/QS in a wide kinematical range in x and Q2.

The saturation effects are best quantified by the value of the saturation scale Q2
S ≡ 2/r2

S ,
where the saturation radius rS is the dipole size and the scattering amplitude has the value 1 −
exp(−1/2) ' 0.4. Figure 6 shows the saturation scale for the impact parameter dependent, b-Sat
and b-CGC, models. The saturation scale is strongly dependent on the impact parameter b; in
the center of the proton (b ≈ 0), the b-Sat and b-CGC models have a similar saturation scale,
comparable to the value in the GBW model. As b increases the value of the saturation scale drops
quickly in both models. This is understandable since, in the b-Sat model with a Gaussian proton
shape, at larger values of b the gluon density is diluted by the factor T (b) and so the smaller gluon
density leads to smaller saturation scales, as discussed in detail in [1].

Figure 7 shows the b-dependence of the total cross section, it gives a feeling for the relative
contributions from the different impact parameters. The median value of this distribution is
around b = 2.6 GeV−1, that is, the majority of the cross section is determined by the dilute gluon
region, where the saturation scale is small.

The investigation presented here demonstrates that a wide class of high-energy scattering
processes measured at HERA may be understood within a simple and unified framework. The
key ingredient is the gluon density which is probed in the longitudinal and transverse directions.
The success of the description indicates the universality of the emerging gluon distribution.

2 Future possibilities

The vector meson and DVCS processes may be used to probe the properties of nuclear matter in a
new way. As in the optical electromagnetic investigations, diffractive processes should allow the
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Fig. 7: The b-dependence of the total cross section, σγ
∗p

tot , for Q2 = 0.4, 4 and 40 GeV2 with x = 10−4, 10−3 and

10−2 respectively, using a Gaussian T (b) of width BG = 4 GeV−2.

detailed investigation of target properties. In measurements with polarized beams it is possible to
achieve precision which would allow a tomographic picture of protons and nuclei to be obtained.
The prerequisite of this type of measurement are detectors controlling particle production in the
whole rapidity range [7].

The new facilities recently proposed are the ep and eA collider EIC and LHeC. EIC should
have roughly a half of the HERA center-of-mass energy and a luminosity of a factor 100 to 1000
higher than HERA. The high luminosity should allow to improve substantially the measurement
precision for low-x and diffractive processes. This would allow to reduce the errors on the mea-
surement of the rate of rise of the exclusive diffractive process, shown in Fig. 4, by a large factor.
This would allow to determine precisely the gluon density evolution and saturation effects also
in the non-forward region, t 6= 0.

An important advantage of EIC is the possibility of electron-ion collisions. Because of the
Lorentz contraction of the nuclear parton density, in the probe rest frame, the saturation scale QS

has a strong A dependence, ∼ A1/3. In addition, since the density profile in a nucleus is more
uniform than that of the proton, the saturation scale in nuclei decreases more slowly with b than
in the proton. The dependence of the saturation scale on the impact parameter is plotted in Fig.
8. The saturation scale in Au nuclei at the median impact parameter for the total cross section
bmed. is about 70% of the value at b = 0; in contrast, for proton, Qs,p(bmed.) is only ∼ 35% of
the value at b = 0. Thus while the saturation scale in the center of the proton is a third of that
in the center of the gold nucleus, the saturation scale at the median impact parameter is about a
factor of six smaller. This leads to a significant enhancement of the saturation effects in nuclei as
discussed in details in ref. [8].

The LHeC electron proton/ion collider would achieve a CMS energy of a factor 5 higher
than HERA and can extend the x range by about a factor 25 over HERA. The largely extended
x-range should give a new insight into QCD evolution dynamics. It is generally accepted that the
evolution dynamics seen in HERA data is of the DGLAP type. The investigation of Ref. [1, 2]
show that this is mainly due to a large contribution of the outskirts of the proton, in which gluon
density is fairly diluted. The observed Gaussian shape of the proton implies a high, saturated
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gluon density in the center of the proton, irrespective of the particular assumption about the evo-
lution dynamics. Therefore, the evolution dynamics depends on the impact parameter, and F2 is
determined by a mixture of different contributions. The vector meson diffractive measurement at
LHeC (and also EIC) should have a potential to disentangle it. The main tools should be the ded-
icated detectors allowing the measurement of the t-dependence in the largely extended x range.
A better understanding of the evolution is a fascinating theoretical and experimental problem.
Somewhere in the mixture of the different evolution schema should be a region dominated by the
properties determined by the pomeron-graviton correspondence [9], [10]. The largely extended
x range of LHeC could be of crucial importance for this task.

Finally, let us note that in the pp scattering at LHC it is possible to measure processes
with very small x values. In exclusive diffractive production of charmed or bottom mesons it is
possible to reach x values which are three to four orders of magnitude lower than at HERA.
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Low-x Physics at a Future Electron-Ion Collider (EIC) Facility

Bernd Surrow
Massachusetts Institute of Technology, Department of Physics, Laboratory for Nuclear Science
77 Massachusetts Avenue, Cambridge, MA 02139

Abstract
The proposed polarized electron-ion collider (EIC) facility will allow
for precision exploration of various novel aspects of QCD including
low-x phenomena and the spin structure of the proton. As this project
gains momentum, it is increasingly important for the QCD community
to understand quantitatively the kinematic reach and expected sensitiv-
ities for various measurements. We briefly summarize key accelerator
design parameters and then focus on expected measurement sensitivi-
ties, thus exposing how the EIC will allow an extension of the success-
ful HERA program into exciting new regimes.

1 Introduction

QCD is a spectacularly successful theory, yet it remains an active field of research in particle
physics. While it has withstood over several decades of tests, we have yet to understand fully
the mechanisms by which complex and rich phenomena emerge from a theory based solely on
symmetry and local gauge invariance [1]. This quest is being pursued on many fronts: hadron
structure, hadron spectroscopy, high temperature phenomena and high parton density systems.
There is little doubt that our current understanding of QCD, in particular the role of gluons in
QCD dynamics, has been greatly advanced by using electron-proton collisions at the HERA
collider, which was the first facility to probe with high luminosity deep into the regime where
gluons play a dominant role in hadron structure. In the following, we discuss how a high lu-
minosity Electron-Ion Collider (EIC) facility will enable similar advances in the study of strong
color fields, in particular many body gluon states probed at the saturation scale. The crucial
element in these studies will be the use of heavy nuclei that, when probed at small Bjorken x,
amplify such novel gluon states.

2 Opportunities in low-x physics at a future EIC facility

From deep inelastic scattering (DIS) we know that gluons carry half of the momentum of the
proton, and from HERA we know that gluons dominate for x < 0.01 [2]. However, when probed
at low-x, it is predicted that the gluon distribution within a proton will saturate. There are many
quantitative arguments for this, but it is rather intuitive that at sufficiently high gluon density
2→1 gluon fusion (non-linear dynamics) will begin to dominate over 1→2 gluon splitting (linear
dynamics). This transition occurs at a scale commonly referred to as the saturation scale (Qs).
Geometrical considerations [3] show that, in nuclei, Qs ∝ A1/3x−δ, where δ ∼ 1/3 [4]. Thus,
heavy nuclei can be used to amplify the scale at which gluon saturation sets in. Figure 1 shows the
saturation scale in the Q2 versus x plane for ions ranging from protons to Au [2]. Additionally,
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Fig. 1: The kinematic plane of DIS variables x andQ2. The straight diagonal lines represent the kinematic boundaries

of the EIC under various beam configurations. Regions below the lines are accessible. The curved/dashed lines

indicate the saturation scale for various ions. Color online.

the colored diagonal lines show the kinematic limits of the EIC for various beam energies. The
shaded band illustrates the accessible saturation region for 20 GeV electrons colliding with 100
GeV Au nuclei. The saturation scale for gluons in Au can be accessed at a factor of 10 larger x
and Q2 than Qs for gluons in a proton. This has two significant impacts. First, by substituting
heavy ions for protons, one can access the saturation regime at lower beam energies. Second,
Q2
s,g(Au) > Q2 > Λ2

QCD, thereby enabling use of perturbative methods for calculation. The
saturation regime can be reached with reasonably modest beam energies, and it can be explored
with the use of perturbative calculations.

In DIS the differential cross section d2σ/dx dQ2 can be decomposed in terms of two
structure functions (F2(x,Q2) and FL(x,Q2)), where F2 is directly sensitive to quark and anti-
quark distributions, and FL is directly proportional to the gluon momentum distribution. These
structure functions provide a direct means to quantitatively study saturation phenomena and we
discuss them in more detail below. In the following we show the measurement prospects for
various EIC configurations with a maximum center-of-mass energy of

√
s = 14 ∼ 140 GeV/n

and a maximum luminosity L = 1033 ∼ 1035 cm−2s−1, a factor of 100 higher than HERA. As
the world’s first electron-heavy-ion collider, the EIC would enable the high precision exploration
of F2 and FL of heavy nuclei in the saturation regime, truly terra incognita. As we will show,
the luminosity, energy and collider kinematics will be used to differentiate competing models of
low-x QCD phenomena.

One of the first measurements at the EIC will be F2(x,Q2) for both heavy (Au) and light
(d) ions. The ratio, shown versus Q2 for four x bins, is displayed in Figure 2 [2]. The points rep-
resent the anticipated statistical precision achievable with an integrated luminosity of 4/A fb−1.
The colored lines are predictions from competing models [2]. F2 is directly sensitive to quark
distributions, and is sensitive to gluons via scaling violations. nDS, EKS and FGS are pQCD
models with differing treatment of parton shadowing, and they are compared to predictions from
the Color Glass Condensate (CGC) model. Within the expected precision of the measurements,
differentiation between the different models is clearly possible in the region 10−4 < x < 10−2.

With the ability to accelerate both light and heavy ions over a wide range of energies, the
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EIC will be able to make significant contributions to the understanding of the gluon distribution
in the proton. At low x, FL(x,Q2) ∝ αs x G(x,Q2), where G(x,Q2) is the gluon distribution.
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Fig. 3: FL(x) for protons from fixed target (red), projected H1 (blue) and projected EIC (black). Color online.

Extraction of FL requires running at multiple beam energies, a task that highlights the flexibility
of the EIC. Figure 3 shows FL(x) for a proton. The red points are from existing NMC fixed target
data, and the blue H1 points show the expected precision (statistical and systematic uncertain-
ties) achievable from the recent HERA energy scan [2]. The black points show the achievable
precision from one year of running the EIC at four different energies (statistical uncertainties
only) [2]. The EIC measurements will clearly compliment the HERA results, as well as bridge
the region between HERA and fixed target results, contributing to a direct measurement of the
gluon distribution for 10−4 < x < 10−1.

Finally, Figure 4 shows the ratio of gluon distributions in Pb to that in d (RPb
g = FPbL /F dL ∼

GPb/Gd) [2]. Current data on the gluon distribution at low-x in heavy nuclei is sparse. In turn,
constraints on theoretical models are weak, as shown by the vast range of different theoretical
predictions. The gluon distribution is critical for accurate calculations of cross sections at both
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RHIC and the LHC. With its high luminosity, the EIC can make significant contributions to the
understanding of the gluon distribution in heavy nuclei over the relevant x range.

3 Summary

In conclusion, as the world’s first high energy electron (heavy) ion collider, and with a luminosity
approximately one hundred times that of HERA, the EIC will allow precision exploration of
strong color fields. The use of heavy nuclei will amplify the scale at which saturation phenomena
are predicted, placing it well within the accessibility of the EIC. There are many topics we have
neglected to discuss, in particular diffraction, spin decomposition of the proton, and the study
of partonic energy loss in cold nuclear matter. The physics program of the EIC is rich, diverse,
and well targeted toward a unified understanding of strongly interacting matter. The project is
gaining momentum on an international scale and will provide a continuation of the successful
HERA program into exciting new regimes of QCD.
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The LHeC and its low x Physics Potential
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Abstract
This contribution briefly recounts a talk given by one of us at the work-
shop on the potential and prospects for colliding electrons with protons
or heavy ions at the LHC, as currently considered in the framework of
the LHeC. Particular emphasis is placed on the opportunities which the
LHeC offers for exploring low x physics.

1 The Large Hadron Electron Collider

Plans are being developed to build a Large Hadron Electron Collider (LHeC) as a complement
to the LHC. The LHeC makes possible deep-inelastic lepton-hadron (ep, eD and eA) scattering
for 4-momentum transfers squared Q2 beyond 106 GeV2 and for Bjorken-x down to 10−6, see
Figure 1. New sensitivity to the existence of new states of matter, primarily in the lepton-quark
sector and in dense Quantum Chromodynamics, is achieved. The precision possible with an
electron-hadron experiment brings in addition crucial accuracy in the determination of hadron
structure and of parton dynamics at the LHC energy scale.

Currently two versions of the LHeC are under consideration, a ring-ring collider [1], with
high luminosity of the order of 1033cm−2s−1 and electron beam energies up to typically 70 GeV,
and a linac-ring collider [2,3], with luminosity of the order of 5 ·1031cm−2s−1 but possibly much
increased electron beam energies (up to perhaps 140 GeV). In the coming years the accelerator,
the physics and the detector will be further investigated and, under the auspices of CERN and
ECFA, a Conceptual Design Report is being worked out [3]. The LHeC could be operated simul-
taneously with pp collisions in a late phase of the LHC and would thus expand significantly the
physics programme carried out at CERN in the future. Much more detailed information can be
found at [4].

2 Low x Physics

The energies at the LHeC are so high that one expects parton densities at low x to reach the limits
at which dynamical changes must occur in order to satisfy unitarity. This implies that definitive
answers may be obtained to the questions raised by HERA as perhaps its most enduring legacy:
namely its pioneering contribution to low x physics, stimulated by the strong rise of the proton
quark (∼ F2) and gluon (∼ ∂F2/∂ lnQ2) densities with decreasing x. These observations have
established a new field in Quantum Chromodynamics, its high density, low coupling limit, in
which matter in a new state may be explored. Other striking HERA discoveries associated with
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Fig. 1: Kinematic coverage of fixed target, HERA and LHeC deep inelastic lepton-proton scattering experiments

(DIS). The LHeC, here assumed to be a 140x7000 GeV2 collider, is equivalent to a fixed target experiment with PeV

beam energy and thus represents a huge extension of the kinematic range compared to the first DIS experiments. In

the course of the work on the CDR, a detector, here called L1, will be designed and its measurement accuracy and

kinematic coverage will be studied.

low x physics have been the process of hard diffraction in DIS and the Deeply Virtual Compton
Scattering process (DVCS, ep → eγp), both of which have been now been investigated in some
detail. The LHeC will allow these fields to be developed in much greater depth, both in electron-
proton scattering, as can only be sketched below, and in electron-ion scattering. In the eA case the
gain in kinematic coverage is astonishing, since the DIS lA experimental coverage is extended
by 4 orders of magnitude in Q2 and x and, moreover, since parton densities are expected to be
amplified ∝ A1/3.

• Inclusive Cross Sections and Parton Saturation: It is expected that parton saturation ef-
fects could be conclusively established at the LHeC through the observation of deviations from
expectations for one or more observable in the framework of perturbative QCD. In such studies
at HERA, models based on colour dipole scattering [5–7] have been used in order to access the
necessary very low Q2 values.

In one example dipole study of HERA data [6], the inclusive structure function F2(x,Q2)
is subjected to fits in which the dipole cross section either does not exhibit saturation properties,
or saturates as expected in two rather different models [6, 7]. All three dipole fits are able to
describe the HERA data adequately in the perturbative region Q2 ≥ 2 GeV2, whereas a clear
preference for the models containing saturation effects becomes evident when data from the
range 0.045 < Q2 < 1 GeV2 are added [6]. Due to the non-perturbative nature of this kinematic
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region, there is no clear interpretation in terms of parton dynamics (for example recombination
effects, gg → g). Similar conclusions are drawn when the same dipole cross sections are applied
to various final state observables [8].

Diffractive Kinematics at xIP=0.003
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Fig. 2: Left: Example results from fits to HERA F2 data with 10−4 <∼ x < 10−2 using three different dipole models.

The curves are extrapolated to lower x values [9] and compared with simulated LHeC data. Right: The β − Q2

kinematic plane for diffractive DIS at HERA and the LHeC for an example xIP = 0.003.

Figure 2 shows an extrapolation of the three dipole models [6] into the LHeC kinematic
range at an example Q2 = 10 GeV2. The extrapolations are compared with a simulated LHeC
measurement with 1 fb−1, where statistical errors are negligible and reasonable estimates of sys-
tematic errors are at the 1−3% level. The LHeC data clearly distinguish between the extrapolated
fits to HERA data without resorting to a region where perturbative methods are inapplicable. It
remains to be shown whether this continues to be the case when the LHeC data are also included
in the fits.

• Diffractive DIS: Statistical uncertainties should be insignificant for the measurement of a
diffractive DIS cross section with 1 fb−1 at the LHeC. Systematic errors are estimated to be in the
region of 5− 10%, depending strongly on the design of the forward region of the detector. At an
example Q2 = 10 GeV2, x

IP
values below 10−5 are accessible, allowing a very clean separation

of the diffractive exchange from sub-leading contributions. The β = x/x
IP

and Q2 kinematic
plane at HERA and the LHeC is illustrated in Figure 2, for an example xIP = 0.003. Accessing
higher Q2 at fixed β and xIP will test the factorisation properties of diffraction [10] in detail and
will allow more precise constraints on diffractive parton distribution functions (DPDFs), includ-
ing sensitivity to their flavour decomposition through W and Z exchange contributions. The low
β region of the DPDFs, which, through the basic exchange of a pair of gluons, is particularly
sensitive to parton saturation effects or other novel QCD dynamics, will be investigated for the
first time.
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•Deeply Virtual Compton Scattering As at HERA, measurements of DVCS could be made at
the LHeC through the inclusive selection of ep→ epγ events and the statistical subtraction of the
Bethe-Heitler background. A first simulation [11] has been performed assuming that final state
photons with p⊥ > 5 GeV can be efficiently selected. With 10 fb−1, a precision measurement
becomes possible over an unprecedented range with, e.g. seven bins of W between 150 GeV
and 750 GeV at Q2 = 30 GeV2, with 1 − 4% statistical uncertainty. With the huge luminosity
possible compared with HERA and the much extended kinematic range, the LHeC is likely to
provide unique information on Generalised Parton Densities.

To summarize, with the LHeC the physics of deep inelastic scattering has a fascinating
future, based on the powerful p and also A beams at the LHC. DIS physics will be led to new
horizons at large scales, with sensitivity to eq masses up to 2 TeV. Correspondingly very low
x values may be accessed in the DIS region, where a host of new and exciting measurements
are possible, of which this report has barely scratched the surface. QCD is the richest theory of
fundamental interactions and much is still to be done for its deep exploration!
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Perturbative QCD in the Regge limit: Prospects at ILC

S. Wallon
LPT, Université Paris-Sud, CNRS, Orsay, France

Abstract
After recalling the theoretical and experimental status of QCD in the
Regge limit and the requirement of high energy scattering process of
onium-onium type for testing this limit, we show that the International
Linear Collider would be a major step in this field.

1 QCD in the Regge limit: theoretical status

1.1 LL BFKL Pomeron
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Figure 1: Scattering at s� −t.

At high energy (s � −t), consider the elastic scattering ampli-
tude of two IR safe (hard) probes (Fig.1). Small values of αS
(perturbation theory applies due to hard scales) are com-
pensated by large values of ln s, calling for a resumma-
tion of the

∑
n(αS ln s)n series, resulting in the effec-

tive BFKL ladder [1], the Leading Log hard Pomeron
(Fig.2). The optical theorem gives σtot ∼ sαP (0)−1

with αP (0) − 1 = C αS . Since C > 0, the Froissart bound is violated at
perturbative order. The large Nc color dipole model [2, 3], based on perturbation theory on the
light-cone, is equivalent to the BFKL approach at the level of diagrams and of the amplitude [4].
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Figure 2: BFKL resummation.
1.2 kT factorization (γ∗γ∗ → γ∗γ∗ case)
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Figure 3: kT factorization.

Using the Sudakov decomposition k = αp1 + βp2 + k⊥, the
d4k = s

2 dαk dβk d
2k⊥ integration of Fig.3 reduces at large s in

a 2-d integration, when setting αk ' 0 (βk ' 0) in the upper (resp.
lower) blob and integrating over βk (resp. αk). The tensor connect-
ing upper and lower blob simplifies since only non-sense gluon
polarizations propagates (along p1 (p2) in upper (lower) blob) at
large s. This results in the representation (involving impact factors
J )

M = is

∫
d2 k

(2π)4k2 (r − k)2
J γ∗→γ∗(k, r − k) J γ∗→γ∗(−k,−r + k) .

1.3 LL BFKL Pomeron: limitations
First, at LL the scale s0 entering in the Y=ln s/s0 resummation is not fixed. Running and scale
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Figure 4: Diffusion along the BFKL ladder.

fixing of αS are not prescribed at
LL. Second, energy-momentum is not
conserved in the BFKL approach (this
remains at any order: NLL, NNLL,
...), but naturally implemented (van-
ishing of the first moment of the split-
ting functions) in the usual collinear
renormalisation group approach (à la
DGLAP [5]), since one starts with non local matrix elements. The energy-momentum tensor
corresponds to their first moment, protected by radiative corrections. Third, diffusion along the
ladder spoils the IR safeness of the BFKL Pomeron: at fixed αS , there is a gaussian diffusion
of kT , with a cigar-like picture [6]. The more s increases, the larger is the broadness. Setting
t=lnQ2/Λ2

QCD (fixed from the probes) and t′=lnk2/Λ2
QCD (k2 ∼ −k2

T = virtuality of an arbi-
trary exchanged gluon along the chain), the typical width of the cigar is ∆t ′ ∼ √αSY (Fig.4a).
The Non-Perturbative domain is touched when ∆t′∼√αSY ∼ t. In a simple running implemen-
tation, the border of the cigar touches NP for Y ∼ bt3 (b = 11/12) while the center of the cigar
approaches NP when Y ∼ bt2 ("banana structure" of Fig.4b). A more involved treatment of LL
BFKL with running coupling [7] showed that the cigare is “swallowed” by NP in the middle of
the ladder (Fig.4c): one faces tunneling when Y ∼ t, meaning that IR safety is doubtful.

1.4 Higher order corrections
Higher order corrections to the BFKL kernel are known at NLL order (αS

∑
n(αS ln s)n series)

[8], now for arbitrary impact parameter. Impact factors are known in some cases at NLL (γ ∗ →
γ∗ at
t = 0 [9], forward jet production [10], γ∗ → ρ in forward limit [11]). This leads to very large cor-
rections with respect to LL. The main part of these corrections can be obtained from a physical
principle, based on a kinematical constraint along the gluon ladder (which is subleading with re-
spect to LL BFKL) [12]. However this could have nothing to do with NLL correction: in principle
this constraint would be satisfied when including LL+NLL+NNLL+NNNLL+... . This constraint
is more related to improved collinear resummed approaches (see below) for which the vanishing
of the first moment of the splitting function is natural. The above perturbative instabilities require
an improved scheme. Either one can use a physical motivation to fix the scale of the coupling1 :
this is the basis of BLM scheme, applied for the γ∗γ∗→X total cross-section [13] and for
the γ∗γ∗ → ρρ exclusive process [14,15]. Or one can use a resummed approach inspired by com-
patibility with the usual renormalization group approach [16]. For example in γ ∗(Q1)γ∗(Q2)→
X, one includes both full DGLAP LL for Q1 � Q2 and anti-DGLAP LL Q1 � Q2, fixes
the relation between Y and s in a symmetric way compatible with DGLAP and implements the
running of αS . Coming back to the IR diffusion problem, this scheme enlarges the validity of
perturbative QCD. A simplified version [17] at fixed αS results in performing in the LL BFKL
Green function

1
k3k′3

∫
dω

2πi

∫
dγ

2πi

(
k2

k′2

)γ−1/2
eωY

ω − ω(γ)
1The running of the coupling constant should be implemented at NLL, while scale is fixed starting from NNLL.
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the replacement ω−ω(γ)→ω−ω(γ, ω). The ω integration is performed through contour closing
around the pole at ω = ω(γ, ω), and the γ integration is made using the saddle point approxima-
tion at large Y. This takes into account the main NLL corrections (within 7 % accuracy).

1.5 Non-linear regime and saturation
The Froissart bound should be satisfied at asymptotically large s and for each impact parameter
b, and amplitudes should fulfil T (s, b) < 1. Various unitarization and saturation models have
been developed. First, the Generalized Leading Log Approximation, taking into account any
fixed number n of t-channel exchanged reggeons, leads to the Bartels, Jaroszewicz, Kwiecinski,
Praszalowicz equation [18], a 2-dimensional quantum mechanical problem (time ∼ ln s) with n
sites. It is an integrable model in the large Nc limit [19], the XXX Heisenberg spin chain (its
non-compact symmetry group SL(2, C) makes the solution non-trivial). Solutions of BJKP (i.e.
energy spectrum⇒ intercept) exist for arbitrary n, describing both Pomeron P =C = +1 and
Odderon P =C =−1 exchanges. For the Odderon, αO < 1 [20] but it decouples from the Born
impact factors. A critical solution (αO = 1) coupled to Born impact factors can be obtained
either from the perturbative Regge approach [21] or from the dipole model [22]. Second, the
Extended Generalized Leading Log Approximation [23], in which the number of reggeons in the
t−channel is non conserved, satisfies full unitarity (in all sub-channel) and is an effective 2-d field
theory realizing the Gribov idea of Reggeon field theory in QCD. Its simplest version, leading
to the Balitski-Kovchegov equation [24, 25], involves fan-diagrams (with singlet sub-channels).
Loops (in terms of Pomerons) corrections are unknown, and obtaining them would be a major
step. Another effective field theory approach has been developed separately [26]. Precise rela-
tionships between effective approaches remain to be clarified. Third, the multipomeron approach
makes contact with AGK cutting rules of pre-QCD [27]. In the largeNc limit, this is the dominant
contribution when coupling to Born impact factors (leading with respect to BJKP), and it leads to
unitarization. Fourth, during the last decade, the Color Glass Condensate [28] and B-JIMWLK
equation were elaborated. This effective field theory is based on the scattering picture of a probe
off the field of a source, which is treated through a renormalisation group equation with respect
to a longitudinal scale, with an explicit integration of modes below this scale. The approach of
Balitski [25] relies on the scattering of Wilson loops and the computation of interaction of one
loop with the field of the other (related to the eikonal phase approach à la Nachtmann). The
mean field approximation of the B-JIMWLK equation leads to the BK equation. There is at the
moment no clear one-to-one correspondence between EGLLA and CGC, except in the peculiar
BK limiting case. Loops (in terms of Pomerons) corrections are also unknown. Toy models in
1+0 dimensions are under developement (Reggeon field theory) to understand these corrections.
Very interesting links exist between saturation models and statistical physics (reaction-diffusion
models of the FKPP class) [29]. These models provide a saturation scale Qs(Y ) growing with Y :
above this scale the scattering amplitude T is small (color transparency), and below it saturates.
This reduces the contribution of gluons with k2 < Q2

s and may solve the IR diffusion problem.

1.6 Onium-onium scattering as a gold plated experiment: γ (∗)γ(∗) at colliders
Tests of perturbative QCD in the Regge limit require observables which are free of IR divergen-
cies, by selecting external or internal probes with transverse sizes � 1/ΛQCD (hard γ∗, heavy
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meson (J/Ψ, Υ), energetic forward jets) or by choosing large t. They should be governed by the
"soft" perturbative dynamics of QCD (BFKL) and not by its collinear dynamics (DGLAP [5],
ERBL [30]): probes should have comparable transverse sizes. They should allow control of kT
spreading, that is the transition from linear to non-linear (saturated regime), meaning the possibil-
ity of varying s for fixed transverse size of the probes. It should give access both to forward (i.e.
inclusive) and non-forward (i.e. exclusive processes) dynamics, both testing linear and non-linear
regimes. γ(∗)γ(∗) scattering satisfies all these requirements.

2 Inclusive and Exclusive tests of BFKL dynamics

2.1 Hadron-hadron colliders
Mueller-Navelet jets
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Figure 5: Mueller-Navelet jets.
This test of BFKL at t = 0 is based on the measure for two jets
at large pT (hard scale) separated by a large rapidity ∆η (Fig.5).
The signal is a decorrelation of relative azimutal angle between emitted jets when increasing
∆η. Studies were made at LL [31], NLL [32] and resummed NLL [33]. Tevatron I data [34]
agreed [35] with the modified BFKL approach [12] (see section 1.4). The measurement should
be performed soon at CDF for ∆η up to 12, and presumably at LHC.

Diffractive high energy double jet production
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Figure 6: Diffractive high
energy jet production.

The idea is to measure two jets with a gap in rapidity (Fig.6), with hard
scales provided by the energies ET of the jets [36]. This tests BFKL at
t 6= 0. Taking into account non perturbative gap survival rapidity [37],
one can correctly describe the Tevatron data [38].

High pT jet production
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Figure 7: Exclusive vector
meson production at large t.

This has been studied at LL and NLL [39]. It relies on computation
of impact factors, kernel and Green function at LL and NLL order.
The effective jet vertex requires a precise definition of the emitted
jet (made of one or two s−channel emitted particle at NLL), and
modeling of proton impact factor (the only hard scale is p2

T ).

2.2 HERA
DIS and diffractive DIS
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Figure 8: Exclusive vector
meson production at HERA.

Q2 being the only hard scale for DIS, a model for the proton is
needed [40]. BFKL (at t = 0) and DGLAP (NLL) both describe
the data [41]. Diffractive DIS [43], corresponding experimentally to
a gap in the detector between the proton remants and the jets [42],
can be described both within collinear and BFKL approaches [44].

Energetic forward jet and π0 production

It is a test of BFKL at t = 0, with hard scales given by the γ∗ virtu-
ality and the jet energy [45]. Data [46] favor BFKL but cannot exclude a partonic scenario [47].
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Exclusive vector meson production at large t

This test of BFKL at large t, which provides the hard scale (Fig.7) [48], was made for H1, ZEUS
data and favor BFKL (Fig.8). Problems with data remains for the spin density matrix.

2.3 γ∗γ∗ at LEP2

� � � � �
� � �

�

� �

� � �

��� � � � �

�	� ��
 �

� � � � �

� � ��� � �

�� � �
	� ���

σ

� ��
� �
��

��� ���  "!

PSfrag replacements
gluon

reggeon
effective vertex

β↗
α↘
k

r − k
αk � αquarks

γ∗
γ∗

βk � βquarks
∆η =

ln
(
x1x2s
k1k2

)

k1, y1 = ln
(
x1

√
S

k1

)

k2, y2 = ln
(
x2

√
S

k2

)

x1x2γ
ρ

PSfrag replacements
gluon

reggeon
effective vertex

β↗
α↘
k

r − k
αk � αquarks

γ∗
γ∗

βk � βquarks

∆η =
ln
(
x1x2s
k1k2

)

k1, y1 = ln
(
x1

√
S

k1

)

k2, y2 = ln
(
x2

√
S

k2

)

x1x2γ
ρ

PSfrag replacements
gluon

reggeon
effective vertex

β↗
α↘
k

r − k
αk � αquarks

γ∗
γ∗

βk � βquarks

∆η =
ln
(
x1x2s
k1k2

)

k1, y1 = ln
(
x1

√
S

k1

)

k2, y2 = ln
(
x2

√
S

k2

)

x1x2γ
ρ

Figure 9: Modified LL BFKL (a) and BLM scale-fixed NLL BFKL (b) predic-
tions versus Born. OPAL data versus modified LL (c).

The LEP2 available
energy (

√
se+e− = 183

to 202 GeV) allowed
tests of the total γ∗γ∗

cross-section. This
process was studied
with LL BFKL [49],
dipole model [50,51],
modified LL BFKL
(based on kinematical
constraints) [52] (Fig.9a), NLL BFKL [13] (Fig.9b). Fig.9c displays the comparison [52]
between modified LL BFKL, including quark box (simulating usual DGLAP for Q1 ∼
Q2), soft Pomeron and reggeon contributions, and OPAL data. Born 2 gluon exchange
and quark exchange are too small in the large Y set of the data. LL BFKL is too
high (even including quark mass effects [53]). Scenarios with modified BFKL or NLL
BFKL with BLM scale fixing were plausible, but lack of statistics [54] (minimal de-
tection angle of only 30 mrad, luminosity and energy limited) forbade any conclusion.

3 Onium-onium scattering at ILC collider

3.1 Sources of photons
The direct γγ cross-section (box diagram) is out of reach experimentally. For example, σγγ→γγ ∼
10−64(ωγ/eV)6cm2, that is 10−65cm2 for visible light (ω∼1 eV)! Photons can be produced ei-
ther, using the Fermi, Weizsäcker, Williams idea that the field of a charged particle is a flux of
equivalent photon (which are almost real), from a high luminosity collider (Ap, pp, e+p, e+e−)
or from Compton backscattering to pump the energy of electrons of a storage ring or of a collider.

Photon colliders: hadron and nucleus colliders

To produce high energy ω = zEZe photons with high luminosity, the equivalent photon approx-
imation

Pγ/Ze(z,Q
2) ∼ Z2 αem/(z Q2)

implies that one can use either a high energy (to compensate the 1/z pole) and high luminos-
ity hadron collider (LHC, Tevatron), or a heavy nucleus collider (Z 2 then balances the lower
luminosity) (RHIC, LHC) 2. At LHC, both modes would give comparable fluxes of photons.
However, γγ events are poluted by pure (soft) hadronic interactions between source of photons,
since hadrons or nuclei are sensitive to strong interaction. One needs to select peculiar ultra-
peripheral events for which the typical impact parameter b between hadrons (nucleus) exceeds

2see Nystrand’s talk
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1/ΛQCD. This is possible experimentally with very forward detectors, with (anti)tagging pro-
tons: the forward detector at CDF (with coming data), LHC detectors (Roman pots) suggested at
420 m (FP420 at CMS and ATLAS) and 220 m (RP200 at ATLAS) from the Interaction Point at
LHC. These last detectors are very promising for both γγ and hadronic diffractive physics (ex:
Higgs exclusive production, MSSM, QCD), but they suffer from non trivial problems with fast
time trigger (long distance from IP to the detector to be comparared with the rate of events at high
luminosity). Combining both detectors would increase acceptance. Note that b is not directly
reconstructed, and that the survival probability has to be taken into account (non-perturbative
ingredient). The above situation should be contrasted with processes involving e±, which are not
directly affected by strong interaction. This is the key reason why e+e− colliders are the cleanest
solution in principle for γ(∗)γ(∗) physics, both from a theoretical and from an experimental point
of view.

Photon colliders: e→ γ conversion

At e+e− colliders, a small number of photons, of soft spectrum (dnγ∼0.03 dω/ω), is produced:

Lγγ(Wγ/(2Ee) > 0.1)∼10−2 Le+e− and Lγγ(Wγ/(2Ee) > 0.5)∼0.4 10−3 Le+e− .
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channel diagram for
Compton scattering.

To produce a photon collider, the Novosibirsk group suggested [55] to re-
consider the use of Compton backscattering of a laser on the high energy
electron beam of a collider [56]. Due to the u-channel diagram of Fig.10,
which has an almost vanishing propagator, the cross-section is peaked in the
backward direction. In this direction, almost all the energy of the incoming
electron is transfered to the outgoing photon (up to 82 % at ILC 500 GeV). The limit comes from
the fact that one does not want to reconvert γ in e+e− pairs!). The corresponding number of
equivalent photons is of the order of 1 if the beam has a small size, with laser flash energy of
1 − 10 J. The photon beam follows the direction of the incoming electron beam with an open-
ing angle of 1/γe. Due to the very good focussing of electrons beams expected at ILC, this is
the main effect limiting the luminosity in γ mode: the distance
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Figure 11: γγ/γe collider with
cross-crab angle.

b between conversion region and Interaction Point is ∼ 1.5 mm,
making impossible to use a magnet to deflect the low energy out-
going electron beam. It has been suggested to use a non zero
scattering angle between the two incoming beams to remove them
(see Fig.11). In order to compensate the potential lost luminos-
ity with non zero scattering angle, crab-cross scattering is studied
(the paquet is not aligned with the direction of its propagation,
like a crab). The luminosity could reach 0.17Le+e− , a very inter-
esting value since the cross-sections in γγ are usually one order
of magnitude higher than for e+e−. The matrix element of the
Compton process is helicity-conserving except for the term proportional to the electron mass,
which is helicity-flip, and dominates in the backward region. This provides a very elegant way
of producing quasi monochromatic photons of maximal energy and given polarization, by using
2λePc = −1 (λe = mean electron helicity and Pc = mean laser photon circular polarization), see
Fig.12.
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Figure 12: Spectrum (left) and average helicity (right)
of the Compton-scattered photons.

Note that WW distribution is sharply
peaked around almost on-shell and soft pho-
tons: in γe or γγ mode, in order to use per-
turbative QCD, one needs to provide hard
scales, from the outgoing state (J/Ψ,...) or
from large t. Ingoing γ∗ hard states are pro-
vided only in e+e− mode with double tagged
outgoing leptons.

3.2 ILC project
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Figure 13: Paquet structure for ILC.

The ILC budget estimate is 6.65 G$, comparable to the
cost of the LHC when including pre-existing facilities.

Reference Design Report for ILC
α

W

~c 25mrad

QD0

Laser

beam

R=50mm

    95 mrad+−

4m

outgoing

beam

PSfrag replacements
gluon

reggeon

effective vertex

β↗

α↘

k

r − k
αk � αquarks

γ∗

γ∗

βk � βquarks

∆η =

ln
(
x1x2s
k1k2

)

k1, y1 = ln
(
x1

√
S

k1

)

k2, y2 = ln
(
x2

√
S

k2

)

x1

x2

γ

ρ

Figure 14: Quad, elec-
tron and laser beams.

√
se+e− should be 500 GeV, with a luminosity of 125 fb−1 per year within

4 years of running, with a possible scan in energy between 200 GeV and
500 GeV. An upgrade at 1 TeV, with a luminosity of 1 ab−1 within 3 to
4 years is planned (see Fig.13 for the rather intricate structure needed for
the paquets) [57]. There are non trivial technological problem for extract-
ing the outgoing beam. At the moment, 3 options are considered for the
scattering angle: 2 mrad, 14 mrad and 20 mrad, with in each case a hole in
the detector at that angle to let the outgoing beam get through toward the
beam dump (reducing the acceptance in the forward calorimeter). Crab-
cross scattering is needed to get high luminosity. Two interaction regions
are highly desirable: one which could be at low crossing-angle, and one compatible with eγ and
γγ physics (through single or double laser Compton backscattering). γγ mode leads to the severe
constraint that αc> 25 mrad 3. The mirors could be placed either inside or outside the detector,
depending on the chosen technology, with almost no space for any forward detector in a cone of
95 mrad (Fig.14). If the cheaper option suggested by Telnov (single detector + single interaction
point + single extraction line, without displacement of the detector between 2 interaction points)
would be chosen, diffractive physics could become very difficult.

Detectors at ILC
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Figure 15: LDC (a). Beamstrahlung in BeamCal (b).

Each of the 4 detector concepts (GLD,
LDC, Sid and 4th (sic)) involves a very
forward electromagnetic calorimeter for
luminosity measurement, with tagging an-
gle for outgoing leptons down to 5 mrad
(10 years ago, 20 mrad was almost impos-
sible!). It is ideal for diffractive physics,
which cross-sections are sharply peaked in the very forward region. The luminosity is enough to
get high statistics, even for exclusive events. For example, LDC (Fig.15a) contains a BeamCal at
3.65 m from the vertex [58]. The main background is due to beamstrahlung photons, leading to

3last quadrupole (� =5cm) at 4m from IP and horizontal disruption angle=12.5 mrad, thus 0125+5/400=25 mrad.
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energy deposit in cells close from the beampipe (Fig.15b). This implies cutting-off the cells for
lepton tagging with Emin=100 GeV, θmin = 4 mrad (and to lower energies for large angles).

3.3 γ∗γ∗ → hadrons total cross-section
In comparison to LEP, s would be higher, the luminosity would be much higher (a factor ∼
103), and detectors would give access to events closer to the beampipe (LEP: θmin ≥ 25 to 30
mrad). One can thus hope to get a much better access to QCD in perturbative Regge limit. To
have enough statistics in order to see a BFKL enhancement at TESLA, it was considered to be
important to get access down to θmin ' 25 to 20 mrad [50]. Probably this could be extended
up to 30 mrad due to the expected luminosity (a factor 2 to 3 of luminosity higher than TESLA
project). With detection down to 4 mrad, this is thus not anymore a critical parameter4 . In a
modified LL BFKL scenario, one expects around 104 events per year with θmin ' 10 mrad.

3.4 γ(∗)γ(∗) exclusive processes and other QCD studies
In the γγ case (e+e− without tagging or γγ collider option), one can consider any diffractive
process of type γγ → J/ΨJ/Ψ [59] (or other heavy produced state). The hard scale is provided
by the charmed quark mass, with an expected number of events for ILC around 9 104. Due to the
small detection angle offered by Beamcal, one could also investigate the process γ ∗γ∗ → ρ0

L ρ
0
L

[14, 60–63] from e+e− → e+e−ρ0
L ρ

0
L with double tagged out-going leptons [64]. The channel

γ∗γ∗ is also a gold place for production of C even resonances, such as π0, η, η′, f2. It would be
a good place to look for the elusive odderon, in processes like γ (∗)γ(∗) → ηc ηc [65]. Beside the
regge limit, ILC would be also a nice place for finding exotic states like qq̄g with J PC = 1−+

[66]. Finally, it could have a great potential for photon structure studies [67].
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Abstract
Cosmic ray data may allow the determination of the proton-air cross
section at ultra-high energy. For example, the distribution of the first
interaction point in air showers reflects the particle production cross
section. As it is not possible to observe the point of the first interaction
X1 of a cosmic ray primary particle directly, other air shower observ-
ables must be linked to X1. This introduces an inherent dependence of
the derived cross section on the general understanding and modeling
of air showers and, therfore, on the hadronic interaction model used
for the Monte Carlo simulation. We quantify the uncertainties arising
from the model dependence by varying some characteristic features of
high-energy hadron production.

1 Introduction

The natural beam of cosmic ray particles extends to energies far beyond the reach of any earth-
based accelerator. Therefore cosmic ray data provides an unique opportunity to study interactions
at extreme energies. Unfortunately, the cosmic ray flux is extremely small making direct mea-
surements of the particles and their interactions impossible above ∼ 100 TeV. One is forced to
rely on indirect measurements such as extensive air shower studies, where the interpretation of
the data is very difficult.

In this contribution we will briefly discuss different methods of measuring the proton-air
cross section, focusing on methods that are based on extensive air shower (EAS) data. Figure 1
shows a compilation of proton-air cross section measurements and predictions of hadronic inter-
action models currently used in cosmic ray studies [1–11]

2 Methods of cross section measurements using cosmic ray data

2.1 Primary cosmic ray proton flux
Already in the 60’s first estimates of the proton-air cross section σp−air were made using cosmic
ray data [1]. These early measurements are relying on two independent observations of the flux
of primary cosmic ray protons after different amounts of traversed atmospheric matter. Firstly
the primary proton flux Φ(Xtop) is measured at the top of the atmosphere with a satellite or at
least very high up in the atmosphere on a balloon at Xtop = 0 − 5 gcm−2. The second flux
Φ(Xbottom) is measured with a ground based calorimeter at Xbottom = 600 − 1000 gcm−2,
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Fig. 1: Current data of proton-air production cross section measurements [1–11] and model predictions [12–18].

preferentially at high altitude and using efficient veto detectors to select unaccompanied hadrons.
The effective attenuation length can then be calculated straightforwardly from

λprod = (Xbottom −Xtop)/ log(Φtop/Φbottom). (1)

As it is impossible to veto all hadronic interactions along the cosmic ray passage through the
atmosphere, this attenuation length can only be used to obtain a lower bound to the high energy
particle production cross section

σp−air ≥
〈m〉
λprod

, (2)

where 〈m〉 is the mean mass of air. The method is limited to proton energies lower than ∼TeV,
since no sufficiently precise satellite or balloon borne data is available above this energy. By
design the unaccompanied hadron flux is only sensitive to the particle production cross section,
since primary protons with interactions without particle production cannot be separated from
protons without any interaction.

2.2 Extensive air showers
In order to measure σp−air at even higher energies it is necessary to rely on EAS data [6–11]. The
characteristics of the first few extremely high energy hadronic interactions during the startup of
an EAS are paramount for the resulting air shower. Therefore it should be possible to relate EAS
observations like the shower maximumXmax, or the total number of electrons Ne(X)|X=Xobs

=
N rec

e and muons Nµ(X)|X=Xobs
= N rec

µ at a certain observation depth Xobs, to the depth of the
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Fig. 2: Definition of variables to characterize EAS longitudinal profiles.

first interaction point and the characteristics of the high energy hadronic interactions.

Ground based observations
In case of ground based extensive air shower arrays, the frequency of observing EAS of the
same energy at a given stage of their development is used for the cross section measurement. By
selecting EAS of the same energy but different directions, the point of the first interaction has to
vary with the angle to observe the EAS at the same development stage. The selection of showers
of constant energy and stage depends on the particular detector setup, but the typical requirement
is
(
N rec

e , N rec
µ

)
= const at observation level.

With the naming conventions given in Fig. 2, the probability of observing a shower of a
given energy E0 and shower stage at the zenith angle θ can be written as

1
N

dN

d cos θ

∣∣∣∣
Nrec

e ,Nrec
µ

=
∫
dX1

∫
d∆X1

∫
d∆X2

e−X1/λint

λint

× P1(∆X1)× P2(∆X2)
× Pres(Xrec

stage, X1 + ∆X1 + ∆X2). (3)

Here Xstage defines the distance between the first interaction point and the depth at which the
shower reaches a given number of muons and electrons as defined by the selection criteria. The
experimentally inferred shower stage at observation level X rec

stage does, in general, not coincide
with the true stage due to the limited detector and shower reconstruction resolution. This effect
is accounted for by the factor Pres. The functions P1 and P2 describe the shower-to-shower
fluctuations. The probability of a shower having its maximum atXmax = X1+∆X1 is expressed
by P1. The probability P2 is defined correspondingly with Xstage = ∆X1 + ∆X2.

In cross section analyses, Eq. (3) is approximated by an exponential function of sec θ.
Assuming that the integration of Eq. (3) over the distributions P1, P2, and Pres does not yield any
generally non-exponential tail at large sec θ, it can be written as

1
N

dN

d cos θ

∣∣∣∣
Nrec

e ,Nrec
µ

∝ e−Xobs/Λ
S
obs ∝ e− sec θ/ΛS

obs . (4)
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0.3 ≥ f10EeV ≥ 3.

However, the slope parameter ΛS
obs does not coincide with the interaction length λint due to non-

Gaussian fluctuations and a possible angle-dependent experimental resolution. Therefore the
measured attenuation length can be written as

ΛS
obs = λint · k∆X1 · k∆X2 · kS

resolution = λint · kS. (5)

The k-factors k∆X1 , k∆X2 and kS
resolution parametrize the contributions to ΛS

obs from the corre-
sponding integrations. However, these integrations are difficult to perform separately and the
individual k-factors are not known in most analyses (for a partial exception, see [10]).

Observations of the shower maximum Xmax

Observing the position of the shower maximum directly allows one to simplify Eq. (3) by remov-
ing the term due to the shower development after the shower maximum P2. Also the detector
resolution Pres is much better under control for Xmax and can be well approximated by a Gaus-
sian distribution. The resulting distribution is

P (Xrec
max) =

∫
dX1

∫
d∆X1

e−X1/λint

λint
× P1(∆X1)× Pres(Xrec

max −Xmax), (6)

with X1 + ∆X1 = Xmax. In analogy to Eq. (4) only the tail of P (X rec
max) at large Xrec

max is
approximated by an exponential distribution

P (Xrec
max) ∝ e−X

rec
max/Λ

X
obs , (7)

whereas the exponential slope Λobs can be deduced from the convolution integral (6) as

ΛX
obs = λint · k∆X1 · kX

resolution = λint · kX. (8)
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simulated and 10000 for a changed cross section. The dashed lines are polynomial fits of 2nd order to guide the eye.

Again k∆X1 and kX
resolution are the contributions to ΛX

obs from the corresponding integrations of
Eq. (6).
It was also recognized that Eq. (6) can be unfolded directly to retrieve the originalX1-distribution,
if the ∆X1-distribution is previously inferred by Monte-Carlo simulations [11]. Recently this
triggered some discussion about the general shape and model dependence of the ∆X1-distribution
[19]. This directly implies a corresponding model dependence of the k∆X1 -factors.

3 Impact of high energy interaction model characteristics on air shower development

To explore the impact of uncertainties of the present high energy hadronic interaction models on
the interpretation of EAS observables, we modified the CONEX [20] program to change some
of the interaction characteristics during EAS simulation. To achieve this, individual hadronic
interaction characteristics are altered by the energy-dependent factor

f(E) =
{

1 E≤1 PeV
1 + (f10EeV − 1) · log10(E/1PeV)/ log10(10EeV/1PeV) E>1 PeV

(9)

which was chosen to be 1 below 1 PeV, because at these energies accelerator data is available
(Tevatron corresponds to 1.8 PeV). Above 1 PeV, f(E) increases logarithmically with energy,
reaching the value of f10EeV at 10 EeV.
The factor f(E) is then used to re-scale specific characteristic properties of the high energy
hadronic interactions such as the interaction cross section, secondary particle multiplicity or in-
elasticity. Obviously by doing this we may leave the parameter space allowed by the original
model, but nevertheless one can get a clear impression of how the resulting EAS properties are
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depending on the specific interaction characteristics.
We demonstrate the impact of a changing multiplicity nmult and cross section σ on the follow-
ing, important air shower observables: shower maximumXmax, and the total number of electrons
N rec

e , as well as muons N rec
µ arriving at an observation level of Xobs = 1000 gcm−2. Figure 3

shows the range of extrapolations of nmult used by the current hadronic interaction models and
thus motivates the energy dependent re-scaling of nmult by 0.3 ≥ f10EeV ≥ 3.
All simulations are performed for primary protons at 10 EeV using the SIBYLL 2.1 [17] interac-
tion model. Figure 4 summarizes the results, which are discussed below.
Multiplicity of secondary particle production
The effect of a changed multiplicity on the Xmax-distribution is a shift to shallower Xmax with
increasing nmult. This is what is already predicted by the extended Heitler model [21]

Xmax ∝ λr · ln
E0

nmult ·E e.m.
crit

, (10)

where λr is the electromagnetic radiation length and E e.m.
crit the critical energy in air. This is

a consequence of the distribution of the same energy onto a growing number of particles. The
resulting lower energy electromagnetic sub-showers reach their maximum earlier. The impact
on the RMS of the Xmax-distribution is small, but there is a trend to smaller fluctuations for an
increasing number of secondaries.
The total muon number after 1000 gcm−2 of shower development is rising if the multiplicity
increases. This reflects the overall increased number of particles. The fluctuations are not signif-
icantly affected.
More interesting is the impact on the electron number N rec

e , which shows a minimum close to
f10EeV = 1. The rising trend in the direction of smaller nmult can be explained by the increase
of Xmax and therefore the shower maximum coming closer to the observation level. On the other
hand the rising trend in the direction of larger nmult is again just the consequence of a generally
growing number of particles. In contrary to the muon number the RMS does significantly change
while nmult gets larger. This can be explained by the strong dependence of fluctuations in N rec

e

from the distance to the shower maximum.
Cross section
By construction, scaling the cross section does affect all hadronic interactions above 1 PeV, not
only the first interaction.
The mean as well as the RMS of the Xmax-distribution are decreasing with an increasing cross
section. The effect is very pronounced, since the depth of the first interaction X1 is affected as
well as the shower startup phase. Both effects are pointing to the same direction. This makes
Xmax a very sensitive observable for a cross section measurement.
The impact on the muon number N rec

µ is not very large. Since the shower maximum moves
away from the observation level with increasing cross section, we just see the slow decrease of
the muon number at late shower development stages, while the fluctuation of N rec

µ stay basically
constant.
The mean electron number as well as its fluctuations depend strongly on the distance of Xmax

from the observation level. Combined with the influence of the modified cross section on Xmax

this explains well the strong decrease of the mean N rec
e as well as the RMS with increasing cross
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section. At very small cross sections the shower maximum comes very close to the observation
level, which can be observed as a flattening in the mean N rec

e and the decrease of the fluctuations
in N rec

e against the trend of increasing fluctuations of the position of the shower maximum itself.

4 Summary

All methods of EAS-based cross section measurements are very similar and thus suffer from the
same limitations:
• The values of all k-factors must be retrieved from massive Monte-Carlo simulations. All

analysis attempts so far have only calculated the combined factor of kS, respectively kX.
• k-factors depend on the resolution of the experiment and can therefore not be transferred

simply to other experiments.
• kX-factors are inherently different from kS-factors and can therefore not be transferred

from an Xmax-tail analysis to that of ground based frequency attenuation or vice versa.
• It cannot be disentangled whether a measurement of Λobs can be attributed to λint entirely

or at least partly to changed fluctuations in ∆X1 and/or ∆X2.
• Generally the P1 and P2 distributions have a complex shape and therefore the integra-

tions of Eqs. (3) and (6) to yield the approximations Eqs. (5) and (8) are leading to non-
exponential contributions.

• Any non-exponential contribution creates a strong dependence of the fitted Λobs on the
chosen fitting range [22]. A strong non-exponential contribution makes the k-factor anal-
ysis unusable.
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• It can be shown that the P1(∆X1)-distributions is very sensitive to changes of the high
energy hadronic interaction characteristics and thus P (∆X) = f(σ, nmult, ...) is a func-
tion of σ , nmult and other high energy model parameters. Consequently this also makes
the k-factors depending on the high energy interaction characteristics k = f(σ, nmult, ...),
which certainly must be considered for any cross section analysis.

In Fig. 5 we show how the here presented simulations can be used to quantify the uncertainty
caused in the k-factors due to the dependence on nmult to about ± ∼ 0.1 for a variation of the
multiplicity by a factor from 0.3 up to 3. It is clear that even without considering the multiplicity
as a possible source of uncertainty the σ-dependence of the k-factors certainly needs to be taken
into account. Otherwise a systematic shift will be introduced into the resulting σp−air, since part
of the observed signal in Λobs is wrongly assigned to λint, while in fact it must be attributed to
k(σ, nmult, . . . ) [23]. This has not been considered in any EAS-based σp−air measurement so far.
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EAS-TOP:The proton-air inelastic cross-section at
√
s ≈ 2 TeV
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Abstract
The proton-air inelastic cross section measurement at

√
s ≈ 2 TeV

from the EAS-TOP Extensive Air Shower experiment is reported. The
technique exploits cosmic ray proton primaries in the energy region
E0 = (1.5÷2.5) ·1015 eV, studying the absorption length of their cas-
cades when detected at maximum development. Primary energies are
selected through the EAS muon number (Nµ), and proton originated
cascades at maximum development by means of the shower size (Ne).
The obtained value of the p-air inelastic cross section at

√
s ≈ 2 TeV

is σinel
p−air=365±24(stat)-28(sys) mb. The statistical and systematic un-

certainties, as well as the connections with the pp total cross section
measurements are discussed.

1 Introduction

Hadronic cross section measurements at energies above the accelerators’ limits have to be per-
formed by exploiting the cosmic ray beam. This holds in particular for nucleus-nucleus interac-
tions as the typical p-N, p-O (”p-air”) ones, which rule the development of Extensive Air Showers
(EAS).

The most relevant datum to which the EAS development is sensitive, is the p-air inelastic
cross section (σinel

p−air). In the present work we will address to its measurement. We will focus on
primary energies

√
s ≈ 2 TeV, which are of particular interest, as discussed in the following.

The pp total cross section, σtot
pp̄ , and σinel

p−air are related and can be inferred from each other
by means of Glauber theory [1]. The whole procedure is model dependent, the results [2–7]
differing of about 20% for

√
s values in the TeV energy range. It is therefore of primary interest

to have experimental measurements of σinel
p−air and σtot

pp̄ at the same CM energies, i.e. around√
s ≈ 2 TeV, at which collider data are still available.

At the highest energies, the direct accelerator measurements themselves can be affected
by systematic uncertainties of difficult evaluation, and, as a matter of fact, the available pp (p̄p)
cross section data at energies of

√
s = 1.8 TeV differ of about 10%, which exceeds the statistical

uncertainties of the individual measurements [8–10] introducing further uncertanties in the p-
nucleus cross section determination.

From the point of view of cosmic ray physics, the interpretation of Extensive Air Shower
measurements (and therefore the energy determinations and the studies of primary composition)
rely on simulations based on hadronic interaction models. Such models are based on theoretically
guided extrapolations of the accelerator data obtained at lower energies (and usually restricted to
limited kinematical regions).
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A direct measurement of σinel
p−air and the comparison of basic quantities as obtained from

measurements and model based simulations, in the same conditions, is therefore highly desirable
for the validation of the methodology. This can be best performed at primary energies below the
steepening (knee) of the primary spectrum (i.e. E0 < 3 · 1015 eV,

√
s < 2.5), where, in particular

conditions, proton primaries can be reliably selected.

Following the particle array technique [11–13], the primary energy is first selected from
the muon number (Nµ). Proton induced showers at maximum development are selected from
the shower size (dominated by the electron number, Ne). The absorption in the atmosphere
of such showers is related to the cross section of the primary. The observed absorption length
(λobs), obtained through their angular distribution at observation level, is also affected by the
fluctuations in the longitudinal development of the cascades and in the detector response. Such
fluctuations can be studied through simulations, providing the conversion factor k between the
observed absorption length and the interaction length of primary protons (k=λobs/λint).

2 The experiment and the simulation

The EAS-TOP array was located at Campo Imperatore, National Gran Sasso Laboratories, 2005
m a.s.l., 820 g/cm2 atmospheric depth.

The e.m. detector consisted of 35 modules 10 m2 each of plastic scintillators, 4 cm thick,
distributed over an area of 105 m2. In the present work, events with at least six modules fired
in a compact configuration, and the largest number of particles recorded by a module internal
to the edges of the array are selected. Such triggering condition is fully efficient for Ne > 105,
i.e. for primary energies E0 > 3 · 1014 eV for primary protons. Core location (Xc, Yc), shower
size (Ne), and slope of the lateral distribution function (s) are obtained by fitting the recorded
number of particles in each module with the Nishimura-Kamata-Greisen (NKG) expression [14].
The resolutions of such measurements for Ne > 2 · 105 are: σNe/Ne ' 0.1; σXc = σYc ' 5 m;
σs ' 0.1. The arrival direction of the shower is measured from the times of flight among the
modules with resolution σθ ' 0.9o. A detailed discussion of the performances of the e.m.
detector is reported in Ref. [15].

The muon-hadron detector (MHD), located at an edge of the e.m. array, for the present
analysis is used as a tracking module of 9 active planes. Each plane includes two layers of
streamer tubes (12 m length, 3 × 3 cm2 section) and is shielded by 13 cm of iron. The total
height of the detector is 280 cm and the surface is 12 × 12 m2. A muon track is defined by the
alignment of at least 6 fired wires in different streamer tube layers defining an energy threshold
of Ethµ ≈ 1 GeV. The muon counting accuracy is ∆Nµ < 1 for Nµ < 15 reaching ∆Nµ < 2 for
Nµ < 30.

Events with core distance from the muon detector 50 m < r < 100 m, and up to zenith
angle θ = 33.6o are used (”r−θ” selection), for a total of 1.7·106 events.

Simulations are performed in order to obtain the event selection parameters (muon num-
ber for primary energy and shower size for proton shower at maximum development) and the
k=λobs/λint value, relating the observed absorption length to the interaction length, i.e. the con-
tribution of fluctuations in the shower development and detector response.

In the present analysis we use the CORSIKA EAS simulation program [16] with the
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QGSJET (QGSJET 01) high energy hadronic interaction model [17], that has shown to pro-
vide consistent descriptions of different shower parameters in the considered energy range both
at sea level and mountain altitudes [18, 19]. Hadrons with energies below 80 GeV are treated
with GHEISHA 2002 [20] interaction model.

The full response of the muon detector is included by means of simulations based on the
GEANT code [21] taking into account the measured experimental efficiencies of the streamer
tubes.

For the e.m. detector, parameterized expressions of the fluctuations and experimental un-
certainties have been included, as well as trigger requirements. The muon contribution to Ne is
added by using the average ldf (its overall contribution being anyway lower than 5%).
Poissonian fluctuations and parameterized expressions of experimental uncertainties have been
included, as well as trigger requirements.

Simulated events have been treated following the same procedure as the experimental data.
More than 106 proton showers have been simulated with energy threshold 1015 eV, spectral index
γ = 2.7 (from which KASCADE spectra [22] have been afterward sampled), and uniform angular
distribution. Every shower has been sampled over an area of 4.4·105 m2 till the event fulfills the
”r−θ” and trigger requirements. The number of trials (nT (θ)) is recorded and used to obtain the
angular acceptance.

3 The method and the analysis

The frequency of showers of given primary energy (E0,1 < E0 < E0,2) selected through their
muon number Nµ (Nµ,1 < Nµ < Nµ,2) and shower size Ne corresponding to maximum develop-
ment (Ne,1 < Ne < Ne,2) is expected and observed to decrease exponentially with atmospheric
depth through its zenith angle dependence:

f(θ) = G(θ)f(0) exp[−x0(sec θ − 1)/λobs] (1)

where x0 is the vertical atmospheric depth of the detector, and G(θ) the angular accep-
tance.

The observed absorption length λobs, obtained from (1), is a combination of the interac-
tion mean free path (λint), and of the shower development and detector response fluctuations.
Fluctuation effects are evaluated through simulations, by comparing the observed (λsimobs ) and in-
teraction (λsimint , which is known from the interaction model) lengths, and are expressed through
the factor k = λsimobs /λ

sim
int . Such factor is used to convert the observed experimental absorption

length λexpobs into the interaction one λexpint .

The physical quantities required for the analysis are obtained through simulations as described
in the following.
Events in the desired proton primary energy range (E0 = (1.5 ÷ 2.5) · 1015 eV) are selected
by means of a matrix of minimum (Nµ,1) and maximum (Nµ,2) detected muon numbers for each
possible combination of zenith angle and core distance from the muon detector. The selection
table is obtained from simulated data for 5 m bins in core distance (50 m ≤ r ≤ 100 m) and
0.025 sec θ bins (1.0 ≤ sec θ ≤ 1.2) for zenith angle. Nµ,1 and Nµ,2 correspond respectively
to the average muon numbers for 1.5·1015 eV and 2.5·1015 eV. The selection of proton initiated
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cascades near maximum development is based on the simulated distribution of the shower size
at maximum development Nmax

e independently of the atmospheric depth at which it is reached.
Choosing the shower size interval LogNmax

e ± σLogNmax
e

(i.e. 6.01< Log Ne < 6.16) provides
the selection of the peak of the distribution and of about 65% of the events.
The effective energy distribution of the selected primaries, obtained following the KASCADE
spectra, is shown in Fig. 1, the median value being Emedian

0 = 2.3 · 1015 eV with HWHM 0.7 ·
1015 eV and systematic uncertainty lower than 10%.
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Fig. 1: Primary energy distribution of simulated proton

events selected with the Nµ-Ne cuts (continuous line).
The energy distribution of helium primaries satisfying

the selection criteria is also shown (dashed line).
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the λobs values are also shown (continuous lines).

The interaction length λsimint is obtained as the average proton interaction depth in the se-
lected energy range (E0 = (1.5 ÷ 2.5) · 1015 eV), and results to be λsimint = 61.2 ± 0.1 g/cm2.

The acceptance corrected numbers of selected events N ′sel vs. zenith angle are shown
in Fig. 2. The fit with expression (1) provides λsimobs = 70.4 ± 3.0 g/cm2, and therefore k =
λsimobs /λ

sim
int = 1.15 ± 0.05.

The contamination due to heavier primary particles has been evaluated by simulating the helium
contribution, assuming the KASCADE spectrum and composition, which accounts for a flux
about twice the proton one in the energy range of interest (see Fig. 1).

4 Results and discussion

The same procedure as discussed for the simulation is applied to the experimental data. The
corresponding event numbers as a function of sec(θ) are shown in Fig. 2, together with their
fit providing λexpobs = 76.0 ± 3.8 g/cm2. From λexpint =λexpobs /k, we obtain λexpint = λp−air =
66.1 ± 4.4 g/cm2 where the uncertainties are due to the statistics of the measurement and of
the simulation (of the same order).

The p-air inelastic cross section is obtained from: σ inel
p−air(mb) = 2.41 · 104/λp−air, and
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results to be σinel
p−air = 365 ± 24mb. Such value is plotted together with other experimental

data and the values derived from the current hadronic interaction models in Fig. 3, resulting
respectively about 10% and 15% smaller than QGSJET and SIBYLL [23] cross sections and in
better agreement with the QGSJET modified version of Ref. [24].

Predicted σinel
p−air values, that were obtained from different σtot

pp̄ Tevatron measurements
at
√
s = 1.8 TeV by using different calculations based on the Glauber theory, are reported in

Fig. 4. The present measurement is in better agreement with the smaller values of the p̄p total
cross section (σtot

pp̄ =72.8±3.1 mb [9], and σtot
pp̄ =71±2 mb [10]), and the pp to p-air cross section

conversions of Refs. [3, 5, 6].
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Taking into account helium primaries, the overall simulated observed absorption length
becomes λsim(p+He)

obs = 65.2±3.6 g/cm2, which implies k(p+He) = 1.07±0.06 , and λexp(p+He)int =
71.4±5.3 g/cm2, i.e. increased of about 8%. Due to the uncertainty of the relative proton/helium
flux we will not introduce such a correction, but rather consider it as a systematic uncertainty,
possibly increasing the interaction length, and therefore leading to an overestimated cross section
value expressed as:

σinel
p−air(

√
s ≈ 2 TeV)=365±24(stat)-28(sys)mb.

Independently from the cross-section analysis, the measured value of the absorption length (λexpobs =
76.0±3.8 g/cm2) can be directly compared with the analogous one obtained, for the same exper-
imental conditions, from simulations based on QGSJET (λsimobs = 70.4 ± 3.0 g/cm2). Inside the
still large uncertainties, the measured value results nearly 10% larger than the simulated one (and
it would be even larger including the helium contribution), showing a deeper penetration of show-
ers in the atmosphere than predicted by the interaction model, as reflected in the corresponding
smaller value of the p-air inelastic cross section (see also ref. [24]).
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Abstract
We show that the string percolation hadronic model provides a consis-
tent interpretation of the experimentally measured energy dependence
of the depth of shower maximum as well as of the muon content in
ultra high energy cosmic ray showers above 1017 eV. We discuss the
importance of the inelasticity and of the particle multiplicity in the
most energetic shower interactions, as well as the crucial role played
by the nature of the leading primary.

1 Introduction

The composition of ultra high energy cosmic rays (UHECRs) is only determined indirectly
through the observation of two shower variables that are used as experimental handles on com-
position, namely, the atmospheric depth of shower maximum Xmax, measured in fluorescence
detectors, and the muon content of the shower on groundNµ, measured in surface array detectors.

Fly’s Eye/HiRes experimental data on the energy dependence of Xmax show an increase
in the slope around 1017 eV. Concerning the muon component, at the AGASA array the lateral
distribution function of muons was measured above 1017 eV and combined with the Akeno array
data. It was observed that the slope of the density of muons at 600 m from the shower core
ρµ(600) vs E is flatter in data than predicted by hadronic models. Assuming ρµ ∝ Eβ , data
gives β = 0.84 ± 0.02 [1, 2], while from simulation β ∼ 0.9 (β = 0.92, 0.89 and 0.93 for
protons with QGSJET-II.03, SIBYLL2.1 and EPOS 1.61 respectively). Both features have been
interpreted as a change in composition, going from more Fe-like to more proton-like showers.
An alternative interpretation is that these energy dependences are due to a change with energy
of the features of the hadronic interactions. In this spirit, we show in this work that the string
percolation model provides a consistent interpretation of the energy dependence ofXmax andNµ

in cosmic ray data above 1017 eV.

2 The two interpretations of UHE Cosmic Ray data

2.1 The “change in composition” interpretation
In order to make the argument simple, we use the original Heitler model of shower development
[3]. The average location of Xmax in a shower initiated by a primary nucleus of energy E and
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mass A, is given by X̄max ' X̄1 + X̄0 log(E/A), where X̄1 is the average depth of the first
collision and X̄0 is the elongation rate. The muon content of the shower can be written as,
N̄µ ' A(E/A)β . We then have,

dX̄max

d logE
= X̄0

[
1− d logA

d logE

]
, (1)

and for the logNµ dependence on E,

d logNµ

d logE
= (1− β)

d logA

d logE
+ β . (2)

As experimentally, above 1017 eV dX̄max/d logE is larger and d logNµ/d logE is slightly
smaller, in comparison with lower energies, the conclusion is:

d logA

d logE
< 0 , (3)

i.e., for E>∼1017 eV the average mass number should, in this interpretation, decrease with E.

2.2 The “change in the features of hadronic interactions” interpretation
In this interpretation a key role is given to the variables characterising the first hadronic collisions.
Among them the most relevant for shower development are the inelasticity K , defined as the
fraction of energy distributed among the secondary particles except for the leading particle, the
average (non-leading) multiplicity 〈n〉 at the collision energy and P0, the probability of producing
a leading π0 in the collision.

Changing A has a similar effect on the behavior of Xmax and Nµ with energy as changing
K . The fastest particle in the collision, carrying an energy (1 −K)E, will originate the shower
branches that go deeper in the atmosphere. We can then write, X̄max ' X̄1 +X̄0 log[(1−K) EE0

],
where E0 is a low energy threshold. Regarding the muon content of the shower, a possible
assumption is that while energy flows in the (1−K) direction, the number of muons flows in the
K direction and Nµ ∼ N±π ∝ KE. We thus have,

dX̄max

d logE
= X̄0

[
d log(1−K)

d logE
+ 1

]
, (4)

and
d logNµ

d logE
=
d logK

d logE
+ 1 , (5)

Since above 1017 eV, dX̄max/d logE is larger and d logNµ/d logE smaller than at lower E, we
infer that:

d logK

d logE
< 0 , (6)

i.e., some of the features in CR data can be alternatively explained by an inelasticity K decreasing
with E.
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Fig. 1: Left: Hybrid Monte Carlo simulation prediction for the number of muons at ground as a function of inelasticity
for different values of the probability P0 of having a leading π0 in a proton-induced shower of E = 1018 eV. Right:

Energy dependence of the average inelasticity K. The dotted curve is the SIBYLL simulation; the dashed-dotted

curve corresponds to QGSJET simulations; and the dashed line is a model of [8]; the full line is our percolation

model.

Moreover, the nature of the leading particle, plays a fundamental role in the interpretation
of cosmic ray data, affecting the relation Nµ ∝ K . In fact, when the leading particle is a proton
carrying an energy (1 −K)E, the number of muons decreases with K due to the combination
of two effects: on one hand the production of secondary π0s, which decay into γs, carrying
an energy ∼ 1/3 KE that is lost for muon production, and on the other hand, the larger the
K the smaller the energy carried by the leading particle, and hence the smaller the number of
new charged pions and muons reaching ground it will produce. However, if π0’s are themselves
leading particles - P0 > 0, muons can only be produced in the K direction and Nµ is larger
the larger the inelasticity. This can be seen in a very simplistic model in which the number
of muons is proportional to the energy available for muon production in the first interaction
Nµ ∼ (1 − P0) (1 −K)E + (2/3) KE , where the factors (1 − P0) and 2/3 account for the
energy lost into the electromagnetic branch. As a consequence,

dNµ

dK
∼ (P0 −

1

3
)E, (7)

showing that the behavior of Nµ with K depends on P0. The fact that it inflects at the particular
value P0 = 1/3 comes from the very simplistic treatment and should not be taken seriously. This
effect has been confirmed by a numerical implementation of P0 in a full hybrid Monte Carlo
simulation of shower development [4]. The crucial role played by P0 on the dependence of Nµ

with K is apparent in the left panel of Fig. 1.
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3 The role of the string percolation model

In string models of hadronic interactions, multiparticle production is described in terms of colour
strings stretched between partons of the projectile and target particles. Colour strings might be
viewed as small discs in the transverse space of radius r0 ∼ 0.2 fm, filled with the colour field.
These strings fragment into new strings through q − q̄ production and subsequently hadronize
into particles. At low energy, valence strings are formed, forward and backward in the center
of mass frame, containing most of the collision energy. As the energy increases additional sea
strings, central in rapidity, are created carrying part of the energy of the valence strings. Softer
secondaries are produced and the inelasticity increases with energy. With growing energy and/or
atomic number of colliding particles, the number of strings increases further, and they begin to
overlap forming clusters. A cumulative effect then occurs, the length in rapidity of fused strings
is larger than that of individual strings and fast particles are produced. As a consequence, the
inelasticity K starts to decrease with energy as can be seen in Fig. 1 [5]. The onset of this effect
has been estimated in [5] to occur above ∼ 1017 eV for proton-proton collisions when the area
occupied by the overlapping strings is∼ 1.13 times the area of the interaction region. Percolation
also affects the multiplicity. Due to the fusion of strings less softer secondaries are produced
and the multiplicity is reduced with respect to models in which strings decay independently.
Moreover, and since fused strings are sea strings of the q − q̄ type, the fast leading secondaries
that are produced can be π0s with a probability P0 that tends to 0.3.

These predictions are in contrast with those of string models with no string fusion, in
which the inelasticity and multiplicity increases monotonically with energy, and the probability
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of π0 being the leading particle is P0 ∼ 0.1 at most.

In order to test the effects of these predictions on the air shower observables, Xmax and
Nµ, we have implemented them into a hybrid and fast Monte Carlo simulation of shower devel-
opment in the atmosphere described in [4]. In particular we have implemented an inelasticity K
decreasing with energy [6] as shown in Fig. 1, a reduction of the multiplicity realized through
a color summation factor [5], and a probability P0 = 0.3 of the leading particle being a π0, in
all hadronic interactions above 1017 eV. In the left panel of Fig. 2 we show the prediction of
percolation on the behavior of Nµ with E. A fit to our results yields β = 0.83 compatible with
the experimental value measured by the Akeno/AGASA array β = 0.84 ± 0.02. It is important
to notice that in this study protons were used as primaries and the result in Fig. 2 corresponds
to shifting the proton result to an intermediate and constant composition A ∼ 20 using that
Nµ ∼ A(E/A)β . It is interesting to note that when E > 1019 eV, the Lorentz boost factor of π0s
is large enough so that they begin to interact in the atmosphere instead of decaying, increasing
the production of muons, steepening the slope of Nµ vs E line. A hint of this effect is clearly
seen in the left panel of Fig. 2. This behaviour is consistent with observations of the total number
of muons at the ground in inclined hybrid events collected at the Pierre Auger Observatory above
6.3× 1018 eV [7].

In the right panel of Fig. 2 we show the prediction of the string percolation model on
the behaviour of Xmax with E along with the predictions of other models based on QCD taken
from [8]. The prediction is reasonably consistent with data, following the tendency of the slope
around 1017 eV. A slight overshoot of Xmax can be seen at E > 1018.5 eV which we believe
might be due to the constant value of P0 = 0.3 used in all interactions instead of a smoothly
increasing function of the energy. The solid line in Fig. 2 corresponds to the prediction for
proton primaries scaled by a constant composition of A ∼ 15-20, assuming Xmax ∼ log(E/A).
It is important to remark that the value of A is the same with which the Nµ vs E prediction was
scaled.

4 Conclusions, discussion and outlook

We have shown that, in the interpretation of the energy dependence of the depth of the shower
maximum and of the muon content in high energy cosmic ray showers (E>∼1017 eV), other
variables besides the composition may play an important role, in particular those characterising
the first (high energy) hadronic collisions. The role of the inelasticity K , the probability P0 of the
leading particle being a π0, and the particle multiplicity < n >were discussed. Special emphasis
has been put on the crucial role played by P0 on the dependence of the number of muons with
K .

For the first time the predictions of the behaviour of these variables in a string percolation
model were included systematically and used to derive predictions on the behaviour of the depth
of the shower maximum Xmax and on the number of muons in the shower Nµ as a function of
the energy. The model reasonably describes the trends seen in data.

The next step will be to create a full Monte Carlo simulation including percolation, adapted
to the low and high energy regions and including proton-air and nuclei-air collisions where more
complex effects may arise. Also we should account for the fact that the clusters of percolating
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strings have a large colour content, and an increased production of baryons is likely and cannot
be neglected since it affects the number of muons in the shower [9].
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Abstract
We discuss air shower simulations based on the EPOS hadronic in-
teraction model. A remarkable feature is the fact that the number of
produced muons is considerably larger compared to other interaction
models. We show that this is due to an improved treatment of baryon-
antibaryon production.

1 Introduction

Air shower simulations are a very powerful tool to interpret ground based cosmic ray experi-
ments. However, most simulations are still based on hadronic interaction models being more
than 15 years old. Much has been learned since, in particular due to new data available from the
SPS and RHIC accelerators.

In this paper, we discuss air shower simulations based on EPOS, the latter one being a
hadronic interaction model, which does very well compare to RHIC data [1, 2], and also all
other available data from high energy particle physic experiments (ISR,CDF and especially SPS
experiments at CERN).

EPOS is a consistent quantum mechanical multiple scattering approach based on partons
and strings [3], where cross sections and the particle production are calculated consistently, tak-
ing into account energy conservation in both cases (unlike other models where energy conserva-
tion is not considered for cross section calculations [4]). A special feature is the explicit treatment
of projectile and target remnants, leading to a very good description of baryon and antibaryon
production as measured in proton-proton collisions at 158 GeV at CERN [5]. Nuclear effects re-
lated to CRONIN transverse momentum broadening, parton saturation, and screening have been
introduced into EPOS [6]. Furthermore, high density effects leading to collective behavior in
heavy ion collisions are also taken into account [7].

2 EPOS Basics

One may consider the simple parton model to be the basis of hadron-hadron interaction models
at high energies. It is well known that the inclusive cross section is given as a convolution of
two parton distribution functions with an elementary parton-parton interaction cross section. The
latter one is obtained from perturbative QCD, the parton distributions are deduced from deep
inelastic scattering. Although these distributions are taken as black boxes, one should not forget
that they represent a dynamical process, namely the successive emission of partons (initial state
space-like cascade), as shown in fig. 1(a). We refer to this whole structure as “parton ladder”,
with a corresponding simple symbol as shown in fig. 1(b), to simplify further discussion.
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Fig. 1: (a) Elementary parton-parton scattering: the hard scattering in the middle is preceded by parton emissions

(initial state space-like cascade). (b) Symbolic parton ladder, representing the structure shown left. (c) The complete

picture, including remnants. The remnants are an important source of particle production at RHIC energies.

Actually our “parton ladder” is meant to contain two parts [3]: the hard one, as discussed
above, and a soft one, which is a purely phenomenological object, parametrized in Regge pole
fashion.

Still the picture is not complete, since so far we just considered two interacting partons,
one from the projectile and one from the target. These partons leave behind a projectile and
target remnant, colored, so it is more complicated than simply projectile/target deceleration. One
may simply consider the remnants to be diquarks, providing a string end, but this simple picture
seems to be excluded from strange antibaryon results at the SPS [8].

We therefore adopt the following picture, as indicated in fig. 1(c): not only a quark, but a
two-fold object takes directly part in the interaction, being a quark-antiquark, or a quark-diquark,
leaving behind a colorless remnant, which is, however, in general excited (off-shell). So we
have finally three “objects”, all being white: the two off-shell remnants, and the parton ladders
between the two active “partons” on either side (by “parton” we mean quark, antiquark, diquark,
or antidiquark). We showed in ref. [5] that the “three object picture” as discussed in this paper
can solve the “multi-strange baryon problem” of ref. [8].

Even inclusive measurements require often more information than just inclusive cross sec-
tions, for example via trigger conditions. Anyhow, for detailed comparisons we need an event
generator, which obviously requires information about exclusive cross sections (the widely used
pQCD generators are not event generators in this sense, they are generators of inclusive spectra,
and a Monte Carlo event is not a physical event). This problem is known since many years,
the solution is Gribov’s multiple scattering theory, employed since by many authors. This for-
mulation is equivalent to using the eikonal formula to obtain exclusive cross sections from the
knowledge of the inclusive one.

We indicated recently inconsistencies in this approach, proposing an “energy conserving
multiple scattering treatment” [3]. The main idea is simple: in case of multiple scattering, when
it comes to calculating partial cross sections for double, triple ... scattering, one has to explic-
itly care about the fact that the total energy has to be shared among the individual elementary
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Fig. 2: Inelastic and elastic “rescattering” of a parton from the parton ladder with a second target parton. We talk

about (inelastic and elastic) splitting of a parton ladder.

interactions.

A consistent quantum mechanical formulation of the multiple scattering requires not only
the consideration of the (open) parton ladders, discussed so far, but also of closed ladders, rep-
resenting elastic scattering. The closed ladders do not contribute to particle production, but they
are crucial since they affect substantially the calculations of partial cross sections. Actually, the
closed ladders simply lead to large numbers of interfering contributions for the same final state,
all of which have to be summed up to obtain the corresponding partial cross sections. It is a
unique feature of our approach to consider explicitly energy-momentum sharing at this level (the
“E” in the name EPOS).

3 Splitting of Parton Ladders

Let us consider very asymmetric nucleus-nucleus collisions, like proton-nucleus or deuteron-
nucleus. The formalism developed earlier for pp can be generalized to these nuclear collisions,
as long as one assumes that a projectile parton always interacts with exactly one parton on the
other side, elastically or inelastically (realized via closed or open parton ladders). We employ the
same techniques as already developed in the previous section. The calculations are complicated
and require sophisticated numerical techniques, but they can be done.

In case of protons (or deuterons) colliding with heavy nuclei (like gold), there is a com-
plication, which has to be taken into account: suppose an inelastic interaction involving an open
parton ladder, between a projectile and some target parton. The fact that these two partons in-
teract implies that they are close in impact parameter (transverse coordinate). Since we have a
heavy target, there are many target partons available, and among those there is a big chance to
find one which is as well close in impact parameter to the two interacting partons. In this case
it may be quite probable that a parton from the ladder interacts with this second target parton,
inelastically or elastically, as shown in fig. 2.

The main effect of elastic splittingis suppression of small light cone momenta, which
agrees qualitatively with the concept of saturation. But this is only a part of the whole story,
several other aspects have to be considered [6]. Consider the example shown in figure 2(left).
In the upper part, there is only an ordinary parton ladder, so we expect “normal” hadroniza-
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tion. In the lower part, we have two ladders in parallel, which are in addition close in space,
since they have a common upper end, and the lower ends are partons close in impact parameter,
so the hadronization of the two ladders is certainly not independent, we expect some kind of a
“collective” hadronization of two interacting ladders. Here, we only considered the most simple
situation, one may also imagine three or more close ladders, hadronizing collectively.

The strength of the effects due to parton ladder splitting will depend on the target mass,
via the number Z of partons available for additional legs. The number Z of available partons
will also increase with energy, so at high enough energy the above-mentioned effects can already
happen in pp collisions.

A quantitative discussion how the above-mentionned effects are realized may be found
in [6].

4 Air Shower Simulations

In the following, we discuss air shower simulations, based on the shower programs CORSIKA [9]
or CONEX [10, 11], using EPOS or QGSJET II-3 [12] (as a reference) as interaction model.

Energy      (eV)
1710 1810 1910 2010

)
-1

/E
   

   
(G

eV
ch

N

-110

p

Fe

EPOS 1.6

QGSJET II-3

Energy      (eV)
1710 1810 1910 2010

)
-1

/E
   

   
(G

eV
µ

N
-210

p

Fe

EPOS 1.6

QGSJET II-3

Fig. 3: Total number of charged particles (left plot) and muons (right plot) at ground divided by the primary energy as

a function of the primary energy for proton and iron induced shower using EPOS (full lines) and QGSJET II-3 (dotted

lines) as high energy hadronic interaction model.

Air shower simulations are very important to analyze the two most common types of high
energy cosmic ray experiments: fluorescence telescopes and surface detectors. In the first ones,
one observes directly the longitudinal shower development, from which the energy and the depth
of shower maximum Xmax can be extracted. Comparing the latter with models allows us to have
informations on the mass of the primary. EPOS results concerning Xmax are in good agreement
with former models and experimental data.

Concerning particles measured at ground by air shower experiment, the situation is quite
different. Whereas the number of charged particles is very similar for EPOS and QGSJET II-
3 (see fig. 3), EPOS produces a much higher muon flux, in particular at high energy. At
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gitudinal momentum distributions of protons in pion carbon collisions at 100 GeV from EPOS (full) and QGSJET II-3

(dashed) compared to data.

1020 eV EPOS is more than 40% higher and gives even more muons with a primary proton than
QGSJET II-3 for iron induced showers.

The muon excess from EPOS compared to other models will affect all experimental ob-
servables depending on simulated muon results. In the case of the Pierre Auger obervatory (PAO),
this will affect mostly the results on inclined showers, for which the electromagnetic component
is negligible at ground. It is interesting to notice that the PAO claims a possible lack of muons in
air showers simulated with current hadronic interaction models.

5 The origin of the increased muon production

During the hadronic air shower development, the energy is shared between neutral pions which
convert their energy into the electromagnetic component of the shower, and charged hadrons
which continue the hadronic cascade producing muons. The ratio of the two (referred to as R) is
a measure of the muon production.

Comparing EPOS to other models, this ratio R of neutral pions to charged hadrons pro-
duced in individual hadronic interactions is significantly lower, especially for pi-air reactions, as
seen in fig. 4(left). This will increase the muon production, as discussed above.

Furthermore, the reduced ratio R is partly due to an enhanced baryon production, as shown
in fig. 4(right) (data from [14]). This will increase the number of baryon initiated sub-showers.
Since the ratio R is much softer in case of proton-air interactions compared to pion-air interac-
tions, this will even more reduce R, providing a significant additional source of muons.
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6 Summary

EPOS is a new interaction model constructed on a solid theoretical basis. It has been tested
very carefully against all existing hadron-hadron and hadron nucleus data, also those usually not
considered important for cosmic rays. In air shower simulations, EPOS provides more muons
than other models, which was found to be linked to an increased baryon production.
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LHCf: a LHC Detector for Cosmic Ray Physics

Alessia Tricomi, on behalf of the LHCf Collaboration
University and INFN Catania, Italy

Abstract
The LHCf experiment has been designed to measure the very forward
production of photons and neutral hadrons produced in proton-proton
interaction at LHC. These measurements are of essential importance to
calibrate the nuclear interaction models used in the Monte Carlo code
of air showers, which are used to extract the energy spectra of incoming
cosmic rays. Thanks to the unprecedented energy of LHC, LHCf will
provide a calibration of nuclear interaction models with real data up
to energies relevant to test the most debated region of the cosmic ray
energy spectra.

1 Introduction

One of the most debated question in cosmic ray physics is related to the existence of events above
the so called GZK cut-off. The existence of these events, if confirmed, poses some intruiguing
questions to our understanding of astroparticle physics and, eventually, asks for New Physics in
order to explain such a production. Indeed, evidence of Ultra High Energy Cosmic Rays, above
the GZK cut-off, has been reported for the first time by the AGASA experiment [1]. On the
contrary, the results of the HiRes [2] experiment are consistent with the existence of the cut-off.
Recently the AUGER Collaboration [3, 4] reported results consistent with the HiRes ones. A
key point which raises observing the cosmic ray energy spectra (Fig. 1) is the importance of
the energy scale calibration between different experiments. It has been noted that with a shift
by about 20% in the energy scale the disagreement between AGASA and HiRes results almost
disappears. Indeed, many of the experimental procedures used to derive the energy spectra of the
incoming cosmic rays depend strongly on the nuclear interaction models used in the Monte Carlo
codes of the air showers, which amounts for the the main source of systematic uncertainties.

The derivation of the energy spectra is not the only item in cosmic ray physics in which
we need to rely on Monte Carlo assumptions. Another open issue is the chemical composition
of cosmic rays. Cosmic rays are not purely protons but they contain also heavy nuclei. Nuclear
cascade showers initiated by the disintegration of heavy nuclei develop more rapidly in compari-
son with the showers initiated by protons. Fig. 2 shows the distribution of the shower maximum,
XMAX , as obtained by different collaborations around the knee region (1016 eV), compared with
several different Monte Carlo models [5]. The position of the shower maximum cleary depends
on the composition of the cosmic rays. As can be seen from the same Figure, different models
predict different composition. Not being sure on which nuclear interaction model one should
use, effectively reduces our ability to identify correctly the primary nucleon.

The importance of a correct choice of the nuclear interaction model is hence mandatory for a
detailed study of cosmic ray physics. For this reason a detailed calibration of Monte Carlo codes
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with real data is clearly of extreme importance. In order to calibrate these codes and choose
between different models it is very important to have a precise knowledge of the energy spectrum
of foward emitted particles which are the main perpetrators of the air shower development. LHC
with its unprecedent energy of 14 TeV in the center of mass system (equivalent to about 1017

eV in the laboratory system), gives us a unique opportunity to perform a complete calibration of
Monte Carlo models in an energy range relevant to explore the already mentioned open questions
of cosmic ray Physics.
The LHCf experiment [6] has been designed in order to measure the forward production spectra
of photons and π0’s and the leading particle spectrum, thus providing all the essential tools
needed to perform a detailed nuclear interaction model calibration.

2 The LHCf experiment

The main purpose of the LHCf experiment is to measure the neutral particle production in the
very forward region at LHC: it should be able to identify photons, π0 and neutrons, measure their
energy spectra (> 100 GeV) down to the high rapidity region and reconstruct the π0 invariant
mass thanks to the accurate measurement of the shower position and energy. In order to be com-
pliant with these goals a double arm calorimeter design has been chosen. The two detectors are
located on both side of the Interaction Point 1 (± 140 m) at the Large Hadron Collider (LHC), at
CERN. The two calorimeters are housed in a beam absorbing structure (TAN) in which the two
proton beams are steered in the two separate beam lines which circulate in the LHC machine.
Thus the flux of charged particles is swept away and only the neutral ones reach the calorimeter
surface.
Each detector is a small sampling electromagnetic calorimeter arranged in a double tower geom-
etry, each tower being made of plastic scintillators (16 layers) interleaved with tungsten layers as
absorber (22 layers) and four layers of position sensitive detectors. The total dimensions of each
detector (29 cm length, 9 cm width and 60 cm height) is constrained by the available slot in the
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TAN region. The two detectors are very similar but not identical: the geometrical arrangment of
the two towers is different and they also differ for the position sensitive layers. In detector #1
(ARM1) four layers of X-Y hodoscopes made with array of 1 mm × 1 mm scintillation fibers
(SciFi) provide transverse position information of the showers. The position resolution for the
shower center is expected to be 200 µm. A schematic of Detector #1 is shown in Fig. 3.

Fig. 3: A schematic drawing of the ARM1 LHCf calorimeter. The two towers have transverse dimensions of 2×2cm2

and 4×4cm2 . The scintillator tiles are read out with phototubes. Four layers of scintillation fibers are used for tracking
purpose.

The structure of Detector #2 (ARM2) is the same, but the two towers are stacked on their edges
with an horizontal offset in order to maximize the effective aperture and the position sensitive
layers are replaced by silicon microstrip detectors, as can bee seen in Fig. 4. The detector spatial
resolution (i.e. the precision on the photon impact point measurement) is shown in Fig. 5 as a
function of the depth for several photon energies ranging from 56 GeV to 1800 GeV.

The absorber lenght of the two calorimeters is enough to accurately measure the photon energy
up to 2 TeV. The plastic scintillators provide both fine sampling of shower energy as well as
a level 2 online trigger for data taking. Due to the smallness of the tower sizes, which are
comparable to the Moliere radius of the electromagnetic showers, there is a certain amount of side
leakage. However, this leakage can be corrected for by applying the position measurements of
the silicon/scintillating fibre layers. Energy resolution is expected to be 3%/

√
E(TeV ) + 1.2%.

Also the capability to reconstruct separately the two showers from the 2 γs from π0 decays allows
for an excellent reconstruction of the invariant mass (5%) and thus provides an invaluable tool
to calibrate the absolute energy scale, which is of crucial importance for the Physics program of
LHCf (Fig. 6).

Good discrimination of hadron (neutron) showers from electromagnetic (γ) showers can
be achieved by measuring the longitudinal shower distribution. Energy resolution of hadron
showers is expected to be 30% at 6 TeV due to the longitudinal shower leakage through the back
of the calorimeters.
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cm2 and 3.2 × 3.2 cm2. The scintillator tiles are read out with phototubes while the silicon microstrip detectors have
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Fig. 5: Spatial resolution as a function of layer depth for the ARM2 calorimeter with silicon modules at various photon

energies.

3 Monte Carlo Model Discrimination

The capability of LHCf to disentangle different interaction models is shown in Fig. 7 both for
for the γ and neutron energy spectra. The models used are DPMJET3 [7], QGSJET-II [8] and
SYBILL [9]. Depending on the nuclear interaction model used the energy spectra change more or
less significantly. In the case of γ energy spectra, the discriminating power is already significant
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Fig. 6: Invariant mass resolution for π0 for the ARM1 calorimeter.

at 1 TeV between SYBILL and the other codes, while discrimination between DPMJET3 and
QGSJET-II can be achieved through a more sophisticated analysis, as described in Ref. [6].
The neutron sample gives more discrimination between different models. As it is shown in Fig. 7,
even with a pessimistic 30% energy resolution, a very good disentangling of the different models
is feasable.

Fig. 7: Expected energy spectrum for γs and neutrons according to different interaction models. For neutrons a 30%

energy resolution has been taken into account.

4 Status of the Experiment and Running scenario

The two LHCf calorimeters are fully assembled already since several months. Both were succes-
fully pre-installed in the TAN region, to test all the connectivity, mechanics, cabling, etc. (Fig. 8)
and the experiment is ready for the final installation into the LHC tunnel waiting to take data with
LHC beams.

The LHCf detectors will take data in the first running period of LHC, already during the
commissioning of the machine (mid 2008) till the LHC luminosity will not exceed 1031 cm−2s−1.
Then the detector will be removed for reasons of radiation damage of the scintillator component.
A successive phase, in which the detector will be re-installed at the next opportunity of a low
luminosity run and during heavy ion runs is under discussion.
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Fig. 8: ARM1 detector pre-installed in the TAN location in the LHC tunnel.

5 Conclusions

The LHCf experiment will take data at LHC in order to calibrate air shower Monte Carlo codes
up to the energy of 1017 eV, thus providing invaluable input to questions posed since the first
detection of UHECR. The two calorimeters are ready to take data and will be installed in the
LHC tunnel at the beginning of 2008, while data taking will start at the beginning of LHC beam
commissioning.
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RHIC physics: short overview

Anna Staśto
Penn State University, 104 Davey Lab., University Park, 16802 PA, USA

Abstract
This talk gives a very short overview of some of the important physical
phenomena observed at the Relativistic Heavy Ion Collider (RHIC).
The emphasis is put on the multiplicities, hard probes and the proper-
ties of the initial state.

1 Introduction

The Relativistic Heavy Ion Collider (RHIC) is a unique machine designed to create a very high
energy density over an extended region as a result of nuclei collisions. This process enables to
investigate the collective phenomena in Quantum Chromodynamics. In particular, one hopes to
create the quark-gluon plasma which is the state of deconfined quarks and gluons. According to
cosmology such state existed at the very early Universe. RHIC machine is capable of accelerat-
ing and colliding different hadronic systems: proton-proton, nucleus-nucleus, deutron-nucleus at
a wide range of centre-of-mass energies, from 19.6 to 200 GeV per nucleon pair. Just after the
collision, a very high quantity of quarks and gluons is created. It is estimated that the formation
time for the initial density is about 0.35 fm/c. After that, the system thermalizes very quickly
and reaches thermodynamic equillibrium. Estimates suggest that this happens rather quickly,
with very short thermalization times of the order of 1 fm/c. The assumption of thermalization is
vital for the application of the hydrodynamics [1] which is used to describe the expansion of the
system. When the system expands and cools down, the quarks and gluons form hadrons which
finally reach the detectors. The phase transition from the quark-gluon plasma to hadrons oc-
curs at rather large value of strong coupling which is beyond the applicability of the perturbative
methods. Nevertheless, one can explore thermodynamic properties of QCD using lattice meth-
ods, see for example [2]. In Fig. 1 we show the result of the lattice calculations [2] for the energy
density divided by T 4 as a function of temperature. The results clearly show the phase transition
at the critical temperature Tc of about 173 MeV. The critical energy density corresponding to
this temperature is about εc ' 0.7 GeV/fm3. The energy density at RHIC [3] can be calculated
from the transverse energy density at midrapidity via Bjorken formula: 〈ε〉 ' 1

τA
dET
dy , where

A is the overlap area for the colliding nuclei. The average energy density depends crucially
on the estimates of the time τ at which it is evaluated. For thermalization times in the range
0.6 − 1.0 fm/c the average energy density is about 9.0 − 5.4 GeV/fm3. This is well above the
critical density obtained from lattice calculations, compare Fig. 1. It is interesting to note that the
energy density of the cold nuclear matter is about 0.15 GeV/fm3. In Fig. 1 the energy densities
probed by RHIC and LHC are also indicated. Notably, the calculations signal that already at SPS
energies, the transition from hadron phase to quark-gluon plasma occured. Lattice calculations
enable to probe the phase diagram of QCD, shown schematically in Fig. 2. The vertical axis is
the temperature T and the horizontal one is the baryo-chemical potential.
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Fig. 1: Energy density /T 4 as a function of the temperature. The blue arrow with ε/T 4 is the Stefan-Boltzman limit.

Figure by F. Karsch [4].

The region above the dashed-solid lines is the quark-gluon plasma phase, whereas the
region below, at small temperatures and baryo-chemical potential, is the hadron phase. The
transition between the two is a smooth crossover. Both RHIC and LHC probe the quark-gluon
phase and the transition region at small values of the baryon chemical potential. Further to the
right, for higher values of the baryo-chemical potential the critical endpoint is expected and the
transition becomes of the 1st order. At high values of the baryo-chemical potential and smaller
temperatures, new phase appears, the color superconductor. This phase is not accessible at the
high energy colliders.

Fig. 2: Phase diagram of QCD.

The fact that RHIC reached quark-gluon plasma domain in the nucleus-nucleus collisions
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suggests that, at least in some of the measured observables, one can expect to see dramatic effects
as compared with proton-proton collisions. In reality the situation is quite complicated. Indeed,
large differences are seen, for example the suppression of pT distributions at large values of the
transverse momenta with respect to the (scaled) proton-proton collisions. On the other hand, bulk
properties, like total multiplicities and rapidity distributions, have quite similar shapes and energy
dependences as compared with the scaled proton-proton measurements. We are going to review
some of the observations performed at RHIC and discuss the phenomenological descriptions.

2 Multiplicities

In Fig. 3 from [3] the measurements of the total multiplicity in AA, pp(pp̄), e+e− collisions,
scaled by the number of participating nucleon pairs Npart/2 are shown as a function of the
increasing energy. The smooth rise with energy is well described by the ln2 s behavior over wide
range of the energies. What is striking, is the fact that the data for scaled multiplicity for nucleus-
nucleus collisions lie on top of the data points for e+e− collisions. Proton-proton data lie lower,
most probably due to the leading particle effect. In the pp(pp̄) collisions, lots of the energy is
taken by the quark spectators into the forward region, and only a fraction of the energy is used for
the production of the secondary particles. The proton-proton data can be superimposed onto the
nucleus-nucleus and e+e− data when the energy is rescaled by a factor of 1/2. This universality
of the multiplicites indicates that the bulk of the produced particles depends only on the total
energy (and Npart) and not the species of the colliding particles.

Fig. 3: Total multiplicity scaled by the number of participating pairs as a function of the energy. Compilation of data

from e+e−, pp(pp̄), AA and dA collisions. Figure by PHOBOS collaboration from [3].

The measured multiplicity at mid-(pseudo)rapidity in nucleus-nucleus collisions increases
slower with energy , as ln s. This simple linear in ln s extrapolation to the LHC energies predicts
that 2

Npart

dN
dη |η=0 ' 6 − 7. Various theoretical predictions for LHC energy are larger than this

simple estimate and span a wide range, up to nearly 40 for the value at midrapidity. This is prob-
ably connected to the fact that in most of these calculations some semi-perturbative component is
present which results in a power-like increase of the multiplicity rather than the logarithm. This
large uncertainty of the phenomenological extrapolations reflects our rather limited theoretical
understanding of the energy dependence of multiplicities.
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2.1 Extended longitudinal scaling
The PHOBOS collaboration performed measurements of the rapidity distributions for various
energies (and systems) and found that the distributions exhibit limiting fragmentation property
which is also called extended longitudinal scaling [5]. This means that when viewed in the
rest frame of one of the projectiles the (pseudo)rapidity distribution becomes a function of only
η′ = η − Ybeam where Ybeam is the rapidity of the beam. Therefore the rapidity distribution
in the regime around η′ ∼ 0 is dominated by the fragments of the broken target whereas the
fragments of the projectile move with increasing velocity as the energy is further increased (to
study these fragments one has to go to the rest frame of the projectile η + Ybeam). The limiting
fragmentation also requires that the interaction between the target and the projectile does not
depend appreciably on the energy. This scaling means that the rapidity distributions must be
determined very early in the collision, most probably by the initial state.
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Fig. 4: Rapidity distributions for the nucleus-nucleus collisions as a function of the shifted variable η′ = η − Ybeam

for various center-of-mass energies. Curves are from calculation using the CGC nonlinear equations [6].

Fig. 4 illustrates this phenomenon. The curves shown in the figure are obtained from the
calculation [6] based on the kT -factorization approach together with the evolution via nonlinear
equation for the gluon density. In this approach the rapidity distribution is evaluated as the con-
volution of two parton densities corresponding to the target and the projectile respectively. In the
fragmentation region, the target parton density is evaluated at rather large values of Bjorken x
whereas the projectile density is taken at rather small values of x. The essential part of this cal-
culation, which enables to reproduce the observed scaling, is the fact that the rapidity distribution
in the target fragmentation region is dominated by the initial state parton density of the target,
probed at large values of the Bjorken variable x. At these values the parton density possesses
Bjorken scaling,i.e. does not depend on the scale at which it is evaluated. The projectile density,
which depends on rather small values of x and small scales, is saturated since it is evaluated from
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the evolution equation which takes into account nonlinearities important at high parton densities.
Therefore this density does not depend much on the x values and hence the center of mass energy.
We see that even though the approach is semi-perturbative it does capture the essential physics
features necessary to reproduce the limiting fragmentation phenomenon.

3 Hard probes

To explore the properties of the quark-gluon plasma created in the high energy nucleus-nucleus
collisions experiments at RHIC measured the suppression of the production of high pT particles
and heavy quarks. These are excellent probes of the produced medium, and due to the large
difference in scales (high pT as compared to the bulk of low pT particles ), it should be in
principle possible to employ the perturbative methods. One usually quantifies the effect of the

medium by evaluating the ratio RAA = σinel
pp

〈Ncoll〉
d2NAA/dηdpt

d2σpp/dηdpt
. As seen from Fig. 5 from [7] the

RAA ratio is significantly below 1 even at very high values of pT . This phenomenon is called jet
quenching which is interpreted as the interaction of the produced jet (or rather leading high pT
particle) with the produced medium. The interaction results in the significant energy loss of the
leading high pT particle. In fact the effect is so large that it indicates that the high pT particles
which reach the detectors are emitted from a relatively thin outer shell of the high density region.

Fig. 5: RAA for the produced hadrons as a function of their transverse momentum. Figure from [7].

To describe the jet quenching one usually starts from the standard collinear factorization
formula for the exclusive hadron production in the vacuum

σAB→hvac = fA(x1, Q
2)⊗ fB(x2, Q

2)⊗ σ̂(x1, x2, Q
2)⊗Df→h +O(Λ/Q) , (1)

where fA, fB are parton distribution functions evaluated at scale Q2 , σ̂ is the partonic cross
section and Df→h is the fragmentation function from parton f to hadron h. To evaluate the
production in the medium one convolutes the above expression with the so called quenching
weight [8]

σAB→hmed = σAB→hvac ⊗ P (∆E,L, q̂) , (2)
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which depends on the length of the medium and the parameter q̂ which acts as a transport co-
efficient for the medium. One has to emphasize that although in proton-proton collisions the
factorization formula (1) is well established, (up to higher twist corrections) it is not proven to
hold in form (2) for collisions which involve large nuclei. Final state interactions could in prin-
ciple affect the partonic cross section σ̂ in a non-factorizable way. It is therefore an assumption,
that after the partons have been produced in the hard scattering process, one can further factorize
their interactions into one universal function P . The curves in Fig. 5 are from [8] which is a
calculation based on the theoretical framework described above. The quenching parameter q̂ was
fitted to get the best description of the data.

The production of the heavy quarks is another excellent process. In principle the calcula-
tion framework is the same as above. One does expect some differences due to the fact that in
the vacuum the radiation pattern for heavy quarks is different from the light quarks. Due to their
mass heavy quarks should radiate less than the light quarks at angles smaller than θ0 = m/E
where m is the mass of the heavy quark and E is its energy. This is called the dead cone ef-
fect [9]. Therefore the net effect would be less supression (larger RAA) than for the light quarks.
The measured suppression for the heavy quarks is of the same order as for the light quarks, and
the theoretical predictions (for example [10]) do not quite predict such a large value. One has to
emphasize that the heavy quark production in pp (from electrons emerging from semi-leptonic
decays) is underestimated by the NLO perturbative QCD calculation by a factor of about 2 for
PHENIX data and by about a factor 5 for the STAR data. Therefore the process with the heavy
quarks calls for better understanding, possible taking into account various effects : collisional
energy loss, bottom/charm ratio or factorization breaking.

We conclude our discussion of the hard probes with the description of the new calculational
methods which employ the AdS/CFT correspondence to evaluate the jet quenching parameter. In
this approach [11], the expectation value of the Wilson loop, as an average over the medium
is evaluated using the string/gauge duality in the limit of the strong coupling constant. This
expectation value is obtained as an exponential of the string action evaluated at the minimum

〈WF (C)〉 = exp(iS(C)− iS0) ,

where S is the Nambu-Goto action with the metric on the 4 + 1 dimensional AdS space. In the
case of the finite temperature, the corresponding metric is that of the AdS Schwarzschild black
hole. In the strong coupling and the multicolor limit the problem becomes classical, i.e. reduces
to finding the extremum of the action. It is possible, using this method, to evaluate the value of
the jet quenching parameter which in this case is q̂SYM = 5 GeV2/fm. We note however, that
all these results can be derived only for the case of the N=4 SYM theory.

4 Initial state

The processes described above clearly indicate the presence of the dense medium in the final
state. The natural question arises whether one can also observe the effects coming from the ini-
tial state, namely the wave function of the colliding nuclei. BRAHMS collaboration performed a
measurement of the high pT suppression as a function of rapidity for dA collisions [12]. Whereas
at midrapidity no suppression is observed for this process, the RCP clearly shows a decreasing
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trend when moving into forward rapidity. This phenomenon was quite successfully described by
the models which involve saturation effects in the gluon density or in general by the Color Glass
Condensate model [13]. In CGC the basic object is the wave function of the nucleus. Obviously
the complete knowledge of such wave function requires methods which go beyond that known
in preturbation theory. One can nevertheless calculate the variation of this wave function with
energy. This is governed by the renormalization group equation which can be derived from the
Feynman graphs in the leading logarithmic approximation. At very small values of Bjorken x
one expects the fast growth of the gluon density within the nucleus. The CGC model together
with the renormalization group equations predicts that this growth should be tamed whenever
x becomes sufficiently small. The transition between the fast growth and the regime where the
recombination effects for the gluons become important is governed by the saturation scale Qs
which is a function of the Bjorken x. Thus the saturation scale provides a dynamical cutoff at
low values of x and at low scales. It is the prediction of the CGC model that theRCP ratio should
decrease at forward rapidities [14]. The CGC model has been successfully used to describe var-
ious observables in heavy ion collisions: multiplicites, rapidity distributions (mentioned already
in the previous section) [15] and also RCP ratio. One has to emphasize though that there are sev-
eral questions concerning a strict applicability of this approach to the RHIC data. The values of
x are not very small for the RHIC kinematics, the formalism correctly incorporates only gluons,
and it has been so far only used at leading order whereas higher orders are known to be very large.
Nevertheless, the CGC approach, mostly due to its interesting properties in the infrared regime,
remains a very attractive approach both theoretically and phenomenologically and its predictions
should be further confronted with the experimental data.

Conclusions

We have discussed a selection of the phenomena measured at the Relativistic Heavy Ion collider.
Clearly, due to our space and time limitations the list presented here is by no means exhaustive.
The bulk properties as shown in the measurements of the multiplicities are very similar to that
measured in the simpler systems: proton-proton or even in e+e− collisions. The extended longi-
tudinal scaling of rapidity distributions indicate the importance of the initial state. Hard probes
in form of the high pT particles or heavy quarks signify the presence of the strongly interacting
medium. This is further corroborated by the observation of the strong elliptic flow in peripheral
collisions. The theoretical descriptions based on hydrodynamics have been quite successful in
describing the hadron spectra and the anisotropy. Also calculations which employ the perturba-
tive methods supplemented by the rescattering or recombination(saturation) effects are able to
describe the bulk of the data at large values of the transverse momenta. Nevertheless, despite
these incontrovertible successes in phenomenology, the RHIC data still constitute a significant
challenge for a theory and call for a more complete and coherent description within QCD.
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Nuclear shadowing and collisions of heavy ions
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Abstract
Nuclear shadowing effects for quarks and gluons are calculated using
information on diffractive DIS on a nucleon. The role of these ef-
fects in interactions of hadrons and nuclei with nuclei at high energies
is investigated. A decrease in particle densities for heavy ion colli-
sions in comparison with the Glauber model is predicted and nuclear
modification factors are calculated. The situation in heavy quarkonia
production on nuclei is discussed.

1 Introduction

Heavy ion collisions at high energies are usually considered as a tool to study hadronic matter at
extreme conditions: high density quark-gluon systems in deconfined phase. It is very important
to understand what are the relevant degrees of freedom in such situation. Investigation of DIS at
very small x, and especially shadowing effects on nuclei, can give an important information on
properties of dense quark-gluon systems.

It is worth to emphasize that hadrons and nuclei at very high energies can be considered
as complicated fluctuations of quarks and gluons with long lifetimes (coherence length) propor-
tional to energy. The structure of these Fock states is of primary importance for high-energy
interactions. The space-time picture of hadron-nucleus hA (AB) interaction changes at energies
Ec for which the coherence length becomes of the nuclear size RA. For typical interactions
Ec ∼ m2

NRA. At energies below Ec an elastic hA scattering amplitude can be considered as
successive rescatterings of an initial hadron on nucleons of a nucleus (Glauber model [1]). For
E � Ec there is a coherent interaction of constituents of a hadron with nucleons of a nucleus.
It was shown by V.N. Gribov [2] that, though the space-time picture changes, the hA elastic
amplitude can be calculated as in the Glauber model, but with account of inelastic intermediate
states.

Consider now the fast moving nucleus. Partons of a fast nucleus with small relative mo-
menta x < 1/(mNRA) overlap in the longitudinal space and can interact. For example two
chains of partons from different nucleons can fuse into a single chain (for elastic amplitude this
corresponds to the diagram with triple-pomeron interaction). From the point of view of Gribov
approach such interactions correspond to diffractive production of large mass states. The corre-
sponding couplings (gPPP ,..) can be determined from experimental data on inclusive diffractive
processes and turned out to be small (see for example [3]). This means that extra shadowing due
to excitation of large masses in the intermediate states is not very important in hA-interactions.
On the other hand for DIS on nuclei these effects play a dominant role in shadowing of partons.

This contribution contains a review of theoretical studies of shadowing effects for quarks
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and gluons [4–6], based on the Gribov approach and HERA data on diffraction in DIS 1. In the
second part of the paper the results on partonic shadowing are applied to heavy ion collisions. It
is shown that this shadowing leads to a suppression of particle densities in hadron-nucleus and
nucleus-nucleus collisions. Suppression of particles with large transverse momenta and heavy
quarkonia is discussed.

2 Shadowing effects for nuclear structure functions

Study of nuclear structure functions in the small-x region can provide an important information
on mechanisms of shadowing. The total cross section of a virtual photon-nucleus interaction can
be written as a series in number of rescattering on nucleons of a nucleus

σ
(tot)
γ∗A = σ

(1)
γ∗A + σ

(2)
γ∗A + ... (1)

The first term corresponds to a sum of incoherent interactions with nucleons of a nucleus

σ
(1)
γ∗A = Aσγ∗N (2)

the second term describes the shadowing and according to Gribov theory [2] can be expressed in
terms of cross section of diffraction dissociation of a virtual photon in γ ∗N -interactions

σ(2) =−4π
∫
d2b T 2

A(b)
∫
dM2

dσDDγ∗N (t = 0)
dM2dt

FA(tmin) (3)

where T (b) =
∫
dzρA(r) is the nuclear profile function, and ρA(r) - nuclear density

(
∫
ρA(r)d3r = A), FA(q2) =

∫
eiq~rρ(r) - nuclear form factor. The minimal value of momentum

transfer to nucleons

tmin = −x2
Pm

2
N and xP =

Q2 +M2

S
=
x

β
,

where β = Q2

Q2+M2 . It is important to emphasize that the shadowing effects are different from
zero only in the region of very small xP or x, where (−tmin) << 1

R2
A

(RA is the nuclear radius).
The same condition of coherence corresponds to lifetimes of the initial hadronic fluctuation τh ∼

1
mNx

much larger than radius of a nucleus. It is also important for existence of shadowing in
heavy ion collisions (see below).

Higher order rescatterings are model dependent. In papers [4–6] two types of models
were used. The first one is the quasieikonal model, which was successfully used in hadronic
interactions [7] and the second one is the generalized Schwimmer model [8], based on summation
of fan-type diagrams of pomeron interactions. For the last model one can write

F2A/F2N =
∫
d2b

TA(b)
1 + F (x,Q2)TA(b)

(4)

with F (x,Q2) = 4π
∫
dM2

(
dσDDγ∗N (t = 0)/dM 2dt

)
×(FA(tmin)/σγ∗N (x,Q2)

)
. It was demon-

strated in refs. [4–6], that predictions of two models indicated above for nuclear shadowing are
1for more references on this subject see [6]
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not very different. HERA experiments provided rather complete information on diffractive disso-
ciation in DIS, which can be used in eq.(4) to predict nuclear structure functions at very small x.
Theoretical predictions do not contain free parameters and are in a good agreement with existing
experimental data [4,5]. Thus the shadowing effects for distributions of quarks in nuclei are pre-
dicted with a good accuracy. On the other hand shadowing for gluons until recently was not so
well determined. This is connected with a difficulty of extraction of the gluonic distributions in
diffractive DIS. In the paper [6] we used the most recent determinations of the diffractive gluonic
distributions from HERA data [9] to calculate nuclear shadowing for gluons. Inclusion of the
data on diffractive production of dijets and charm makes diffractive distributions of gluons much
more reliable in the whole β region in comparison with previous determinations. Distributions
of gluons in nuclei play an important role in many physical processes in nuclear collisions (see
below).

3 Nuclear interactions at high energies and shadowing effects

An important consequence of the space–time structure of interactions of hadrons with nuclei is
the theorem, based on AGK–cutting rules [10], that for inclusive cross sections all rescatterings
cancel with each other and these cross sections are determined by the diagrams of impulse ap-
proximation. Note, however, that this result is valid asymptotically in the central rapidity region
only for diagrams of the Glauber–type, i.e. when masses of diffractive intermediate states are
limited and do not increase with energy. As a result, the inclusive cross section for the produc-
tion of a hadron a is expressed, for a given impact parameter b, in terms of inclusive cross section
for hN interactions

E
d3σahA(b)
d3p

= TA(b)E
d3σahN
d3p

(5)

where TA(b) is the nuclear profile function

For inclusive cross sections in nucleus-nucleus A1A2–collisions the result of the Glauber
approximation is also very simple to formulate due to the AGK cancellation theorem. It is possi-
ble to prove, for an arbitrary number of interactions of nucleons of both nuclei , that all rescatter-
ings cancel in the same way as for hA–interactions. Thus a natural generalization of eq. (5) for
inclusive spectra of hadrons produced in the central rapidity region in nucleus–nucleus interac-
tions takes place in the Glauber approximation

E
d3σaA1A2

(b)
d3p

= TA1A2(b) E
d3σaNN
d3p

(6)

where TA1A2(b) =
∫
d2sTA1(~s)TA2(~b− ~s).

The densities of charged particles can be obtained from eq.(6) by dividing it by the total
inelastic cross section of nucleus–nucleus interaction.

dnchA1A2
(b)

dy
=
TA1A2(b)
σinA1A2

σinNN
dnchNN
dy

= nA1A2(b)
dnchNN
dy

(7)
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Equations (6),(7) are valid for xF ≈ 0 in the limit s → ∞. For finite energies there are
corrections due to energy-momentum conservation effects [11].

At very high energies the problem of shadowing of soft partons is very important in
hadron-nucleus and nucleus-nucleus collisions. This phenomenon takes place only in the kine-
matic region where longitudinal momentum fractions of soft partons satisfy to the condition
xi << 1/mNRA(i = 1, 2), discussed in the previous Section. Values of xi can be determined
from the conditions

x1 · x2 =
M2
⊥
s

; x1 − x2 = xF

where M⊥ is the transverse mass of the produced system and xF is its Feynman x.

For example at RHIC energy
√
s = 200 GeV in the central rapidity region (xF ≈ 0) the

shadowing for Au-Au collisions is possible only for transverse momenta less than several GeV.

In reggeon theory the shadowing effects discussed above are related to diagrams with
interactions between pomerons. They lead to a substantial decrease of particle densities at high
energies.

The same model, which has been used for description of shadowing effects for nuclear
structure functions, was used to predict inclusive particle densities in heavy ion collisions [11].
In this approach the expression (7) for densities of particles in A1A2 collisions is modified as
follows [11].

dnA1A2

dy
= nA1A2(b)

dnNN
dy

γA1γA2 (8)

where

γA =
1
A

∫
d2b

TA(b)
1 + F (x,Q2)TA(b)

(9)

For LHC eqs.(8), (9) predict a decrease of particle densities by a factor ∼ 4 compared
to the Glauber model [11], while for RHIC the suppression is ≈ 2. Detailed predictions for
shadowing suppressions are given in ref. [5]. This approach agrees [12] with experiments at
RHIC [13, 14]. Dependence of number of produced particles on number of participant nucleons
is also in agreement with the data [15].

The kinematic borders for shadowing discussed above correspond also to an essential
change in the space–time picture of nuclear interactions and change [16] in AGK cutting rules.
For example for xA2 <<

1
mNRA2

the lifetime for the initial state configuration of a nucleus A1

is larger than the size of a nucleus A2. In this case conditions for coherence are satisfied and
usual AGK cutting rules [10] are valid . For xA2 ≥ 1

mNRA
space–time picture is close to final

state reinteractions of produced particles with formation time [16]. This situation is very general.
For J/ψ production in hadron-nucleus interactions it was discussed in detail in ref. [17]. It has
important implications for production of particles and jets with large p⊥ and heavy quarkonia at
RHIC.

Consider for example J/ψ production in D-Au-collisions. The transition from the picture
of successive final state interactions to coherent interaction in this case for xF = 0 happens in the
RHIC energy region. At the highest RHIC energies the coherent interactions dominate and due
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Fig. 1: Suppression of heavy quarkonia production in DAu (pPb)-collisions at RHIC and LHC

to AGK-cancellation only the diagrams with interactions between pomerons contribute. In other
words only effects of shadowing for nuclear gluons can be taken into account. As was demon-
strated above these effects are small for xA > 10−2 and experimental data on J/ψ production
in d-Au-collisions [18] are well reproduced [19–21] (Fig.1). In this model it is possible to de-
scribe data on J/ψ production in hA-collisions in a broad energy region. The model predicts a
substantial increase in J/ψ-suppression at LHC [21] (Fig.1). For heavy ion collisions there is an
extra suppression of heavy quarkonia due to interactions with comoving particles and possible
recombination of charm.

For pions with p⊥ ≥ 1 ÷ 2 GeV the shadowing effects at
√
s = 200 GeV and xF = 0

are small as was emphasized above and is demonstrated by the data on D-Au-collisions [22].
However for heavy ion collisions in this region of xAi ≥ 1

mRA
the final state interactions with

produced particles are important. In particular an account of Cronin effect and interaction of a
particle (jet) with comovers allowed to describe [23] a suppression of particle production at large
p⊥ observed at RHIC [14] for Au-Au collisions.

The data in D-Au collisions [22] show that in the fragmentation region of D there is a
suppression for production of particles with large p⊥. At first sight this can be explained by a
stronger shadowing at smaller values of xAu ∼ 10−3. However with an account of correct two-
jet kinematics the values of xAu turned out to be not so small [24] and calculation of shadowing
shows [20] that it is responsible for a small part of the effect. The rest can be explained by the
energy-momentum conservation effects, which are important for xF ∼ 1. This is confirmed
by the experimental observation of practically the same suppression of large p⊥ hadrons in hA-
collisions at SPS energies [25]. These observations make interpretations of the suppression,
observed in the deutron fragmentation region, in terms of nuclear shadowing or ”color glass
condensate” highly unlikely.
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4 Conclusions

The Gribov theory of high-energy interactions is able to describe a large class of physical pro-
cesses including nuclear interactions. In this theory the Glauber approximation to nuclear dy-
namics is valid in the region of not too high energies and is modified already starting from RHIC
energies.

The problem of ”saturation” of parton densities is related in the Gribov theory to inter-
actions between Pomerons. These effects are especially important for nuclear collisions. The
shadowing effects are clearly seen in the RHIC data at small transverse momenta. A change
in the space-time picture of particle production on nuclei with energy allows to understand the
properties of heavy quarkonia production in D-Au collisions at RHIC.
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NLO jet production in kT factorization
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Abstract
We discuss the inclusive production of jets in the central region of
rapidity in the context of kT –factorization at next–to–leading order
(NLO). Calculations are performed in the Regge limit making use
of the NLO BFKL results. We introduce a jet cone definition and
carry out a proper phase–space separation into multi–Regge and quasi–
multi–Regge kinematic regions. We discuss two situations: scattering
of highly virtual photons, which requires a symmetric energy scale to
separate impact factors from the gluon Green’s function, and hadron–
hadron collisions, where a non–symmetric scale choice is needed.

1 Introduction

An accurate knowledge of perturbative QCD is an essential ingredient in phenomenological stud-
ies at present and future colliders. At high center of mass energies the theoretical study of mul-
tijet events becomes an increasingly important task. In the context of collinear factorization the
calculation of multijet production is complicated because of the large number of contributing
diagrams. There is, however, a region of phase space where it is indeed possible to describe
the production of a large number of jets: the Regge asymptotics (small–x region) of scattering
amplitudes. If the jets are well separated in rapidity, the corresponding matrix element factorizes
with effective vertices for the jet production connected by a chain of t-channel Reggeons. A per-
turbative analysis of these diagrams shows that it is possible to resum contributions of the form
(αs ln s)n to all orders, with αs being the coupling constant for the strong interaction. This can
be achieved by means of the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [1].

The BFKL approach relies on the concept of the Reggeized gluon or Reggeon. In Regge
asymptotics colour octet exchange can be effectively described by a t–channel gluon with its
propagator being modified by a multiplicative factor depending on a power of s. This power
corresponds to the gluon Regge trajectory which is a function of the transverse momenta and is
divergent in the infrared. This divergence is removed when real emissions are included using
gauge invariant Reggeon–Reggeon–gluon couplings. This allows us to describe scattering am-
plitudes with a large number of partons in the final state. The (αs ln s)n terms correspond to
the leading–order (LO) approximation and provide a simple picture of the underlying physics.
This approximation has limitations: in leading order both αs and the factor scaling the energy
s in the resummed logarithms, s0, are free parameters not determined by the theory. These free
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parameters can be fixed if next–to–leading terms αs (αs ln s)n are included [2]. At this im-
proved accuracy, diagrams contributing to the running of the coupling have to be included, and
also s0 is not longer undetermined. The phenomenological importance of the NLO effects has
been recently shown in the scattering of virtual photons into vector mesons [3] as well as for az-
imuthal angle decorrelations in Mueller–Navelet jets in Refs. [4] and in Deep Inelastic Scattering
in Ref. [5].

While at LO the only emission vertex – the Reggeon-Reggeon-gluon vertex – can be iden-
tified with the production of one jet, at NLO also Reggeon-Reggeon-gluon-gluon and Reggeon-
Reggeon-quark-antiquark vertices enter the game. In this contribution we are interested in the
description of the inclusive production of a single jet in the NLO BFKL formalism. The relevant
events will be those with only one jet produced in the central rapidity region of the detector. Due
to these new emission vertices at NLO we have to introduce a jet definition discriminating be-
tween the production of one or two jets by two particles. It is not sufficient to simply start from
the fully integrated emission vertex available in the literature [2]. Rather, we have to carefully
separate all the different contributions in its unintegrated form before we can combine them.

The present text is focused on describing the main elements of the analysis presented in
Refs. [6]. There we show that this procedure enables us to determine the right choice of energy
scales relevant for the process. Particular attention is given to the separation of multi-Regge
and quasi-multi-Regge kinematics. There we also discuss similarities and discrepancies with the
earlier work of Ref. [7].

As it turns out, the scale of the two projectiles in the scattering process has a large impact
on the structure of the result. The jet vertex can not be constructed without properly defining
the interface to the scattering objects. To show this, we will perform this study for two different
cases: the jet production in the scattering of two photons with large and similar virtualities, and
in hadron-hadron collisions. In the former case the cross section has a factorized form in terms
of the photon impact factors and of the gluon Green’s function which is valid in the Regge limit.
In the latter case, since the momentum scale of the hadron is substantially lower than the typical
kT entering the production vertex, the gluon Green’s function for hadron-hadron collisions has
a slightly different BFKL kernel which, in particular, also incorporates some kT -evolution from
the nonperturbative, and model dependent, proton impact factor to the perturbative jet production
vertex.

Our final expression for the cross section of the jet production in hadron-hadron scattering
contains an unintegrated gluon density. This density depends on the longitudinal momentum
fraction – as it also happens in the conventional collinear factorization – and on the transverse
momentum kT . As an important ingredient, the hard subprocesse (in our case, the production
vertex) depends on the (off-shell) initial parton momenta. This scheme of kT –factorization has
been introduced by Catani et al. [8], and up to now it has been considered only at LO. Our results,
valid in the small–x limit, show that it is possible to extend this scheme to NLO.

2 Inclusive jet production at LO

Let us start the discussion by considering the interaction between two photons with large virtu-
alities Q2

1,2 in the Regge limit s � |t| ∼ Q2
1 ∼ Q2

2. In this region the total cross section can be
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written as a convolution of the photon impact factors with the gluon Green’s function, i.e.

σ(s) =
∫

d2ka
2πk2

a

∫
d2kb
2πk2

b

ΦA(ka) ΦB(kb)
∫ δ+i∞

δ−i∞

dω

2πi

(
s

s0

)ω
fω(ka,kb). (1)

A convenient choice for the energy scale is s0 = |ka| |kb| which naturally introduces the rapidi-

ties yÃ and yB̃ of the emitted particles with momenta pÃ and pB̃ given that
(
s
s0

)ω
= eω(yÃ−yB̃).

The gluon Green’s function fω corresponds to the solution of the BFKL equation

ωfω(ka,kb) = δ(2)(ka − kb) +
∫
d2k K(ka,k)fω(k,kb), (2)

with kernel

K(ka,k) = 2ω(k2
a) δ

2(ka − k) +Kr(ka,k), (3)

where ω(k2
a) is the gluon Regge trajectory and Kr is the real emission contribution to the kernel

which is of special interest in the following.

It is possible to single out one gluon emission by extracting its emission probability from
the BFKL kernel. By selecting one emission to be exclusive we factorize the gluon Green’s
function into two components. Each of them connects one of the external particles to the jet
vertex, and depends on the total energies of the subsystems sAJ = (pA + qb)2 and sBJ =
(pB + qa)2, respectively. We have drawn a graph indicating this separation in Fig. 1. The
symmetric situation suggests the choices s(AJ)

0 = |ka| |kJ | and s(BJ)
0 = |kJ | |kb|, respectively,

as the suitable energy scales for the subsystems. These choices can be related to the relative
rapidity between the jet and the external particles. To set the ground for the NLO discussion of
next section we introduce an additional integration over the rapidity η of the central system in
the form

dσ

d2kJdyJ
=
∫
d2qa

∫
d2qb

∫
dη

[∫
d2ka
2πk2

a

ΦA(ka)
∫ δ+i∞

δ−i∞

dω

2πi
eω(yA−η)fω(ka,qa)

]

× V(qa,qb, η; kJ , yJ) ×
[∫

d2kb
2πk2

b

ΦB(kb)
∫ δ+i∞

δ−i∞

dω′

2πi
eω
′(η−yB)fω′(−qb,−kb)

]
(4)

with the LO emission vertex being

V(qa,qb, η; kJ , yJ) = K(Born)
r (qa,−qb) δ(2) (qa + qb − kJ ) δ(η − yJ). (5)

In hadron–hadron collisions the colliding external particles do not provide a perturbative
scale. There the jet is the only hard scale in the process and we have to deal with an asymmetric
situation. In such a configuration the scales s0 should be chosen as k2

J alone. At LO accuracy s0

is arbitrary and we are indeed free to make this choice. At this stage it is possible to introduce the
concept of unintegrated gluon density in the hadron. This represents the probability of resolving
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ka ↓

kb ↑

qa ↑

qb ↓

pB →

pA →

ka ↓

kb ↑

qb ↑

qa ↓

kJ

Fig. 1: Total cross section and inclusive one jet production in the BFKL approach.

a gluon carrying a longitudinal momentum fraction x from the incoming hadron, and with a
certain transverse momentum kT . Its relation to the gluon Green’s function would be

g(x,k) =
∫

d2q
2πq2

ΦP (q)
∫ δ+i∞

δ−i∞

dω

2πi
x−ωfω(q,k). (6)

With this new interpretation we can then rewrite Eq. (4) as

dσ

d2kJdyJ
=
∫
d2qa

∫
dx1

∫
d2qb

∫
dx2 g(x1,qa)g(x2,qb)V(qa, x1,qb, x2; kJ , yJ), (7)

with the LO jet vertex for the asymmetric situation being

V(qa, x1,qb, x2; kJ , yJ) = K(Born)
r (qa,−qb)

× δ(2) (qa + qb − kJ) δ

(
x1 −

√
k2
J

s
eyJ

)
δ

(
x2 −

√
k2
J

s
e−yJ

)
. (8)

3 Inclusive jet production at NLO

It is possible to follow a similar approach when jet production is considered at NLO. The crucial
step in this direction is to modify the LO jet vertex of Eq. (5) and Eq. (8) to include new con-
figurations present at NLO. We show how this is done in the following first subsection. In the
second subsection we implement this vertex in a scattering process. In case of hadron–hadron
scattering we extend the concept of unintegrated gluon density of Eq. (6) to NLO accuracy. Most
importantly, it is shown that a correct choice of intermediate energy scales in this case implies a
modification of the impact factors, the jet vertex, and the evolution kernel.

3.1 The NLO jet vertex
For those parts of the NLO kernel responsible for one gluon production we proceed in exactly
the same way as at LO. The treatment of those terms related to two particle production is more
complicated since for them it is necessary to introduce a jet algorithm. In general terms, if the
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two emissions generated by the kernel are nearby in phase space they will be considered as one
single jet, otherwise one of them will be identified as the jet whereas the other will be absorbed as
an untagged inclusive contribution. Hadronization effects in the final state are neglected and we
simply define a cone of radius R0 in the rapidity–azimuthal angle space such that two particles
form a single jet if R12 ≡

√
(φ1 − φ2)2 + (y1 − y2)2 < R0. As long as only two emissions are

involved this is equivalent to the kT –clustering algorithm.

To introduce the jet definition in the 2 → 2 components of the kernel it is convenient to
combine the gluon and quark matrix elements together with the MRK contribution:

(
KQQ̄ +KGG

)
(qa,−qb) ≡

∫
dD−2k2

∫
dy2 |B(qa,qb,k1,k2)|2

=
∫
dD−2k2

∫
dy2

{
|A2q(qa,qb,k1,k2)|2 + |A2g(qa,qb,k1,k2)|2 θ(sΛ − s12)

−K(Born)(qa,qa − k1)K(Born)(qa − k1,−qb)
1
2
θ

(
ln
sΛ

k2
2

− y2

)
θ

(
y2 − ln

k2
1

sΛ

)}
, (9)

withA2P being the two particle production amplitudes. At NLO it is necessary to separate multi-
Regge kinematics (MRK) from quasi-multi-Regge kinematics (QMRK) in a distinct way. With
this purpose we introduce an additional scale, sΛ. The meaning of MRK is that the invariant
mass of two emissions is considered larger than sΛ while in QMRK the invariant mass of one
pair of these emissions is below this scale.

The NLO version of Eq. (5) then reads

V(qa,qb, η; kJ , yJ) =
(
K(Born)
r +K(virtual)

r

)
(qa,−qb)

∣∣∣
[y]

(a)

+
∫
dD−2k2 dy2 |B(qa,qb,kJ − k2,k2)|2 θ(R0 −R12)

∣∣∣
[y]

(b)

+ 2
∫
dD−2k2 dy2 |B(qa,qb,kJ ,k2)|2 θ(RJ2 −R0)

∣∣∣
[y]

(c)
. (10)

In this expression we have introduced the notation
∣∣∣
[y]

(a,b)
= δ(2) (qa + qb − kJ ) δ(η − y(a,b)), (11)

∣∣∣
[y]

(c)
= δ(2) (qa + qb − kJ − k2) δ

(
η − y(c)

)
. (12)

The various jet configurations demand several y and x configurations. These are related to
the properties of the produced jet in different ways depending on the origin of the jet: if only one
gluon was produced in MRK this corresponds to the configuration (a) in the table below, if two
particles in QMRK form a jet then we have the case (b), and finally case (c) if the jet is produced
out of one of the partons in QMRK. The factor of 2 in the last term of Eq. (10) accounts for the
possibility that either emitted particle can form the jet. The vertex can be written in a similar
way if one chooses to work in x configuration language. Just by kinematics we get the explicit
expressions for the different x configurations listed in the following table:
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JET y configurations x configurations

a) y(a) = yJ x
(a)
1 = |kJ |√

s
eyJ x

(a)
2 = |kJ |√

s
e−yJ

b) y(b) = yJ x
(b)
1 =

√
Σ√
s
eyJ x

(b)
2 =

√
Σ√
s
e−yJ

c) y(c) = 1
2 ln x

(c)
1

x
(c)
2

x
(c)
1 = |kJ |√

s
eyJ + |k2|√

s
ey2 x

(c)
2 = |kJ |√

s
e−yJ + |k2|√

s
e−y2

The NLO virtual correction to the one–gluon emission kernel, K(v), was originally calcu-
lated in Ref. [9]. It includes explicit infrared divergences which are canceled by the real con-
tributions. The introduction of the jet definition divides the phase space into different sectors.
Only if the divergent terms belong to the same configuration this cancellation can be shown an-
alytically. With this in mind we add the singular parts of the two particle production |Bs|2 in the
configuration (a) multiplied by 0 = 1− θ(R0 −R12)− θ(R12 −R0):

V =
[ (
K(Born)
r +K(virtual)

r

)
(qa,−qb) +

∫
dD−2k2 dy2 |Bs(qa,qb,kJ − k2,k2)|2

]∣∣∣
(a)

+
∫
dD−2k2 dy2

[
|B(qa,qb,kJ − k2,k2)|2

∣∣∣
(b)
− |Bs(qa,qb,kJ − k2,k2)|2

∣∣∣
(a)

]

× θ(R0 −R12) + 2
∫
dD−2k2 dy2

[
|B(qa,qb,kJ ,k2)|2 θ(RJ2 −R0)

∣∣∣
(c)

− |Bs(qa,qb,kJ − k2,k2)|2 θ(R12 −R0)θ(|k1| − |k2|)
∣∣∣
(a)

]
. (13)

The cancellation of divergences within the first line is now the same as in the calculation
of the full NLO kernel. The remainder is explicitly free of divergences as well since these have
been subtracted out.

3.2 Embedding of the jet vertex
The NLO corrections to the kernel have been derived in the situation of the scattering of two
objects with an intrinsic hard scale. Hence in the case of γ∗γ∗ scattering the equation (4) is valid
also at NLO if we replace the building blocks by their NLO counterparts. The most important
piece being the jet vertex, which should be replaced by the one derived in the previous subsection.

We now turn to the case of hadron collisions where MRK has to be necessarily modified to
include some evolution in the transverse momenta, since the momentum of the jet will be much
larger than the typical transverse scale associated to the hadron. In the LO case we have already
explained that, in order to move from the symmetric case to the asymmetric one, it is needed
to change the energy scale. The independence of the result from this choice is guaranteed by a
compensating modification of the impact factors

Φ̃(ka) = Φ(ka)−
1
2
k2
a

∫
d2q

Φ(Born)(q)
q2

K(Born)(q,ka) ln
q2

k2
a

(14)

and the evolution kernel

K̃(q1,q2) = K(q1,q2)− 1
2

∫
d2qK(Born)(q1,q)K(Born)(q,q2) ln

q2

q2
2

, (15)
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which corresponds to the first NLO term of a collinear resummation [10].

The emission vertex couples as a kind of impact factor to both Green’s functions and
receives two such modifications:

Ṽ(qa,qb) = V(qa,qb)−
1
2

∫
d2qK(Born)(qa,q)V(Born)(q,qb) ln

q2

(q− qb)2

−1
2

∫
d2qV(Born)(qa,q)K(Born)(q,qb) ln

q2

(qa − q)2
. (16)

4 Conclusions

We have extended the NLO BFKL calculations to derive a NLO jet production vertex in kT –
factorization. Our procedure was to ‘open’ the BFKL kernel to introduce a jet definition at NLO
in a consistent way. As the central result, we have defined the off-shell jet production vertex and
have shown how it can be used in the context of γ∗γ∗ or of hadron–hadron scattering to calculate
inclusive single jet cross sections. For this purpose we have formulated, on the basis of the NLO
BFKL equation, a NLO unintegrated gluon density valid in the small–x regime. More recently,
a slightly different kT –factorization scheme has been investigated [11]. A precise analysis of the
connection between the two approaches is in progress.
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Connections between high energy QCD and statistical physics

Stéphane Munier
Centre de physique théorique, École polytechnique, CNRS, 91128 Palaiseau, France

Abstract
It has been proposed that the energy evolution of QCD amplitudes
in the high-energy regime falls in the universality class of reaction-
diffusion processes. We review the arguments for this correspondence,
and we explain how it enables one to compute analytically asymptotic
features of QCD amplitudes.

The high-energy regime of QCD has been intensively studied in deep-inelastic e-p scat-
tering at HERA, in heavy-ion collisions at RHIC, and will be probed in proton and heavy-ion
scattering at LHC. It is rich of interesting theoretical structures: Links have been found or con-
jectured with conformal field theory, string theory, and more recently, with a class of models
known in statistical physics.

When hadrons scatter at very high energy, the color fields that are generated at the in-
teraction point have a large strength. Perturbative methods qualify as soon as there is a large
transverse momentum scale in the event: This property enables one, under certain conditions,
to derive QCD evolution equations, in the form of partial differential equations (which can also
be stochastic in particular formulations such as the dipole model [1]). On the other hand, strong
fields cause the parton densities to saturate, which makes this evolution nonlinear.

Similar looking stochastic nonlinear partial differential equations also appear in problems
of apparently different physical origin, such as reaction-diffusion, or population evolution. The
goal of this short review is to explain that these similarities are not casual, and that once under-
stood, they can help the derivation of new results for QCD cross sections. We refer the reader to
the original papers [2, 3] for the details, and to Ref. [4] for a more extensive review.

In the following, we will consider the scattering of two hadrons, and we will aim at com-
puting their cross section at very high energies. Their relative rapidity is denoted by Y . Since our
discussion will rely on resummed perturbative QCD, we think of these hadrons as being small
objects, such as color dipoles found, for example, as fluctuations of highly virtual photons. We
will always be discussing a definite region of impact parameter.

1 High energy QCD and reaction-diffusion

Cross sections are measured by counting the number of events that are registered in a detector
within a given interval of time. Each single event results from an interaction between the scatter-
ing hadrons realized as definite quantum states, that is, as particular Fock states. Let us go to the
frame in which one hadron is almost at rest, while the other one carries most of the kinetic energy,
and thus develops a highly-occupied Fock state. As long as saturation effects are negligible (i.e.
far from the unitarity limit in which the hadrons appear black to each other), the probability of
interaction is proportional to the number of partons in the fast hadron whose transverse momenta
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k match the typical momentum scale of the slow hadron. Let us imagine that k is tunable (it
is the case when the slow object is a virtual photon), and that one could actually measure the
interaction probability of the slow hadron with a particular Fock state of the fast hadron. (In
practice, it would require the replication of quantum Fock states, which is impossible). We call
T (k) this interaction probability (more precisely, it is the forward elastic scattering amplitude at
a fixed impact parameter). T is an unphysical quantity, but it will be important to understand it
theoretically. The physical amplitude A(Y, k) is just the average of T (k) over all possible Fock
state realizations at the considered rapidity Y : A = 〈T 〉, that is, A is the average over all events
that may occur, appropriately weighted by their probabilities at a given rapidity.

Standard quantum field theory calculations, based on the evaluation of Feynman diagrams,
would directly lead to the expression of A. However, it turns out that such calculations are ex-
tremely hard. Instead, understanding first the main analytical features of the scattering probability
T off a single typical Fock state of the fast hadron and then averaging over events is a simpler
approach, that has been successful in leading to analytical expressions for the asymptotics of the
scattering cross sections.

What is precisely known about T is its evolution with rapidity (or energy), at least in the
regime in which T � 1, that is, away from the unitarity limit. When one increases infinitesimally
the rapidity of a hadron that has say n partons in its current Fock state, there is a transition rate to
a n+ 1, n+ 2...–parton Fock state that is computable in perturbative QCD. It may be extracted
from the BFKL equation. A direct formulation is the color dipole model [1], in which this
transition probability is explicitely computed. When T � 1, T is a linear function of the number
of partons. Roughly, it reads T (k) ∼ α2

sn(k), where n(k) is the number of gluons that have a
transverse momentum of the order of k.

This transition to higher Fock states may be captured by a linear stochastic equation, of
the form

∂ᾱY T = χ(−∂ln k2)T + αs
√
T ν, (1)

where ᾱ = αsNc/π. ν is an appropriate stochastic variable that has zero mean, and variations
of order unity when ᾱY is increased by one. χ(−∂ln k2) is the usual BFKL kernel. It describes
the branching diffusion of partons, at least in the regime of very high energy in which we are
interested in. This means that, when acted on T , it roughly behaves like a diffusion term ∂ 2

ln k2T
supplemented by a growth term T (with appropriate coefficients). The noise term is a conse-
quence of discreteness: It implements the fact that we are considering the evolution of one single
Fock state, that contains a definite (discrete) number of partons.

On the other hand, when T becomes of the order of 1, saturation effects have to enter in
order to tame the growth of the number of partons, for unitarity to be preserved. From the work
of Balitsky and Kovchegov (BK), we know that in the mean-field limit in which the noise can
be neglected (that is, when A = T ; this is realized when one of the interacting objects is a very
large nucleus), the evolution equation for T reads

∂ᾱY T = χ(−∂ln k2)T − T 2. (2)

Hence we shall propose that the full evolution be described by the following stochastic equation:

∂ᾱY T = χ(−∂lnk2)T − T 2 + αs
√
T ν. (3)
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Fig. 1: Sketch of the gluonic content (the gluons are represented by disks) of the hadron in the transverse plane. In a

little boost, each gluon can split, or nonlinear effects like recombination can take place. At the time of the interaction,

the system is probed by a dipole of size 1/k, which is sensitive to the number of gluons of similar size at a given

impact parameter.

This equation is in the universality class of the stochastic version of the Fisher and Kolmogorov,
Petrovsky, Piscounov (F-KPP) equation. (The latter would in fact be obtained by replacing
χ(−∂ln k2)T by ∂ln k2T + T and

√
T by

√
T (1− T ); for a review and references, see [5].)

A schematic picture of the evolution is presented in Fig. 1.

So far, no one has succeeded in formulating rigorously scattering in QCD in the form of a
stochastic equation such as (3), in particular the way how saturation occurs is not yet fully under-
stood. Is it gluon recombination, as was advocated in the early papers on saturation [6], or some
more subtle process? So the best one can do at this stage is to set the noise term in such a way
that the evolution of the hadron Fock state by gluon splittings is exactly reproduced away from
the unitarity limit, where the nonlinear term may be neglected. A practical implementation of
this process would be, for example, Salam’s Monte-Carlo code of the dipole model [7] modified
by the addition of a suitable saturation condition which makes sure that T (written in coordinate
space) keeps always less than 1 and thus that unitarity is preserved. In this procedure, the expres-
sion for the noise is unambiguously fixed (it results from the splitting probability of the dipoles),
and the BFKL limit is exactly taken into account. Such a procedure was suggested in Ref. [8], but
has not been implemented so far for its technical awkwardness. Some other paths were followed:
One may alternatively take ν to be a Gaussian white noise1 [10]. This simple choice enables one
to apply the Ito stochastic calculus, and to draw a link with equations established within QCD
such as the B-JIMWLK equations (for a review and references, see Ref. [11], and A. Shoshi’s
talk at this conference [12].) One may also think of the whole process as a reaction-diffusion
process, as we will implicitely do in the next section.

All this may look quite arbitrary: We have merely merged two known limits into a single
equation, without much further justification. How can one be sure that A obtained from aver-
aging realizations of Eq. (3) looks like the solution of a genuine QCD equation? Although it

1However, in this case, T should not exactly be the amplitude, but rather a kind of “dual amplitude” – see for
example Ref. [9].
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might sound strange a priori, the solution to the “arbitrary” equation that we have written down
is very likely to contain the exact asymptotics of QCD. This fact is actually related to the univer-
sality of the solutions to such evolution equations. The statement is the following: For a large
class of processes, i.e. for a number of stochastic functions ν and for a variety of forms of the
nonlinearities, the asymptotics of the statistics of T (that is, the physical observables A ≡ 〈T 〉,
〈T 2〉...) for small αs and large ᾱY are identical. This is not a theorem, but a conjecture based on
a general understanding of how noisy traveling waves propagate. (The propagation mechanism
is described in the next section.) The whole point is that the details of the evolution equation do
not matter for extracting the asymptotics of the QCD amplitudes.

Let us describe a typical process whose evolution is in the universality class described
by the F-KPP equation: reaction-diffusion. This process involves particles on a lattice indexed
by some variable x, that evolve by a set of rules of the following form: As time is increased,
each particle has a probability either to jump to a nearby site, or to become two particles, or
to recombine with another particle on the same lattice site. The balance between creation and
recombination of particles determines the equilibrium number of particles on each siteN . After a
large evolution time, the number of particles on a given site oscillates about N (with an amplitude
of the order of the typical statistical fluctuations

√
N ). It is the number of particles per site

normalized to N that obeys an equation in the universality class of the F-KPP equation.

At this point, we may establish a simple dictionary between reaction-diffusion and QCD.
Time is the evolution variable, so is rapidity: t ↔ ᾱY . The variable in which diffusion takes
place is x ↔ ln k2. The equilibrium number of particles is N ↔ 1/α2

s . (In QCD, it is fixed by
the unitarity condition2 T ≤ 1.)

2 Statistical methods and application to QCD

In a first step, we ignore the stochastic term, that is, we address the simple BK equation (2), in
order to gain intuition on the form of the solutions. A given localized initial condition (T ∼ α2

s in
a region of order 1 around some initial scale ln k2

0 : This would be the physical initial condition)
will spread and grow under the action of the kernel χ(−∂ln k2), which, as we wrote before,
amounts to a branching diffusion. But as soon as T becomes of the order of 1, the nonlinear
term enters to compensate the growth, making T saturate. Then further evolution necessarily has
the form of two symmetric traveling waves, since the system can only escape to the right and to
the left. Let us focus on the rightmoving wave, that travels towards larger values of ln k2. This
wave front is represented schematically in Fig. 2. It turns out that the shape of this wave in its
large-ln k2 tail is exponential, with a slope that is completely fixed by the linear kernel:

T ∼ e−γ0 ln k2
, γ0 being determined by

χ(γ0)
γ0

= χ′(γ0). (4)

2This condition actually holds in coordinate space (when T is a function of transverse sizes). In momentum space,
the growth of T with energy is also tamed as soon as the point T = 1 has been crossed, although T (k) can take
arbitrarily large values. This does not change the conclusions that we shall draw later: The only important feature of
the evolution is that T changes behavior in the saturation region. One can see how it goes precisely in QCD e.g. in
the numerical simulations presented in Ref. [13].
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Fig. 2: Deterministic F-KPP front and its evolution with time. The arrows show where branching diffusion takes place

to drive the motion towards larger values of x.

Since the wave front keeps its shape, it makes sense to characterize its motion by a single velocity
V∞. The latter is also completely determined by the kernel χ. It reads

V∞ =
χ(γ0)
γ0

. (5)

In QCD, the position Xt of the wave is called the saturation scale Qs(Y ). It characterizes the
momentum below which nonlinear saturation effects (gluon recombination, multiple scattering...)
become important. The velocity V∞ defined above is simply the derivative of lnQ2

s(Y ) with
respect to Y . (Recall that the x-variable is lnk2.)

Now that we have understood the deterministic limit, we may try to put back the noise. We
do not know how to attack the problem directly. Instead, we shall stick to a physical approach,
and view the evolution equation (3) as describing a reaction-diffusion process. In this framework,
we recall that the origin of the noise was the discreteness of the number of particles on each
site. Discreteness means in particular that the number of particles n(k) cannot be a fraction of
an integer. Consequently, coming back to the simple-minded relationship3 T (k) ∼ α2

sn(k), it
means that T is either 0 are larger than α2

s . Brunet and Derrida [15] proposed to replace the full
stochastic equation by a deterministic one that takes into account this basic effect of discreteness,
which can easily be done by not allowing any growth when T < α2

s . (It amounts to cutting
off the tail of the front; to do this in practice, one may for example replace χ by a modified
kernel obtained by subtracting its growth term in the region in which T < α2

s . Note that there
is no unique prescription.) The solution to this modified equation is again a traveling wave,
that exhibits the same overall exponential decay as given by Eq. (4) (except for an uninteresting
additional prefactor). Its velocity now reads4

VBD =
χ(γ0)
γ0
− π2γ0χ

′′(γ0)
2 ln2(1/α2

s)
. (6)

3Again, this is not literally true: T (k) is actually continuous, but the tails (below T = α2
s) are decaying exponen-

tially with a characteristic length of one unit in the variable ln k2. This is steep enough for all our arguments to apply
as if T (k) itself were discrete.

4This result had already been obtained by Mueller and Shoshi [14]. Actually, the understanding of high-energy
scattering as a peculiar reaction-diffusion process emerged from a reinterpretation of their work, in the light of the
Brunet-Derrida analytical treatment of traveling waves with a cutoff [15].
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Fig. 3: Traveling waves solution of the F-KPP equation with a cutoff that simulates discreteness. In the left sketch,

no stochasticity is taken into account while in the right one, particles may randomly be sent ahead of the deterministic

front. Their further time/rapidity evolution is also represented.

It is thus less than the velocity of the front in the limit of an infinite number of particles (obtained
by letting αs go to 0), which had to be expected: Indeed, taking into account discreteness amounts
to removing some “matter” from the front, which logically slows down its motion.

However, a deterministic solution can only reproduce approximately the realizations of a
stochastic evolution. We can incorporate stochasticity back into the picture [16] by noting once
again that the noise is only important in the forward tail of the front, where the number of particles
is low on the average. From numerical simulations of simple reaction-diffusion models, we
observed the following behavior: Most of the time, the motion of the front is almost deterministic,
with a velocity given by the solution to the cutoff deterministic equation. From time to time,
rarely, a large fluctuation causes a transitory acceleration of the front. This fluctuation consists in
one or a few particles being sent far ahead of the deterministic tip of the front, which then evolve
into a new front that later gets absorbed by the deterministic front. This behavior is represented
in Fig. 3. We conjectured a probability distribution for these fluctuations, as well as the effect
that they have on the position of the front after relaxation.

With these elements, we were able to deduce the full statistics of the saturation scale, that
is to say not only the mean position (or velocity) of the front,

V =
〈lnQ2

s〉
ᾱY

=
χ(γ0)
γ0
− π2γ0χ

′′(γ0)
2 ln2(1/α2

s)
+ π2γ2

0χ
′′(γ0)

3 ln ln(1/α2
s)

γ0 ln3(1/α2
s)
, (7)

but also all its cumulants:

〈lnnQ2
s〉cumulant = π2γ2

0χ
′′(γ0)

n!ζ(n)
γn0

ᾱY

ln3(1/α2
s)
, (8)

when n ≥ 2.

Now we recall that the physical amplitude is obtained by averaging T over all possible
realizations. Given that the fall off of the large-ln k2 tail of each single event is exponential, it is
not difficult to get the scaling of the scattering amplitude with the help of Eq. (8):

A(Y, k) = A


 ln k2 − 〈lnQ2

s(Y )〉√
ᾱY

ln3(1/α2
s)


 , (9)
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Fig. 4: Time/rapidity evolution of a noisy traveling wave. The noise is essentially concentrated at the tip of the front,

where the occupation numbers are low. After some time (rapidity), the wave has moved to the right (3 realizations

are shown with thin lines), roughly keeping its shape. However, stochasticity manifests itself macroscopically by

inducing a dispersion in the positions of the fronts between different realizations. Since the physical amplitude A is

the average of all realizations, its very shape is influenced by the noise. (A is represented by the thick line.)

where 〈lnQ2
s(Y )〉 is given by Eq. (7). This is the main analytical result for QCD that comes out of

the statistical approach. Note that other results can be extracted on the statistics of the branchings
of the gluons in the course of the evolution, but we cannot see a possible phenomenological
application.

The emerging overall picture of front propagation is shown in Fig. 4.

3 Prospects

Clearly, the statistical interpretation of scattering processes has proved useful since it has led to
both a new understanding and new asymptotical results for high energy QCD. Of course, it relies
on a few conjectures that will eventually have to be proved in a more formal way, but we feel that
we have so far provided robust physical arguments.

It has to be acknowledged that our new analytical results are not relevant for phenomenol-
ogy yet, since they make sense for ln(1/α2

s) � 1 only, which requires values of αs so small
that, of course, they are far beyond the experimentally attainable range. A number of authors
have however taken seriously the extrapolation of these results to realistic values of αs and have
produced predictions, see e.g. Ref. [17]. On the other hand, numerics could give results valid
for αs < 0.1 (optimistically), that is, not far from the phenomenological domain. (This point is
discussed in Ref. [8]).

At this point, we have been able to extract properties that QCD shares with simple sta-
tistical models. We could claim that this was a correct procedure because asymptotic properties
of the solutions do not depend on the details of how saturation occurs. So in some sense, we
have done the “easy” part of the work. However, to go closer to phenomenology, one would
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need to understand more deeply the details of saturation, which probably constrain the form of
the noise ν in Eq. (3). Investigations of some possible models have been conducted, sometimes
leading to pecularities in the interpretation, such as negative transition rates [18]. Building a
complete picture, valid beyond asymptotics, remains a challenging open question, for which a
further breakthrough may be needed.

Finally, our approach to the propagation of noisy traveling waves is not based on a field
theory formulation, but is an event-by-event analysis of the shape of realizations, using methods
more familiar to statistical physicists than to particle physicists. Being able to recover results
such as Eqs. (7), (8), (9) within field theory, starting e.g. from an effective Lagrangian whose
building blocks are Reggeon fields, would be a very interesting achievement. Some progress has
been made recently, see e.g. Ref. [19].
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High energy QCD beyond the mean field approximation
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Abstract
It has been recently understood how to deal with high-energy scattering
beyond the mean field approximation. We review some of the main
steps of this theoretical progress, like the role of Lorentz invariance and
unitarity requirements, the importance of discreteness and fluctuations
of gluon numbers (Pomeron loops), the high-energy QCD/statistical
physics correspondence and the consequences for the saturation scale,
the scattering amplitude and other, also measurable, quantities.

1 Introduction

The high-energy scattering of a dipole off a nucleus/hadron in the mean field approximation is
decribed by the BK-equation [1]. The main results following from the BK-equation are the so-
called geometric scaling behaviour of the scattering amplitude [2–4] and the, roughly, powerlike
energy dependence of the saturation scale [3, 4] which are supported by the HERA data [5, 6].

Over the last few years, we have had real breakthroughs in our understanding of high-
energy scattering near the unitarity limit. Namely, we have understood how to deal with small-x
dynamics at high energy beyond the mean field approximation, i.e., beyond the BK-equation.
In this work, after briefly introducing the known dynamics in the mean-field case, we discuss
the main steps of the recent theoretical progress as follows: We start with a discussion of the
first step beyond the mean field approximation, which was done in Ref. [7] by enforcing the
BFKL evolution in the scattering process to satisfy natural requirements as unitarity limits and
Lorentz invariance. The consequence was a correction to the saturation scale and the breaking
of the geometric scaling at high energies. Then, we explain the relation between high-energy
QCD and statistical physics found in Ref. [8] which has clarified the physical picture of, and
the way to deal with, the dynamics beyond the BK-equation. We explain that gluon number
fluctuations from one scattering event to another and the discreteness of gluon numbers, both
ignored in the BK evolution and also in the Balitsky-JIMWLK equations [9], lead to the breaking
of the geometric scaling and to the correction to the saturation scale, respectively. In a next step
we show the new evolution equations, the so-called Pomeron loop equations [10–12], which
include a new element in the evolution, the Pomeron loop. Finally, we discuss the possibility of
phenomenological implications [13–17] of the recent theoretical advances. (For further studies
on the recent theoretical advances (not discussed here) see also [17–27].)

1.1 Mean field approximation
Consider the high-energy scattering of a dipole of transverse size r = (x − y) off a target
(hadron, nucleus) at rapidity Y = ln(1/x). The Y -dependence of the T -matrix in the mean field

∗The author acknowledges financial support by the Deutsche Forschungsgemeinschaft under contract 92/2-1.
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Fig. 1: The diagrammatic representation of the BK-equation for dipole-hadron scattering.

approximation is given by the BK-equation (Y -dependence is suppressed for simplicity)

∂Txy

∂Y
=
αsNc

2π2

∫
d2z Mxyz [−Txy + Txz + Tzy − Txz Tzy] . (1)

This equation can be interpreted as follows; If increasing the rapidity of the dipole by dY while
keeping the rapidity of the target fixed, the probability for the dipole to emit a gluon increases. In
the large-Nc limit the initial quark-antiquark state plus the emitted gluon can be viewed as two
dipoles - one of the dipoles consists of the inital quark and the antiquark part of the gluon while
the other dipole is given by the quark part of the gluon and the inital antiquark. The probability
for the spliting of the inital dipole (x−y) into two daughter dipoles with transverse sizes (x−z)
and (z−y) is given by the weight in Eq.(1), αsNcMxyz/(2π2)d2zdY , where z is the transverse
size of the emitted gluon and Mxyz = (x − y)2/[(x − z)2 (x − z)2] [28]. On the right-hand
side of Eq.(1), the first three terms (first one is virtual) describe the scattering of a single dipole
with the target whereas the last term gives the simultanous scattering of the two daughter dipoles
with the target, as shown in Fig. 1. Without the last term, the BK-equation reduces to a linear
equation, the BFKL equation, which gives the growth of Txy with rapidity, while the nonlinaer
term, Txz Tzy, tames the growth of Txy such that the unitarity limit, Txy ≤ 1, is satisfied.

One of the main results following from the BK-equation is the geometric scaling behaviour
of the T -matrix [2–4] in a large kinematical window

T (r, Y ) = T (r2Q2
s(Y )) , (2)

where Qs(Y ) is the so-called saturation momentum defined such that T (r ' 1/Qs, Y ) be of
O(1). Eq. (2) means that the T -matrix scales with a single quantity r2Q2

s(Y ) rather than de-
pending on r and Y separatelly. This behaviour implies a similar scaling for the DIS cross
section, σγ

∗p(Y,Q2) = σγ
∗p(Q2/Q2

s(Y )), which is supported by the HERA data [5].

Another important result that can be extracted from the BK-equation is the rapidity depen-
dence of the saturation momentum (leading-Y contribution) [3, 4],

Q2
s(Y ) = Q2

0 Exp
[

2αsNc

π

χ(λ0)
1− λ0

Y

]
, (3)

where χ(λ) is the BFKL kernel and λ0 = 0.372.

The shape of the T -matrix resulting from the BK-equation is preserved in the transition
region from weak (T ' α2

s) to strong (T ' 1) scattering with increasing Y , showing a “travelling
wave” behaviour as sketched in Fig.2, on the left hand side. With increasing Y , the saturation
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region at r � 1/Qs(Y ) where T ' 1 however widens up, including smaller and smaller dipoles,
due to the growth of the saturation momentum. As we will see in the next sections, the situation
changes a lot once gluon number fluctuations are taken into account.

2 Beyond the mean field approximation

2.0.1 Lorentz invariance and unitarity requirements

Let’s start with an elementary dipole of size r1 at rapidity y = 0 and evolve it using the BFKL
evolution up to y = Y . The number density of dipoles of size r2 at Y in this dipole, n(r1, r2, Y ),
obeys a completeness relation

n(r1, r2, Y ) =
∫

d2r

2πr2
n(r1, r, Y/2) n(r, r2, Y/2) (4)

where on the right hand side the rapidity evolution is separated in two successive steps, y = 0→
y = Y/2→ y = Y . With

T (r1, r2, Y ) ' c α2
s r

2
2 n(r1, r2, Y ) (5)

eq.(4) can be approximately rewritten in terms of the T -matrix as
(

1
r2

2

T (r1, r2, Y )
)
' 1

2cα2
s

∫
dρ

(
1
r2
T (r1, r, Y/2)

) (
1
r2

2

T (r, r2, Y/2)
)

(6)

where ρ = ln(r2
0/r

2). In Ref. [7] it was realized that the above completeness relations, or,
equivalently, the Lorentz invariance, is satisfied by the BK evolution only by violating unitar-
ity limits. This can be illustrated as follows: Suppose that r2 is close to the saturation line,
r2 ' 1/Qs(Y ), so that the left hand side of Eq.(6) is large. On the right hand side of Eq.(6) it
turns out that T (r1, r, Y/2)/r2 is typically very small in the region of ρ which dominates the in-
tegral. This means that T (r, r2, Y/2)/r2

2 must be typically very large and must violate unitarity,
T (r, r2, Y/2)� 1, in order to satisfy (6).

The simple procedure used in Ref. [7] to solve the above problem was to limit the region of
the ρ-integration in Eq.(6) by a boundary ρ2(Y/2) so that T (r, r2, Y/2)/r2

2 would never violate
unitarity, or T (r1, r, Y/2)/r2 would always be larger than α2

s . The main consequence of this
procedure, i.e., BK evolution plus boundary correcting it in the weak scattering region, is the
following scaling behaviour of the T -matrix near the unitarity limit

T (r, Y ) = T

(
ln(r2Q2

s(Y ))
αsY/(∆ρ)3

)
(7)

and the following energy dependence of the saturation momentum

Q2
s(Y ) = Q2

0 Exp

[
2αsNc

π

χ(λ0)
1− λ0

Y

(
1− π2χ′′(λ0)

2(∆ρ)2χ(λ0)

)]
(8)

with
∆ρ =

1
1− λ0

ln
1
α2
s

+
3

1− λ0
ln ln

1
α2
s

+ const. . (9)
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T(r,Y)

1

Y1 Y2 Y3 Y4

ρ = ln r2

0
/r2

T(r,Y)

1

Y1 Y2

ρ = ln r2

0
/r2

Fig. 2: Left-hand side: The “travelling wave” behaviour of the solution to the BK-equation. Right-hand side: The

T -matrix at two different rapidities, Y1 and Y2, for different events (thin lines). The thick lines represent the average

over the events, 〈T 〉, at the two rapidities, respectivelly. The shape of 〈T 〉 becomes flatter with rising rapidity.

Eq.(7) shows the breaking of the geometric scaling, which was the hallmark of the BK-equation
shown in Eq.(2), and Eq.(8) shows the correction to the saturation momentum (cf. Eq.(3)), both
emerging as a consequence of the evolution beyond the mean field approximation.

2.0.2 Statistical physics - high density QCD correspondence

The high energy evolution can be viewed also in another way which is inspired by dynamics
of reaction-diffusion processes in statistical physics [8]. To show it, let’s consider an elemen-
tary target dipole of size r1 which evolves from y = 0 up to y = Y and is then probed by
an elementary dipole of size r, giving the amplitude T̄ (r1, r, Y ). It has become clear that the
evolution of the target dipole is stochastic leading to random dipole number realizations inside
the target dipole at Y , corresponding to different events in an experiment. The physical ampli-
tude, T̄ (r1, r, Y ), is then given by averaging over all possible dipole number realizations/events,
T̄ (r1, r, Y ) = 〈T (r1, r, Y )〉, where T (r1, r, Y ) is the amplitude for dipole r scattering off a
particular realization of the evolved target dipole at Y . An illustration is shown in Fig.2, the
right-hand side plot, where the T -matrix for different events (thin lines) and the average over all
events (thick lines), 〈T 〉, are shown at two different rapidities, respectivelly.

The mean field description breaks down at low target dipole occupancy due to the discrete-
ness and the fluctuations of dipole numbers. Because of discreteness the dipole occupancy can
not be less than one for any dipole size. Taking this fact into account by using the BK equation
with a cutoff when T becomes of order α2

s [8], or the occupancy of order one (see Eq.(5)), leads
exactly to the same correction for the saturation momentum as given in Eq.(3). The latter cutoff
is essentially the same as, and gives a natural explanation of, the boundary used in Ref. [7] and
briefly explained in the previous section.

The dipole number fluctuations in the low dipole occupancy region result in fluctuations
of the saturation momentum from event to event, with the strength

σ2 = 〈ρ2
s〉 − 〈ρs〉2 ∝

αsY

(∆ρ)3
(10)

extracted from numerical simulations of statistical models. The averaging over all events with
random saturation momenta, in order to get the physical amplitude, causes the breaking of the
geometric scaling and replaces it by a new scaling law, the so-called diffusive scaling, in which
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case the scattering amplitude is a function of another variable,

〈T (r, Y )〉 = f

(
ln(r2Q2

s(Y ))√
αsY/(∆ρ)3

)
. (11)

This equation differs from Eq.(7) since Eq.(7) misses dipole number fluctuations. Note that
because of the geometric scaling violation, the result in Eq.(11) changes the shape as the rapidity
increases, as illustrated in Fig. 2 (right-hand side) by the decreasing slope of the thick line with
growing rapidity, in contrast to the solution to the BK-equation in Eq.(2).

The statistical physics/high-density QCD correspondence suggests the following picture
for the wavefunction of a highly evolved hadron which is probed by a dipole of transverse size r:
As the hadron is boosted to high rapidities the density of gluons inside the hadron grows. Also
the fluctuation in gluon numbers, which is characterized by the dispersion in Eq. (10), grows with
rising rapidity. However, as long as σ2 � 1, which means Y � YDS ' (∆ρ)3/αs, the effects of
fluctuations can be neglected and the evolution of the hadron is described to a good approximation
by the BK-equation. Thus, for Y � YDS , as shown in Fig.3, to the left of the saturation line, ρ�
〈ρs(Y )〉 = 〈ln(Q2

s(Y ) r2
0)〉, is the “saturation region” with the “large-size” (small momentum)

gluons at a large density, of order 1/αs or the T ' 1, while the shadowed region is the transition
region from high to low gluon density, or the front of the T -matrix (geometric scaling regime).
At higher rapidities, Y � YDS , where the fluctuations become important, the geometric scaling
regime is replaced by the diffusive scaling given in Eq. (11).

diffusive
scaling

geometric
scaling

saturation

low density

〈ρ
s
(Y

)〉

ρ = ln(r2
0/r2)ln(Λ2

QCD r2
0)

Y = ln 1/x

YDS

Fig. 3: The phase diagram of the wavefunction of a highly evolved hadron.
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2.0.3 Pomeron loop equations

It was always clear that the BK equation does not include fluctuations. However, it took some
time to realize that also the Balitsky-JIMWLK equations do miss them. It turned out (see first
Reference in [11]) that the Balitsky-JIMWLK equations do include BFKL evolution, “pomeron
mergings” but not also “pomeron splittings”, which are represented by the three graphs in Fig. 4
for two dipoles scattering off a target, respectivelly. After this insight, the so-called Pomeron loop
equations [10, 11] have been constructed to account for “pomeron splittings” or dipole number
fluctuations.

The Pomeron loop equations can be expressed in a Hamiltonian language, in which case
one extends the JIMWLK-equation [10], or in terms of scattering amplitudes [11], in which case
the Balitsky equations are extended. In order to be close to the BK-equation discussed in sec. 1.1,
we show the Pomeron loops using the scattering amplitude. In the large-Nc limit, they can be
written either as a stochastic equation of Langevin-type,

∂Txy

∂Y
=

αsNc

2π2

∫

z

Mxyz [−Txy + Txz + Tzy − Txz Tzy]

+
αs
2π

√
αsNc

2π2

∫

u,v,z

A(x,y|u, z)
|u− v|

(u − z)2

√
∇2

u∇2
v Tuv ν(u,v, z;Y ) (12)

or, equivalently, as a hierarchy of coupled equations of averaged amplitudes, where for simplicity
we show only the first two of them, which read

∂〈Txy〉
∂Y

=
αsNc

2π2

∫

z

Mxyz [−〈Txy〉+ 〈Txz〉+ 〈Tzy〉 − 〈Txz Tzy〉]

∂〈TxzTzy〉
∂Y

=
αsNc

2π2

∫

t

Mxzt [−〈TxzTzy〉+ 〈TxtTzy〉+ 〈TtzTzy〉 − 〈Txt TtzTzy〉]

+
αsNc

2π2

∫

t

Mzyt [−〈TxzTzy〉+ 〈TxzTzt〉+ 〈TxzTty〉 − 〈Txz TztTty〉]

+
(
αs
2π

)2 αsNc

2π2

∫

u,v

R(x, z, z,y|u,v) 〈Tuv〉 (13)

where the noise is non-diagonal (non-Gaussian) in the first two arguments

〈ν(u1,v1, z1;Y )ν(u2,v2, z2;Y ′)〉 = δu1v2 δu2v1 δz1z2 δY Y ′ (14)

the triple Pomeron kernel [29] reads

R(x1,y1,x2,y2|u,v) =
∫

z

∇2
u∇2

v [MuvzA(x1,y1|u, z)A(x2,y2|z,v)] , (15)

and α2
sA is the amplitude for dipole-dipole scattering in the two-gluon exchange approximation

and for large-Nc, with

A(x,y|u,v) =
1
8

ln2

[
(x− v)2 (y − u)2

(x− u)2 (y − v)2

]
. (16)
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(a) (b) (c)

Fig. 4: Two dipoles scattering off a hadron: (a) BFKL interaction, (b) “pomeron mergings”, (c) “pomeron splittings”.

In above equations the integrations are always over transverse sizes,
∫
x,y = d2x d2y.

The last term in Eq.(12), containing the non-Gaussian noise ν, is new as compared with
the BK-equation and accounts for fluctuations in the dipole numbers or the stochastic nature of
the evolution in small-x physics. The hierarchy in Eq.(13) reduces to the BK-equation only in the
mean field approximation, i.e., when 〈T T 〉 = 〈T 〉〈T 〉. The hierarchy in Eq.(13), as compared
with the Balitsky-JIMWLK hierarchy, involves in addition to linear BFKL evolution (Fig.4(a))
and pomeron mergings (Fig.4(b)), also pomeron splittings (Fig.4(c)), and therefore, in the course
of the evolution, also pomeron loops. The three pieces of evolution are represented by the linear
terms, nonlinear terms and the last term on the right-hand side of the second equation in Eq.(13),
respectivelly, which describes the scattering of two dipoles off a target.

2.0.4 Phenomenology

It isn’t yet clear at which energy fluctuation/Pomeron loop effects start becoming important. The
results shown in the previous sections, Eq.(8) and Eq.(11), are valid at asymptotic energies. A
solution to the evolution equations, which is not yet available because of their complexity, would
have helped to better understand the subasymptotics.

Using the statistical physics/high density QCD correspondence, phenomenological conse-
quences of fluctuations in the fixed coupling case have been studied, for example for DIS and
diffractive cross sections [15], forward gluon production in hadron-hadron collisions [16] and for
the nuclear modification factor RpA [13], in case fluctuations become important in the range of
LHC energies. Recently, in the fixed coupling case, it has been shown that dipole-proton scat-
tering amplitudes which include fluctuation effects seem to describe better the HERA data. Also
the parameters turn out reasonable: The diffusion coefficient D ' 0.35 (σ2 = DY ) is in agree-
ment with numerical simulations of approximations to Pomeron loop equations [19, 24], and the
saturation exponent λ ' 0.2 (Q2

s = (x0/x)λ) is decreased as expected theoretically. On the
other hand, allowing the coupling to run, however, within a toy model [24] which is supposed to
mimic the QCD evolution equations with Pomeron loops, it has been argued that gluon number
fluctuations/pomeron loops can be neglected in the range of HERA and LHC energies.
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High–energy scattering and Euclidean–Minkowskian duality
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Abstract
We shall discuss how some relevant analyticity and crossing-symmetry
properties of the “eikonal scattering amplitudes” of two Wilson loops
in QCD, when going from Euclidean to Minkowskian theory, can be
related to the still unsolved problem of the asymptotic s–dependence
of the hadron–hadron total cross–sections. In particular, we critically
discuss the question if (and how) a pomeron–like behaviour can be
derived from this Euclidean–Minkowskian duality.

1 Loop–loop and meson–meson scattering amplitudes

It was shown in Refs. [1, 2] (for a review see Refs. [3–5] and references therein) that the high–
energy meson–meson elastic scattering amplitude can be approximately reconstructed in two
steps: i) one first evaluates, in the functional–integral approach, the high–energy elastic scatter-
ing amplitude of two qq̄ pairs (usually called dipoles), of given transverse sizes ~R1⊥ and ~R2⊥
and given longitudinal–momentum fractions f1 and f2 of the two quarks in the two dipoles re-
spectively; ii) one then averages this amplitude over all possible values of ~R1⊥, f1 and ~R2⊥, f2

with two proper squared wave functions |ψ1(~R1⊥, f1)|2 and |ψ2(~R2⊥, f2)|2, describing the two
interacting mesons.

The high–energy elastic scattering amplitude of two dipoles (defined in Eq. (8) below) is
governed by the following (properly normalized) connected correlation function of two Wilson
loops forming an hyperbolic angle χ in the longitudinal plane (see Eq. (4) below) and separated
by a distance ~z⊥ = (z2, z3) in the transverse plane (impact parameter):

CM(χ, ~z⊥; 1, 2) ≡ lim
T→∞

[
〈W(T )

1 W
(T )
2 〉

〈W(T )
1 〉〈W

(T )
2 〉

− 1

]
, (1)

where the arguments “1” and “2” in the function CM stand for “ ~R1⊥, f1” and “~R2⊥, f2” respec-
tively and the expectation values 〈. . .〉 are averages in the sense of the QCD functional integrals.
The two (infrared regularized) Wilson loopsW (T )

1 andW(T )
2 are defined as:

W(T )
1,2 ≡

1
Nc

Tr

{
P exp

[
−ig

∮

C1,2
Aµ(x)dxµ

]}
, (2)

where C1 and C2 are two rectangular paths which follow the classical straight lines for quark
[Xq(τ), forward in proper time τ ] and antiquark [Xq̄(τ), backward in τ ] trajectories, i.e.,

C1 : Xµ
1q(τ) = zµ +

pµ1
m
τ + (1− f1)Rµ1 , Xµ

1q̄(τ) = zµ +
pµ1
m
τ − f1R

µ
1 ,

C2 : Xµ
2q(τ) =

pµ2
m
τ + (1− f2)Rµ2 , Xµ

2q̄(τ) =
pµ2
m
τ − f2R

µ
2 , (3)
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and are closed by straight–line paths at proper times τ = ±T , where T plays the role of an
infrared cutoff, which can and must be removed in the end (T → ∞). Here p1 and p2 are the
four–momenta of the two dipoles, taken for simplicity with the same mass m, moving (in the
center–of–mass system) with speed V and −V along, for example, the x1–direction:

p1 = m
(

cosh
χ

2
, sinh

χ

2
,~0⊥

)
, p2 = m

(
cosh

χ

2
,− sinh

χ

2
,~0⊥

)
, (4)

χ = 2 arctanhV being the hyperbolic angle between the two trajectories 1q and 2q, i.e., p1 ·p2 =
m2 coshχ. Therefore, in terms of the usual Mandelstam variable s:

s ≡ (p1 + p2)2 = 2m2 (coshχ+ 1) , i.e. : χ ∼
s→∞

log
( s

m2

)
. (5)

It is convenient to consider also the correlation function CE(θ, ~z⊥; 1, 2) in the Euclidean theory of
two Euclidean Wilson loops running along two rectangular paths C̃1 and C̃2, defined analogously
to (3), with the same ~R1⊥, ~R2⊥, ~z⊥ and with the Minkowskian four–momenta p1, p2 replaced by
the following Euclidean four–vectors:

p1E = m

(
sin

θ

2
,~0⊥, cos

θ

2

)
, p2E = m

(
− sin

θ

2
,~0⊥, cos

θ

2

)
, (6)

θ being the angle formed by the two trajectories 1q and 2q in Euclidean four–space, i.e., p1E ·
p2E = m2 cos θ. It has been proved in Ref. [6] that the Minkowskian quantity CM with χ ∈ R+

can be reconstructed from the corresponding Euclidean quantity CE , with θ ∈ (0, π), by an
analytic continuation in the angular variables θ → −iχ, exactly as in the case of Wilson lines
[7–9]. This result is derived under certain hypotheses of analyticity in the angular variables [10].
In particular, one makes the assumption that the function CE , as a function of the complex variable
θ, can be analytically extended from the real segment (0 < Reθ < π, Imθ = 0) to a domain
DE , which also includes the negative imaginary axis (Reθ = 0+, Imθ < 0); and, therefore,
the function CM , as a function of the complex variable χ, can be analytically extended from the
positive real axis (Reχ > 0, Imχ = 0+) to a domain DM = {χ ∈ C | − iχ ∈ DE}, which
also includes the imaginary segment (Reχ = 0, 0 < Imχ < π). The validity of this assumption
is confirmed by explicit calculations in perturbation theory [6, 7, 11]. Denoting with CM and CE
such analytic extensions, we then have the following analytic–continuation relations [6, 10]:

CE(θ, ~z⊥; 1, 2) = CM (iθ, ~z⊥; 1, 2), ∀θ ∈ DE ;
CM (χ, ~z⊥; 1, 2) = CE(−iχ, ~z⊥; 1, 2), ∀χ ∈ DM . (7)

The validity of the relation (7) for the loop–loop correlators in QCD has been also recently
verified in Ref. [11] by an explicit calculation up to the order O(g6) in perturbation theory.
However we want to stress that the analytic continuation (7) is expected to be an exact result, i.e.,
not restricted to some order in perturbation theory or to some other approximation, and is valid
both for the Abelian and the non–Abelian case.

The relation (7) allows the derivation of the loop–loop scattering amplitude, which is
defined as

M(ll)(s, t; ~R1⊥, f1, ~R2⊥, f2) = −i 2s C̃M
(
χ ∼
s→∞

log
( s

m2

)
, t; 1, 2

)
, (8)
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C̃M being the two–dimensional Fourier transform of CM , with respect to the impact parameter
~z⊥, at transferred momentum ~q⊥ (with t = −|~q⊥|2), i.e.,

C̃M (χ, t; 1, 2) ≡
∫
d2~z⊥e

i~q⊥·~z⊥CM (χ, ~z⊥; 1, 2), (9)

from the analytic continuation θ → −iχ of the corresponding Euclidean quantity:

C̃E(θ, t; 1, 2) ≡
∫
d2~z⊥e

i~q⊥·~z⊥CE(θ, ~z⊥; 1, 2), (10)

which can be evaluated non-perturbatively by well–known and well–established techniques avail-
able in the Euclidean theory. This approach has been extensively used in the literature [12–16]
in order to tackle, from a theoretical point of view, the still unsolved problem of the asymptotic
s–dependence of hadron–hadron elastic scattering amplitudes and total cross sections. As we
have already said in the beginning, the hadron–hadron elastic scattering amplitude M(hh) can
be obtained by averaging the loop–loop scattering amplitude (8) over all possible dipole trans-
verse separations ~R1⊥ and ~R2⊥ and longitudinal–momentum fractions f1 and f2 with two proper
squared hadron wave functions [1–5]:

M(hh)(s, t) =
∫
d2 ~R1⊥

∫ 1

0
df1 |ψ1(~R1⊥, f1)|2

∫
d2 ~R2⊥

∫ 1

0
df2 |ψ2(~R2⊥, f2)|2

× M(ll)(s, t; ~R1⊥, f1, ~R2⊥, f2). (11)

Denoting with C(hh)
M and C(hh)

E the quantities obtained by averaging the corresponding loop–loop
correlation functions CM and CE over all possible dipole transverse separations ~R1⊥ and ~R2⊥
and longitudinal–momentum fractions f1 and f2, in the same sense as in Eq. (11), we can write:

M(hh)(s, t) = −i 2s C̃(hh)
M

(
χ ∼
s→∞

log
( s

m2

)
, t
)
. (12)

Clearly, by virtue of the relation (7), we also have that:

C̃(hh)
M (χ, t) = C̃(hh)

E (−iχ, t), ∀χ ∈ DM . (13)

By virtue of the optical theorem, the hadron–hadron total cross section can be derived from the
imaginary part of the forward hadron–hadron elastic scattering amplitude. Experimental obser-
vations at the present time seem to be well described by a pomeron–like high–energy behaviour
(see, for example, Ref. [4] and references therein):

σ
(hh)
tot (s) ∼

s→∞
1
s

ImM(hh)(s, t = 0) ∼ σ(hh)
0

(
s

s0

)εP
, with εP ' 0.08. (14)

A behaviour like the one of Eq. (14) seems to emerge directly (apart from possible undetermined
log s prefactors) when applying the Euclidean–to–Minkowskian analytic–continuation approach
to the study of the line–line/loop–loop scattering amplitudes in strongly coupled (confining)
gauge theories using the AdS/CFT correspondence [15, 16].

Moreover, it has been found in Ref. [11] that the dipole–dipole cross section, evalu-
ated from the loop–loop correlator up to the order O(g6), reproduces the first iteration of the
BFKL kernel in the leading–log approximation, the so–called BFKL–pomeron behaviour, i.e.,
∼ s 12αs

π
log 2, with αs = g2/4π [17].
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2 How a pomeron–like behaviour can be derived

The way in which a pomeron–like behaviour can emerge, using the Euclidean–to–Minkowskian
analytic continuation, was first shown in Ref. [7] in the case of the line–line (i.e., parton–parton)
scattering amplitudes. Here we shall readapt that analysis to the case of the loop–loop scattering
amplitudes, with more technical developments, new interesting insights and critical considera-
tions [18]. We start by writing the Euclidean hadronic correlation function in a partial–wave
expansion:

C̃(hh)
E (θ, t) =

∞∑

l=0

(2l + 1)Al(t)Pl(cos θ). (15)

As shown in Ref. [10], the loop–antiloop correlator at angle θ in the Euclidean theory (or at hy-
perbolic angle χ in the Minkowskian theory) can be derived from the corresponding loop–loop
correlator by the substitution θ → π − θ (or χ → iπ − χ in the Minkowskian theory). Be-
cause of these crossing–symmetry relations, it is natural to decompose also our hadronic correla-
tion function C̃(hh)

E (θ, t) as a sum of a crossing–symmetric function C̃+
E (θ, t) and of a crossing–

antisymmetric function C̃−E (θ, t):

C̃(hh)
E (θ, t) = C̃+

E (θ, t) + C̃−E (θ, t), C̃±E (θ, t) ≡ C̃
(hh)
E (θ, t)± C̃(hh)

E (π − θ, t)
2

. (16)

Using Eq. (15), we can find the partial–wave expansions of these two functions as follows:

C̃±E (θ, t) =
1
2

∞∑

l=0

(2l + 1)Al(t)[Pl(cos θ)± Pl(− cos θ)]. (17)

Because of the relation Pl(− cos θ) = (−1)lPl(cos θ), valid for non–negative integer values
of l, we immediately see that C̃+

E (θ, t) gets contributions only from even l, while C̃−E (θ, t) gets
contributions only from odd l. For this reason the functions C̃±E (θ, t) can also be called even–
signatured and odd–signatured correlation functions respectively and we can replace A l(t) in
Eq. (17) respectively with A±l (t) ≡ 1

2 [1 ± (−1)l]Al(t). However, if we write the hadronic

correlation function C̃(hh)
E (θ, t) in terms of the loop–loop correlation function, averaged over all

possible dipole transverse separations ~R1⊥ and ~R2⊥ and longitudinal–momentum fractions f1

and f2 with two proper squared hadron wave functions |ψ1(~R1⊥, f1)|2 and |ψ2(~R2⊥, f2)|2, and
we make use: i) of the so–called crossing–symmetry relations for loop–loop correlators [10]:

CE(π − θ, ~z⊥; ~R1⊥, f1, ~R2⊥, f2) (18)

= CE(θ, ~z⊥; ~R1⊥, f1,−~R2⊥, 1− f2) = CE(θ, ~z⊥;−~R1⊥, 1− f1, ~R2⊥, f2), ∀θ ∈ R;

and ii) of the rotational– and C–invariance of the squared hadron wave functions, that is:

|ψi(~Ri⊥, fi)|2 = |ψi(−~Ri⊥, fi)|2 = |ψi(~Ri⊥, 1− fi)|2 = |ψi(−~Ri⊥, 1− fi)|2 (19)

(see Refs. [3, 5] and also [4], chapter 8.6, and references therein), then we immediately con-
clude that the hadronic correlation function C̃(hh)

E (θ, t) is automatically crossing symmetric and
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so it coincides with the even–signatured function C̃+
E (θ, t), the odd–signatured function C̃−E (θ, t)

being identically equal to zero. Upon analytic continuation from the Euclidean to the Min-
kowskian theory (see again Ref. [10]), this means that the Minkowskian hadronic correlation
function C̃(hh)

M (χ, t), and therefore also the scattering amplitudeM(hh) written in Eq. (12), turns
out to be automatically crossing symmetric, i.e., invariant under the exchange χ → iπ − χ:
C̃(hh)
M (χ, t) = C̃+

M(χ, t), C̃−M (χ, t) = 0. In other words, our formalism naturally leads to a high–
energy meson–meson scattering amplitude which, being crossing symmetric, automatically sat-
isfies the Pomeranchuk theorem. An odderon (i.e., C = −1) exchange seems to be excluded for
high–energy meson–meson scattering, while a pomeron (i.e.,C = +1) exchange is possible [19].

Let us therefore proceed by considering our crossing–symmetric Euclidean correlation
function:

C̃(hh)
E (θ, t) = C̃+

E (θ, t) =
1
2

∞∑

l=0

(2l + 1)A+
l (t)[Pl(cos θ) + Pl(− cos θ)]. (20)

We can now use Cauchy’s theorem to rewrite this partial–wave expansion as an integral over l,
the so–called Sommerfeld–Watson transform:

C̃(hh)
E (θ, t) = C̃+

E (θ, t) = − 1
4i

∫

C

(2l + 1)A+
l (t)[Pl(− cos θ) + Pl(cos θ)]

sin(πl)
dl, (21)

where “C” is a contour in the complex l–plane, running clockwise around the real positive l–axis
and enclosing all non–negative integers, while excluding all the singularities of A+

l . Here (as
in the original derivation: see, e.g., Ref. [4] and references therein) we make the fundamental
assumption that the singularities of A+

l (t) in the complex l–plane (at a given t) are only simple
poles. (However, we want to remark that our partial–wave amplitudes A+

l (t) are not the same
partial–wave amplitudes considered in the original derivation.) Then we can use again Cauchy’s
theorem to reshape the contour C into the straight line Re(l) = − 1

2 and rewrite the integral (21)
as follows:

C̃(hh)
E (θ, t) = C̃+

E (θ, t) =

−π
2

∑

Re(σ+
n )>− 1

2

(2σ+
n (t) + 1)r+

n (t)[Pσ+
n (t)(− cos θ) + Pσ+

n (t)(cos θ)]

sin(πσ+
n (t))

− 1
4i

∫ − 1
2

+i∞

− 1
2
−i∞

(2l + 1)A+
l (t)[Pl(− cos θ) + Pl(cos θ)]

sin(πl)
dl, (22)

where σ+
n (t) is a pole of A+

l (t) in the complex l–plane and r+
n (t) is the corresponding residue.

We have also assumed that the large–l behaviour of A+
l is such that the integrand function in

Eq. (21) vanishes enough rapidly (faster than 1/l) as |l| → ∞ in the right half–plane, so that the
contribution from the infinite contour is zero.

Eq. (22) immediately leads to the asymptotic behaviour of the scattering amplitude in the
limit s → ∞, with a fixed t (|t| � s). In fact, making use of the analytic extension (13) when
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continuing the angular variable, θ→ −iχ, we derive that for every χ ∈ R+:

C̃(hh)
M (χ, t) = C̃(hh)

E (−iχ, t) =

−π
2

∑

Re(σ+
n )>− 1

2

(2σ+
n (t) + 1)r+

n (t)[Pσ+
n (t)(− coshχ) + Pσ+

n (t)(coshχ)]

sin(πσ+
n (t))

− 1
4i

∫ − 1
2

+i∞

− 1
2
−i∞

(2l + 1)A+
l (t)[Pl(− coshχ) + Pl(coshχ)]

sin(πl)
dl. (23)

Now we must take the large–χ (large–s) limit of this expression, with the hyperbolic angle χ
expressed in terms of s by the relation (5), i.e., coshχ = s

2m2 −1. The asymptotic form of Pν(z)
when z → ∞ is known to be a linear combination of zν and of z−ν−1. When Re(ν) > −1/2,
the last term can be neglected and thus, in the limit s → ∞, with a fixed t (|t| � s), we obtain,
from the sum in Eq. (23) (see Ref. [18] for more details):

C̃(hh)
M

(
χ ∼
s→∞

log
( s

m2

)
, t
)
∼

∑

Re(σ+
n )>− 1

2

β+
n (t)sσ

+
n (t). (24)

The integral in Eq. (23), usually called the background term, vanishes at least as 1/
√
s and there-

fore can be neglected. From eqs. (12) and (24) we can extract the elastic scattering amplitude:

M(hh)(s, t) ∼
s→∞

−2i
∑

Re(σ+
n )>− 1

2

β+
n (t)s1+σ+

n (t). (25)

This equation gives the explicit s–dependence of the scattering amplitude at very high energy
(s → ∞) and small transferred momentum (|t| � s). As we can see, this amplitude comes out
to be a sum of powers of s. This sort of behaviour for the scattering amplitude is known in the
literature as a Regge behaviour and 1 + σ+

n (t) ≡ α+
n (t) is the so–called Regge trajectory. In the

original derivation (see, e.g., Ref. [4] and references therein) the asymptotic behaviour (25) is
recovered by analytically continuing the t–channel scattering amplitude to very large imaginary
values of the angle between the trajectories of the two exiting particles in the t–channel scattering
process. Instead, in our derivation (see Ref. [18]), we have used the Euclidean–to–Minkowskian
analytic continuation (13) and we have analytically continued the Euclidean loop–loop correlator
to very large (negative) imaginary values of the angle θ between the two Euclidean Wilson loops.

Denoting with σP (t) the pole with the largest real part (at that given t) and with βP (t) the
corresponding coefficient β+

n (t) in Eq. (24), we thus find that:

C̃(hh)
M

(
χ ∼
s→∞

log
( s

m2

)
, t
)
∼ βP (t)sσP (t) =⇒M(hh)(s, t) ∼

s→∞
−2i βP (t) sαP (t), (26)

where αP (t) ≡ 1 +σP (t) is the pomeron trajectory. Therefore, by virtue of the optical theorem:

σ
(hh)
tot (s) ∼

s→∞
1
s

ImM(hh)(s, t = 0) ∼ σ(hh)
0

(
s

s0

)εP
, with εP = Re[αP (0)]− 1. (27)

We want to stress two important issues which clarify under which conditions we have been able
to derive this pomeron–like behaviour for the elastic amplitudes and the total cross sections.
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i) We have ignored a possible energy dependence of hadron wave functions and we have
thus ascribed the high–energy behaviour of the Minkowskian hadronic correlation function ex-
clusively to the fundamental loop–loop correlation function (9). With this hypothesis, the coeffi-
cients A+

l in the partial–wave expansion (15) and, as a consequence, the coefficients β+
n and σ+

n

in the Regge expansion (24) do not depend on s, but they only depend on the variable t.

ii) However, this is not enough to guarantee the experimentally–observed universality (i.e.,
independence on the specific type of hadrons involved in the reaction) of the pomeron trajectory
αP (t) in Eq. (26) and, therefore, of the pomeron intercept 1 + εP in Eq. (27). In fact, the partial–
wave expansion (15) of the hadronic correlation function can also be considered as a result of a
partial–wave expansion of the loop–loop Euclidean correlation function (10), i.e.,

C̃E(θ, t; 1, 2) =
∞∑

l=0

(2l + 1)Al(t; 1, 2)Pl(cos θ), (28)

which is then averaged with two proper squared hadron wave functions, in the same sense as in
Eq. (11), so giving the Euclidean hadronic correlation function (15). If we now repeat for the
partial–wave expansion (28) the same manipulations that have led us from Eq. (15) to Eq. (24),
we arrive at the following Regge expansion for the (even–signatured) loop–loop Minkowskian
correlator:

C̃+
M

(
χ ∼
s→∞

log
( s

m2

)
, t; 1, 2

)
∼

∑

Re(a+
n )>− 1

2

b+n (t; 1, 2)sa
+
n (t;1,2), (29)

where a+
n (t; 1, 2) is a pole of A+

l (t; 1, 2) in the complex l–plane. After inserting the expansion
(29) into the expression for the Minkowskian hadronic correlation function:

C̃(hh)
M (χ, t) =

∫
d2 ~R1⊥

∫ 1

0
df1 |ψ1(~R1⊥, f1)|2

∫
d2 ~R2⊥

∫ 1

0
df2 |ψ2(~R2⊥, f2)|2

× C̃+
M (χ, t; 1, 2), (30)

one in general finds a high–energy behaviour which hardly fits with that reported in Eq. (26) with
a universal pomeron trajectory αP (t), unless one assumes that, for each given loop–loop corre-
lation function with transverse separations ~R1⊥ and ~R2⊥ and longitudinal–momentum fractions
f1 and f2, (at least) the location of the pole a+

n (t; 1, 2) with the largest real part does not depend
on ~R1⊥, f1 and ~R2⊥, f2, but only depends on t. If we denote this common pole with σP (t), we
then immediately recover the high–energy behaviour (26), where the coefficient βP (t) in front,
differently from the universal function αP (t) = 1 + σP (t), explicitly depends on the specific
type of hadrons involved in the process.

3 Conclusions and outlook

In conclusion, we have shown that the Euclidean–to–Minkowskian analytic–continuation ap-
proach can, with the inclusion of some extra (more or less plausible) assumptions, easily repro-
duce a pomeron–like behaviour for the high–energy total cross sections, in apparent agreement
with the present–time experimental observations. However, we should also keep in mind that
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the pomeron–like behaviour (14) is, strictly speaking, theoretically forbidden (at least if con-
sidered as a true asymptotic behaviour) by the well–known Froissart–Lukaszuk–Martin (FLM)
theorem [20]. In this respect, the pomeron–like behaviour (14) can at most be regarded as a sort
of pre–asymptotic (but not really asymptotic) behaviour of the high–energy total cross sections,
valid in a certain high–energy range.
Immediately the following question arises: why our approach, which was formulated so to give
the really asymptotic large–s behaviour of scattering amplitudes and total cross sections, is also
able to reproduce pre–asymptotic behaviours (violating the FLM bound) like the one in (14)?
The answer is clearly that the extra assumptions, i.e., the models, which one implicitly or ex-
plicitly uses in the calculation of the Euclidean correlation function C̃E , play a fundamental role
in this respect. Of course, every model has its own limitations, which reflect in the variety of
answers in the literature. Unfortunately these limitations are often out of control, in the sense
that no one knows exactly how much infromation is lost due to these approximations. This is
surely a crucial point which, in our opinion, should be further investigated in the future, also with
the help of direct lattice calculations of the loop–loop Euclidean correlation function.
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Abstract
The addition of forward proton detectors to LHC experiments will sig-
nificantly enlarge the potential for studying New Physics. We discuss
a topical example of Higgs production by the central exclusive diffrac-
tive process, pp → p + H + p. Special attention is paid to the back-
grounds to the H → bb̄ signal.

1 Introduction

The use of diffractive processes to study the Standard Model (SM) and New Physics at the LHC
has only been fully appreciated within the last few years; see, for example [1–6]. By detecting
protons that have lost only about 1-3% of their longitudinal momentum [7], a rich QCD, elec-
troweak and BSM programme becomes accessible experimentally, with the potential to study
phenomena which are unique to the LHC, and difficult even at a future linear collider. Partic-
ularly interesting are the so-called central exclusive production (CEP) processes which provide
an extremely favourable environment to search for, and identify the nature of, new particles at
the LHC. The first that comes to mind are the Higgs bosons, but there is also a rich, more ex-
otic, physics menu including (light) gluino and squark production, searches for extra dimensions,
gluinonia, radions, and indeed any new object which has 0++ (or 2++) quantum numbers and
couples strongly to gluons. By “central exclusive” we mean a process of the type pp→ p+X+p,
where the + signs denote the absence of hadronic activity (that is, the presence of rapidity gaps)
between the outgoing protons and the decay products of the centrally produced system X . The
basic mechanism driving the process is shown in Fig. 1. There are several reasons why CEP is

Fig. 1: The basic mechanism for the exclusive process pp→ p+X + p. The system X is produced by the fusion of

two active gluons, with a screening gluon exchanged to neutralize the colour.

especially attractive for searches for new heavy objects. First, if the outgoing protons remain
† speaker
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intact and scatter through small angles then, to a very good approximation, the primary active di-
gluon system obeys a Jz = 0, C-even, P-even, selection rule [8]. Here Jz is the projection of the
total angular momentum along the proton beam axis. This selection rule readily permits a clean
determination of the quantum numbers of the observed new (for example, Higgs-like) resonance,
when the dominant production is a scalar state. Secondly, because the process is exclusive, the
energy loss of the outgoing protons is directly related to the mass of the central system, allowing
a potentially excellent mass resolution, irrespective of the decay mode of the centrally produced
system. Thirdly, in many topical cases, in particular, for Higgs boson production, a signal-to-
background ratio of order 1 (or even better) is achievable [3, 9–11]. In particular, due to Jz = 0
selection, leading-order QCD bb̄ production is suppressed by a factor (mb/ET )2, where ET is
the transverse energy of the b, b̄ jets. Therefore, for a low mass Higgs, MH

<∼ 150 GeV, there is
a possibility to observe the main bb̄ decay mode and to directly measure the H → bb̄ Yukawa
coupling constant. The signal-to-background ratio may become significantly larger for a Higgs
boson in certain regions of the MSSM parameter space.
It is worth mentioning that, by tagging both of the outgoing protons, the LHC is effectively
turned into a gluon-gluon collider. This will open up a rich, QCD physics menu, which will
allow the study of the skewed, unintegrated gluon densities, as well as the details of rapidity gap
survival. Note that CEP provides a source of practically pure gluon jets; that is we effectively
have a ‘gluon factory’ [8]. The forward-proton-tagging approach also offers a unique programme
of high-energy photon-interaction physics at the LHC.

2 Central Exclusive Higgs production

The ‘benchmark’ CEP new physics process is Higgs production. Studies of the Higgs sector
are at the heart of the recent proposal [7] to complement the LHC central detectors with proton
taggers placed at 420 m either side of the interaction point.
Our current understanding is, that if a SM-like Higgs boson exists in Nature, it will be detected
at the LHC. However, various extended models predict a large diversity of Higgs-like bosons
with different masses, couplings and CP-parities. The best studied extension of the SM up to
now is the MSSM, in which there are three neutral Higgs bosons, the scalars h and H , and the
pseudoscalar A.
The forward proton tagging mode is especially advantageous for the study of the MSSM sector.
Note that when using the ”standard” non-diffractive production mechanisms, there is usually an
important region of MSSM parameter region, where the LHC can detect only the Higgs boson
with SM-like properties. To check that a discovered state is indeed a scalar Higgs boson, and
to distinguish between the Higgs boson(s) of the SM or the MSSM and those from of extended
Higgs theories will be highly non-trivial task. Without forward proton tagging, it would require
interplay with observations at the Next Linear Collider. Moreover, within the MSSM, the weak-
boson-fusion channel becomes of no practical use for the production of the heavier scalar H or
the pseudoscalar A boson. On the other hand, in the forward proton mode the pseudoscalar A is
practically filtered out, and the detection of the H boson should be achievable [9,10]. In addition,
in some MSSM scenarios, CEP provides an excellent opportunity for probing the CP-structure
of the Higgs sector by measuring directly the azimuthal asymmetry of the outgoing protons [12].
In Fig. 2 we show, for reference purposes, the total CEP cross section for the SM Higgs boson
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Fig. 2: The cross section times branching ratio for CEP of the SM Higgs [13].

times branching ratio for the WW and bb̄ channels, as a function of the Higgs mass. We see
that the expected total cross section for the CEP of a SM Higgs, with mass 120 GeV, is 3 fb,
falling to just less than 1 fb for a mass of 200 GeV. With a good understanding of the detectors
and favourable experimental conditions, the rate for the SM Higgs of mass 120 GeV for the inte-
grated LHC luminosity of L = 60 fb−1 would be quite sizeable (around 100 events). However,
with the presently envisaged LHC detectors, there are various experimental problems. First of
all, trigger signals from protons detected at 420 m cannot reach the central detector in time to
be used in the Level 1 trigger. For this, we have to rely on the central detector. Other factors
may also strongly reduce the current expectations for the detected signal rate, in particular, the
b-tagging efficiency, the jet energy resolution etc. At high luminosities there is also a potentially
dangerous problem of backgrounds due to the overlapping events in the same bunch crossing
(the so-called “pile-up” events). In summary, with the current hardware, the expectation is that
there will be not more than a dozen SM Higgs signal events for an integrated LHC luminosity
of L = 60 fb−1. Whether experimental ingenuity will increase this number remains to be seen.
Indeed, it is quite possible that “clever” hardware and the use of optimized cuts will increase the
rate.
As we already mentioned, in the MSSM, the CEP cross sections can be an order-of-magnitude or
more higher. This is illustrated in Fig. 3, which shows the contours for the ratioR of signal events
in the MSSM over those in the SM in the CEP of H → bb̄ in the MA–tan β plane, see [10].
As discussed above, the exclusive Higgs signal is particularly clean, and the signal-to-background
ratio is quite favourable, at least, at an instantaneous luminosity L ∼ 2 × 1033 cm−2 s−1, when
the effect of pile-up can be kept under full control, see [10, 11] and references therein. However,
without improving the LHC hardware, the expected event rate in the SM case is quite limited, and
so it is important to test various ingredients of the adopted theoretical scheme [1,2,8] by studying
the related processes at HERA and the Tevatron. Various such tests have been performed so far,
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see for example, [14, 15] and references therein.
The straightforward checks come from the study of processes which are mediated by the same
mechanism as CEP of the Higgs boson, but with rates which are sufficiently high, so that they
may be observed already at the Tevatron. The most obvious examples are those in which the
Higgs is replaced by either a dijet system, or a χc meson, or a γγ pair. The reported preliminary
CDF data on these CEP processes (see for example, [16]) show a good agreement with the theo-
retical expectations by Durham group.
Especially impressive are the recent CDF data [16] on exclusive production of a pair of high ET

jets, pp̄ → p + jj + p̄. The corresponding cross section was evaluated to be about 104 times
larger than that for the production of a SM Higgs boson. Since the dijet CEP cross section is
rather large, this process appears to be an ideal ‘standard candle’. A comparison of the data with
analytical predictions [1, 2] is given in Fig. 4. It shows the Emin

T dependence for the dijet events
with Rjj ≡ Mdijet/MPP > 0.8, where MPP is the invariant energy of the incoming Pomeron-
Pomeron system. The agreement with the theoretical expectations [1, 2] lends credence to the
predictions for the CED Higgs production [16].

3 The backgrounds to the p+ (h,H → bb̄) + p signal

The importance of the p+ (h,H → bb̄) + p process means that the physical backgrounds to this
reaction must be thoroughly addressed. Recall that the unique advantage of the bb̄ CEP process
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Emin
T

σ(ET>Emin
T; Rjj>0.8)

Fig. 4: The cross section for ‘exclusive’ dijet production as a function Emin
T as measured by CDF [16]. The data

correspond to the cross section integrated over the domain Rjj ≡ Mdijet/MPP > 0.8 and ET > Emin
T . A jet cone

of R < 0.7 is used. The curves are the exclusive cross section calculated [2] using the CDF event selection. The

solid curve is obtained by rescaling the parton transverse momentum pT to the measured jet transverse energy ET
by ET = 0.8pT . The dashed curve assumes ET = 0.75pT . The rescaling procedure effectively accounts for the

hadronization and radiative effects, and for jet energy losses outside the jet cone.

is the Jz = 0 selection rule, which requires the LO ggPP → bb̄ background to vanish in the
limit of massless quarks and forward going protons. However, there are still four main sources
of background [3, 17].

(i) The prolific (LO) ggPP → gg subprocess can mimic bb̄ production since we may misiden-
tify the gluons as b and b̄ jets.

(ii) An admixture of |Jz| = 2 production, arising from non-forward going protons, which
contributes to the LO ggPP → bb̄ background.

(iii) Because of non-zero mass of the quark there is a contribution to the Jz = 0 cross section
of order m2

b/E
2
T . This term currently raises the main concern. The problem is that the

result is strongly affected by the large higher-order QCD effects. In particular, the one-
loop double logarithmic contribution exceeds the Born term, and the final result becomes
strongly dependent on the NNLO effects. There is no complete calculation of these effects
for the ggPP → bb̄ process. The validity of estimates given in [17] has an accuracy not
better than a factor of 2-4. The good news is that this contribution decreases with increasing
ET much faster than the other backgrounds.

(iv) Finally, there is a possibility of NLO ggPP → bb̄g background contributions, which for
large angle, hard gluon radiation do not obey the selection rules. In particular, the extra
gluon may go unobserved in the direction of a forward proton. This background is reduced
by requiring the approximate equality Mmissing = Mbb̄. Calculations [18] show that this
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background may be safely neglected. The remaining danger is large-angle hard gluon
emission which is collinear with either the b or b̄ jet, and, therefore, unobservable. This
background source results in a sizeable contribution, see [17].

There are also other (potentially worrying) background sources, which after a thorough
investigation [17, 18], have been neglected. This is either because their contributions are numer-
ically small from the very beginning, or because they can be reduced to an acceptable level by
straightforward experimental cuts.
Next, a potential background source can arise from the collision of two soft Pomerons. Such
backgrounds were carefully evaluated in [18], and it was found that they are quite small.
In summary, the main background contributions come from exclusive dijet production as listed
in the items (i)-(iv) above. Within the accuracy of the existing calculations [3, 8, 17], the overall
background to the 0+ Higgs signal in the bb̄mode can be approximated by the following formula,
see [10]

dσB

dM
≈ 0.5 fb/GeV

[
0.92

(
120
M

)6

+
1
2

(
120
M

)8
]
. (1)

Note that this approximate expression may be used only for the purposes of making quick
estimates of the background, since no detector simulation has been performed.

4 Conclusion

The installation of proton-tagging detectors in the distant forward regions around the ATLAS
and/or CMS central detectors would add unique capabilities to the existing LHC experimental
programme. The calculation of the rates of CEP processes show that there is a good chance
that new heavy particle production could be observed in this mode. For a Higgs boson this
would amount to a direct determination of its quantum numbers. For certain MSSM scenarios,
the tagged-proton channel may even be the Higgs discovery channel. Moreover, with sufficient
luminosity, proton tagging may provide direct evidence of CP-violation within the Higgs sector.
There is also a rich QCD, electroweak, and more exotic physics, menu.

Here we focused on the unique advantages of CEP Higgs production. The events are
clean, but the predicted yield for the SM Higgs for an integrated luminosity of L = 60 fb−1

is comparatively low, after experimental cuts and acceptances. Further efforts to optimize the
event selection and cut procedure are very desirable. In the MSSM there are certain regions
of parameter space which can be especially ‘proton tagging friendly’ [9–11]. Here the signal-
to-background ratios in the bb̄ channel can exceed the SM by up to two orders of magnitude.
Moreover, the observation of the decay of Higgs to bb̄ would allow a direct determination of the
H → bb̄ Yukawa coupling. From the experimental perspective, the simplest exclusive channel
in which to observe a SM Higgs boson with mass between 140 GeV and 200 GeV is the WW
decay mode. However, contrary to the bb̄ case, no dramatic rise in the rate is expected within the
MSSM [10].
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INFN, Sezione di Milano.

Abstract
We present a recent determination of an approximate expression for
the O(α3

s) contribution χ2 to the kernel of the BFKL equation. This
includes all collinear and anticollinear singular contributions and is
derived using duality relations between the GLAP and BFKL kernels.

1 QCD at small-x

Reducing the theoretical uncertainties in cross-sections for hadron colliders requires the compu-
tation of higher order contributions in perturbative QCD, both at fixed order and at the resummed
level. In particular at high energy colliders such as the LHC, we must be able to control both
the logarithms of Q2 and x as given by GLAP and BFKL evolution. Fixed–order BFKL ker-
nels, which resum only logs of x, have been widely used in many studies (such as saturation
and BFKL Monte Carlos for final states). The BFKL kernel has been computed explicitly at the
next-to-leading order accuracy [1]; here we present an approximation of the NNLO contribution.
The fixed–order expansion of the kernel is known to be slowly convergent, hence the NNLO
contribution is important for an accurate assessment of the NLO uncertainty at any particular
scale.

Let us consider the GLAP and the BFKL equations:

d

dt
G(N, t) = γ(N,αs)G(N, t) , (1)

d

dξ
G(ξ,M) = χ(M,αs)G(ξ,M) , (2)

They describe, respectively, the evolution with respect to t = lnQ
2

µ2 and ξ = ln s
Q2 = ln 1

x of the
singlet parton density. The complex variables N and M are the Mellin moments with respect to
x and Q2 respectively: upon taking moments the integro-differential evolution equations become
ordinary differential equations. Note that the GLAP evolved parton density G is integrated over
the transverse momenta, while the BFKL equation is usually written in terms of the unintegrated
quantity G. We shall return to this issue in the next section.

Eq. (2) is written in the fixed coupling approximation; the introduction of the running of
the coupling is nontrivial because upon Mellin transform αs(t) becomes a differential operator:

αs(t) =
αs

1 + αsβ0t
=⇒ α̂s =

αs

1− αsβ0
∂
∂M

.

† speaker
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As a consequence the BFKL kernel χ(α̂s,M) becomes an operator beyond leading order. It is
useful to notice that different arguments for the running coupling correspond to different order-
ings of the operators.

The fixed-order expansion of the BFKL kernel is:

χ(M, α̂s) = α̂sχ0(M) + α̂2
sχ1(M) + α̂3

sχ2(M) + . . . (3)

It is well known that the NLO order term χ1 is large and has a qualitatively different shape to
the leading order kernel χ0. The determination of the NNLO contribution χ2 is motivated not
only by the slow convergence of the perturbative expansion but also by the expectation that the
NNLO approximation will have the same qualitative shape as the LO thus having better stability
proprieties than the NLO. We compute an approximation to the NNLO kernel which includes all
the collinear (M ∼ 0) and anticollinear (M ∼ 1) singularities: this computation is based on so
called duality relations between the BFKL kernel and the GLAP anomalous dimension.

2 The collinear approximation of the BFKL kernel

At fixed coupling, the two evolution equations (1) and (2) admit the same leading twist solution
when the kernels are related by:

χ(γ(N,αs), αs) = N, γ(χ(M,αs), αs) = M, (4)

and the boundary conditions are suitably matched [2], [3].

The GLAP anomalous dimension γ(N,αs) has been computed up to NNLO, i.e. O
(
α3
s

)

[4]. Using duality it is thus possible to determine the first three coefficients of the Laurent ex-
pansion about M = 0 of the BFKL kernel. This means that we can compute all the collinear
singularities of the O

(
α3
s

)
contribution: writing

χ2(M) =
c2,−3

M3
+
c2,−2

M2
+
c2,−1

M
+ . . . . (5)

the determination of the coefficients c2,−3, c2,−2 and c2,−1 requires the knowledge of the LO,
NLO and NNLO anomalous dimension respectively.

At LO the calculation is straightforward because it only involves the inversion of eq. (4),
but beyond that several other contributions must be taken into account. More precisely we have
to address the following complications:
• The inclusion of running coupling effects.
• The relation between kernels for the integrated and the unintegrated parton density.
• The dependence of the kernel on the factorisation scheme.
• The choice of kinematic variables.

All these issues were well understood at NLO [5], but only recently under control at NNLO.

The frozen coupling hypothesis is no longer valid beyond leading order: duality relations
still hold but they receive running coupling contributions [6], [7]. Running coupling duality has
been proved to all orders using an operator method. As we already noticed the running coupling
in M -space is a differential operator; duality states that the BFKL and GLAP solutions coincide
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if the respective operator kernels are the inverse of each other when acting on physical states.
Because of non-vanishing commutation relations the inversions of the kernels is not trivial; the
operator formalism enables us to compute the running coupling corrections in an algebraic way,
calculating commutators of the relevant operators, e.g.

[α̂−1
s ,M ] = −β0 + αsβ0β1 + . . . (6)

and express the result in terms of the fixed coupling duals as described extensively in [8].

The BFKL equation describes the evolution of a parton density G unintegrated over the
transverse momenta, while GLAP of the integrated one G. The relation between G and G is
given by:

G(N, t) =
d

dt
G(N, t) .

This gives the following NNLO relation between unintegrated kernel and the integrated one χi

derived from duality:

χ2 = χi2 − β0β1
χi0
M
− 2β0

χi1
M

. (7)

The direct computation of the BFKL kernel is based on determination of the gluon Green’s
function in the high energy limit in the framework of the k⊥- factorisation theorem. This is
compatible with the usual factorisation theorem of collinear singularities but it differs from it by
a computable scheme change. This arises from a difference in normalisation between the gluon
Green’s functions which enter the BFKL equation and GLAP equations. The usual computation
of the BFKL kernel using gluon Reggeization [1] is performed in the so called Q0 scheme [9].
The gluon normalisation factor relating conventional MS to the Q0 scheme can be factorised
as [10]

R(N, t) = N (N, t)R(N, t) , (8)

whereN contains readily calculable running coupling and integrated/unintegrated contributions,
while R is related to the MS definition of the anomalous dimension. The leading log-x contri-
bution to the R scheme change was computed in [11]. We discuss the collinear approximation
of the NLLx scheme change in [12], where we show that it can be derived from the analytic
continuation of the GLAP anomalous dimension to d = 4− 2ε space-time dimensions. However
although the O(αsε) and O(αsε2) contributions are known the O(α2

sε) contribution is not. We
assess the uncertainty in our calculation due to this unknown contribution to the scheme change
in fig. 2 below.

Once we have all the possible contributions with correct duality relations at NNLO under
control, we can compute the collinear approximation of the BFKL kernel in the Q0 scheme. In
such scheme the result can be extend in the anticollinear region M ∼ 1 because the kernel is
symmetric upon the exchange:

M ↔ 1−M (9)

as a consequence of the symmetry of the diagrams for BFKL processes upon the exchange of the
virtualities at the top and the bottom [1], [13]. Before we can exploit this symmetry we must make
sure that all sources of symmetry breaking have been removed. The symmetry may be broken
by the choice of kinematic variables (e.g. in DIS we choose x = Q2

s ), and by the argument of
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Fig. 1: This plot shows the LO, NLO and NNLO approximations to the BFKL kernel in Q0-scheme for αs = 0.2.

the running coupling (αs(Q2) in DIS). The BFKL kernel can be written in symmetric variables
(xsym =

√
Q2k2/s) thanks to the relation:

χsym(α̂s,M) = χDIS(α̂s,M +
1
2
χsym(α̂s,M)) . (10)

The kernel in symmetric variables can be extended to the anticollinear region:

χsym2 (α̂s,M) =
∑

j=1,5

c2,−j

[
α̂3
s

1
M j

+
1

(1−M)j
α̂3
s

]
+O(M0) . (11)

The different order of the operators in the collinear and anticollinear regions corresponds to a
symmetric choice for the running coupling. After the symmetrisation one can express the results
canonically ordered with all the powers of α̂s on the left. This choice will, of course, break the
symmetry of the kernel.

The results are plotted in figure 1. It is clear that the expansion of BFKL kernel is not well
behaved (due to the collinear and anticollinear poles at M = 0 and M = 1 of increasing order
and alternating sign). However, as expected because of the sign of the dominant pole, the BFKL
kernel at NNLO has a minimum for every value of the coupling. In figure 2 we plot the intercept,
defined as the value of the kernel in its minimum, as a function of the coupling constant. The
inclusion of the NNLO contribution improves the convergence of the perturbative expansion,
however for values of the coupling constants relevant for phenomenology (say αs & 0.1) the
series has yet to converge.

3 Discussion

We have seen that thanks to duality relations and the computation of the anomalous dimension
at NNLO, the calculation of the collinear approximation of the BFKL kernel at O(α3

s) can be
performed. Here we discuss the accuracy and the limitations of our result.
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Fig. 2: This plot shows the intercept as a function of the coupling, at LO, NLO and NNLO. The error band is due to

the unknown term in the scheme change.

We have computed an approximation to the forward BFKL kernel, which has been az-
imuthal averaged over the transverse momenta. The collinear approximation is based on the
computation of coefficients of the Laurent series in M ∼ 0 of the BFKL kernel. Because of the
singularities at M = ±1 this series has radius of convergence one. Similarly the Laurent series
for the anticollinear singularities around M = 1 also has radius of convergence one. Thus we
expect the approximate calculations to do well over the central region 0 ≤ M ≤ 1, but to break
down as M → −1, M → 2. In figure 3 we show how well the approximation actually per-
forms at LO and NLO, where the exact result is known. As expected the agreement is excellent
close to M = 0 and M = 1, and even in the central region the difference between the collinear
approximation and the full result is at the percent level. Hence we can conclude that at leading
twist the collinear kernel is a very good approximation to the full LO and NLO ones. For this
reason we also expect our result for χ2 to be a good approximation, within a few per cent, for
calculations performed at leading twist. A reasonable variation of the unknown contribution to
the NLLx scheme change in our calculation changes the kernel χ2 by ∼ 5%, hence well within
the accuracy we expect for our approximation.

It is well known that beyond NLO BFKL evolution presents various unsolved problems. A
direct computation shows that the universality of the pomeron exchange is broken at NNLO [14].
Furthermore a new class of contributions involving the t-channel exchange of four gluons enters
at NNLO (see [15] and references therein). These are twist-four contributions which can mix
with the twist-four part of the two-gluon operators. The form of the full BFKL equation at
NNLO is thus different from that at LO and NLO, in contrast to the GLAP equation which
has the same form to all orders in perturbation theory. Nevertheless collinear factorisation and
running coupling duality guarantee the existence of a universal and factorised leading twist kernel
for small-x evolution [8], valid in the approximation where all higher twist contributions are
suppressed.
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Fig. 3: This plot shows the relative differences ∆ = (exact-approximate)/exact for the leading order kernel (∆0) and

the next-to-leading kernel (∆1).

4 Conclusions

We have discussed the collinear approximation of the BFKL kernel. Results on duality relations
and factorisation schemes, with the inclusion of the running coupling enable us to construct an
approximation of the BFKL kernel at NNLO, which contains all the singular contributions at
M = 0 and M = 1. The collinear approximation of χ0 and χ1 are in excellent agreement with
the full results and so our result for χ2 is also likely to be close to the true result for the NNLO
kernel in the region relevant at leading twist.
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Unintegrated parton distributions and correlation functions
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Abstract
We discuss the limitations of the standard collinear approach. The
kinematical approximations necessary to derive the collinear factor-
ization are insufficient for the description of the exclusive final states.
We argue that for a proper treatment of the final states one needs to
use fully unintegrated parton correlation functions. We introduce the
gauge invariant definitions of these objects and the factorization theo-
rem for one jet production in deep inelastic scattering.

1 Introduction: factorization and integrated parton distribution functions

The leading twist formalism based on the collinear factorization [1] has been proved widely suc-
cessful in a variety of processes in QCD. The collinear factorization allows for the separation
of the short and long distance contributions in the processes which involve hadrons. The short
distance part is the partonic cross section, which can be systematically calculated order by order
in the strong coupling within the perturbation theory. The long distance parts are parton distri-
bution and fragmentation functions which contain all the non-perturbative information. Thanks
to the factorization theorem these quantities are universal and once determined in one process
can be taken over to the other process to determine the corresponding cross section. These stan-
dard parton distribution functions are often referred as the integrated parton distribution functions
(PDFs) since they depend only on the fraction of the longitudinal momentum x and the hard scale
µ. Problems arise when one tries to address more exclusive processes with final states. Then,
the details of the kinematics are essential and standard kinematic approximation can be insuffi-
cient for these purposes. This is where the formalism with the parton distributions unintegrated
over the other components of the momenta is necessary. One also needs to prove more general
factorization theorems which incorporate these unintegrated parton distribution/fragmentation
functions.

To start with, let us first recall the standard definition of the integrated quark parton density:

f(xBj , µ) =
∫
dy−

4π
e−ixBjp

+y−〈P |ψ̄(0, y−, 0T )V †y (n)V0(n)γ+ψ(0)|P 〉R . (1)

Here, ψ is the quark field and |P 〉 is the proton state in which the operator above is evaluated.
Subscript R means that we are considering renormalized operators and µ is the renormalization
scale. The object inserted between the quark fields is the Wilson line

V †y (n)V0(n) = P exp

(
−ig

∫ y−

0
dλn ·A(λn)

)
. (2)
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in the lightlike direction n = (0, 1, 0T ). This ensures the gauge invariance and can be shown to
arise from graphs with arbitrarily many gluon exchanges which appropriately factorize into this
path-ordered exponential.

To illustrate some issues related with the kinematical approximations used in the standard
collinear approach let us consider the parton model of the deep inelastic scattering. The lowest
order graph is pictured in Fig. 1 and we can write down formally its contribution to the hadronic
tensor as

Wµν(q, P ) =
∑

j

e2j
4π

∫
d4k

(2π)4
Tr[γµJj(k + q)γνFj(k, P )] , (3)

with the sum over j as a sum over the quark flavors.

Fig. 1: Parton model in deep inelastic scattering.

The kinematic approximations needed to obtain the factorized form set the quarks on-shell
and massless

k ' k̂ ≡ (xBjP+, 0, 0T ) ,

l ' l̂ ≡ (0,
Q2

2xBjP+
, 0T ) . (4)

These approximations give the familiar expression for the hadronic tensor

Wµν(q, P ) '
∑

j

e2j
4π

{∫
dk−d2kT

(2π)4
F+
j (xBjP+, k−, kT )

}
Tr[γµγ+γν k̂/] . (5)

The expression in the curly brackets corresponds to the parton density and the expression with the
trace is the partonic cross section. Note, that the approximations are good when the momentum
components kT and k− are small with respect to k+. This is sufficient when the momenta are
integrated over in the inclusive cross section but might lead to large errors when we look at
some more exclusive processes. Indeed the parton model approximation makes the following
replacement

δ(4)(k + q − l) −→ δ(k+ + q+)δ(q− − l−)δ(2)(lT ) .

These two delta functions can lead to similar results when integrated over all momenta (inclusive
processes) but can lead to very different results in the exclusive cases. If we allow for the invariant
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mass of the outgoing parton l2 = M2 we see that the parton model value k+ = xP+ becomes
significantly modified

k+ = xP+ +
M2 + k2

T

2(k− + q−)
.

As shown in [2] on the example of the cc̄ production in DIS there are huge differences be-
tween standard parton model, unintegrated partons and exact kinematics. In particular the pT
distributions of the produced charmed quarks depend heavily whether integrated or unintegrated
formalism is used. The general conclusion [2] is that conventional formalism with integrated
parton densities is not suitable for the analysis of the final states. In the next sections we dis-
cuss the general factorization framework which makes use of the unintegrated parton correlation
functions. All the details, including the derivation of the factorization and the definitions of the
unintegrated parton correlation functions can be found in [3].

2 Integrated, unintegrated, fully unintegrated parton correlation functions

We have learned from the discussion in the introduction that the description of the exclusive
processes requires a new formalism with new parton densities and fragmentation functions. We
distinguish three types of objects:

• Conventional integrated parton distributions and fragmentation functions. These depend
on the fraction of the longitudinal momentum and the scale

F(x, µ)

• Unintegrated parton distribution functions (and FFs) which depend on the transverse mo-
mentum

F(x, kt, µ)

• Fully unintegrated parton correlation functions which depend on all components of the
momenta: longitudinal, transverse, and virtuality

F(x, kT , k2, µ)

The unintegrated (over kT ) parton distribution functions have been introduced in the con-
text of small x physics, (see for example [4]). There, as a result of the high-energy approxi-
mation, the 4-point gluon Green’s function emerges as a fundamental object. It depends on the
transverse momenta of 4-off shell gluons. Its evolution with rapidity is then governed by the
BFKL equation. There have been numerous efforts [5–7] to construct the unintegrated parton
densities outside the small x limit, many of them using the angular ordered CCFM equation.
However, theses approaches do not provide the operator definitions of the unintegrated parton
distribution functions. Therefore, it is desirable to have a unique and consistent approach which
demonstrates factorization using the properly defined unintegrated parton correlation functions.
Then, hopefully, different approaches developed so far will be reproduced as a particular limit or
approximation to a more general case.
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Fig. 2: Most general graph with one jet production in deep inelastic scattering.

3 General strategy

The general formalism for use in the case of the deep inelastic scattering is introduced in detail
in [3]. The main points are

• Retain the exact kinematics in initial and final states.
• Keep the explicit factors (bubbles) representing final states.
• Retain on-shell matrix elements.
• Define projections from exact to approximate momenta.
• Construct definitions of the gauge invariant parton correlation factors and the soft factor.
• Use eikonal lines and Ward identities to prove factorization.
• Use non-light-like eikonal Wilson lines to regularize light-cone divergences in the uninte-

grated parton distributions ( this introduces a cutoff in rapidity, similarly to what is done at
small x ).

One starts with the most general graph in the case of the deep inelastic scattering which is
illustrated in Fig. 3. This graphs differs from the ordinary parton model due to several distinctive
features. First of all, the final state quark has a jet subgraph. This is a minimal required assump-
tion since we know that the quark has to hadronize. A second important point is that we need
to allow for the non-perturbative (or soft) interactions between the outgoing jet and the target
remnant. These are obviously necessary to neutralize the color. Therefore we need to allow for
arbitrarily many gluon connections between the soft bubble and the target and jet subgraphs. So
graph in Fig. 3 constitutes a necessary extension to a simple parton model.

In order to prove the factorization one needs first to identify all the leading regions:
collinear to jet, collinear to the target and soft. On also needs to perform subtractions to en-
sure that the smaller regions are appropriately suppressed. Then the Ward identities are used to
disentangle the gluons between the different subgraphs (for example collinear to soft subgraphs).
In particular one has to prove that the Ward identities work properly in the presence of the sub-
tractions. After the application of Ward identities the gluons factorize into the Wilson lines in the
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Fig. 3: Most general graph with one jet production in deep inelastic scattering in the factorized form. Double lines

denote the eikonal lines.

appropriate objects. The final factorization formula proven in [3] reads

PµνW
µν =

∫
d4kT

(2π)4
d4kJ

(2π)4
d4kS
(2π)4

(2π)4δ(4)(q + P − kT − kJ − kS)×

× |H(Q,µ)|2 S(kS , yT, yJ, µ) F(kT, yp, yT, ys, µ) J (kJ, yJ, ys, µ), (6)

where S,F ,J ,H denote the soft factor, parton distribution, jet factor and hard scattering cross
section respectively. Pµν denotes the projection onto the apropriate structure function. All the
non-perturbative factors depend on the all components of the 4-momenta ki. Note the appearance
of the rapidity variables yi. These are necessary to suppress the contributions from the regions
where the rapidities are very large (rapidity divergencies). It has been demonstrated that this
can be regularized by changing the direction of the Wilson lines from the light-like directions
to slightly non-light-like [3]. The parton distribution, fragmentation functions and soft factors
acquire then additional parameters. Appropriate evolution equations give the prescription on the
variation of these quantities with the rapidity. The final factorized graph is shown in Fig. 3 where
by double lines we denote the Wilson lines.

4 Gauge invariant definitions of PCFs

The analysis of the single gluon attachment allows to construct the gauge invariant definitions of
the parton correlation functions (PCFs) and the soft factor. As already discussed in a previous
section critical to these are the directions of the Wilson lines. Soft gluons couple to the target
jet, with its large plus component of momentum, and to the outgoing jet with its large minus
component of momentum. This means that in coordinate space the soft factor is the vacuum
expectation value of Wilson lines that are nearly light-like in the plus and minus directions [3]

S̃(w, yT, yJ, µ) = 〈0|I†nT;w,0Vw(nT)V †w(nJ)InJ;w,0V0(nJ)V
†
0 (nT)|0〉R . (7)
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Note that we have replaced in this expression the light-like Wilson lines with the non-light-like
ones in the directions denoted by the vectors nT = (1,−e−2yT ,0T ), and nJ = (−e−|2yJ|, 1,0T )
where yT � 1 and |yJ | � 1, yJ < 0. As mentioned above, the reason for their presence is
that they provide cutoffs on rapidity divergences. The factors I are the transverse links at infinity
which are needed to ensure strict gauge invariance [8]. With these included, the soft factor (7) is
the expectation value of the closed Wilson loop.

The target PCF is defined as the gauge invariant expectation value of two quark fields. Its
definition reads [3]

F̃ (w, yp, yT, ys, µ) =
〈p|ψ̄(w)V †w(ns)Ins;w,0

γ+

2
V0(ns)ψ(0)|p〉R

〈0|I†nT;w,0Vw(nT)V †w(ns)Ins;w,0V0(ns)V
†
0 (nT)|0〉R

. (8)

where w is a reference point in space-time. The two quark fields are connected via three Wilson
lines, two of them going into the direction ns = (−eys , e−ys ,0T ) which corresponds to the
rapidity close to zero in the center-of-mass system. This expectation value is divided by the soft
factor, in order to ensure the proper cancellation of the double counting contributions. Note that
the soft factor has now nJ replaced by the ns vector. This guarantees that the definition (8)
gives a good approximation for the gluons close to the target region. Similar definition can be
constructed for the jet factor with vector nT replaced by nJ

J̃ (w, argument like yJ , yJ, ys, µ) =
〈0|ψ̄(w)V †w(−ns)I−ns;w,0γ

−V0(−ns)ψ(0)|0〉R
〈0|I†−ns;w,0

Vw(−ns)V †w(nJ)InJ;w,0V0(nJ)V
†
0 (−ns)|0〉R

.

(9)
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Non-linear QCD at high energies
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Abstract
In this talk I give a mini-review on recent development in the non-linear
QCD (at low x).

This year is a jubilee year: 25 years ago Leonid Gribov, Michael Ryskin and me published
our GLR paper [1] in which we set a new field, so called, high parton density QCD or non-
linear QCD. In this paper we formulate the main physical question that we need to answer: what
happens with the system of partons when their density becomes so large that the partons start
to interact. This interaction was omitted in linear evolution but has to be important to suppress
the power like growth of the deep inelastic cross section which follows from linear evolution and
contradicts the Froissart theorem. The non-linear evolution equation which nowadays goes under
the name Balitsky-Kovchegov equation [2] was suggested; the new scale: saturation momentum
(Qs), was introduced and the equation for this scale was derived; as well as the phenomenon of
the saturation of the parton densities was foreseen.

During the quarter of century we have understood a lot: the role of the large number of
colours in the approach [3], a geometrical scaling behaviour of the scattering amplitude [4,5], the
equation for the diffractive dissociation processes [6] and many other results. However, I think,
we have had two major breakthroughs: the dipole approach [7] and the colour glas condensate
approach(CGC) [8, 9]. The dipole approach leads to a new understanding what we calculate
(dipole scattering amplitude), considerably simplified all calculations and gives rise to statistical
treatment of the problem. CGC reduces the problem of saturation to the theory of classical field
in QCD giving the explanation of this phenomenon and developing a new theoretical method for
the solution. I firmly believe that we are now in the middle of the third breakthrough since we
have started to attack the most difficult and challenging problem: the dynamical correlations in
the QCD cascade which is known under slang name of summing Pomeron loops. Therefore, the
largest part of this talk I will spend on the discussion of this theoretical problem but I would like
to start with more practical question: are we ready for the LHC.

1. Practical impact on the LHC physics. The honest answer to the above question is
firm no. I see two reasons for this sad fact: first the saturation physics is not the hottest problem
that the LHC hopes to resolve in spite of having ALICE collaboration for ion-ion collisions
where the saturation effect will be more pronounced. Second, is a kind of contradiction between
the theoretical approach and the reality. Let me repeat what we are doing in hd QCD in more
formal language. In the kinematic region where αS ln s ≈ 1 the asymptotical behaviour of QCD
ampltude is known [10] to be power-like as A ∝ α2

Ss
∆(BFKL Pomeron) where s is the energy

and ∆ can be expanded as ∆ = C1αS + C2α
2
S with known coefficient C1. The calculation of

C2 has been performed [11] but these corrections will be important only for αS ln s ≥ 1/αS .
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However, for lower energy , another type of interaction turns to be essential, namely, the
exchange of two and more BFKL Pomerons. Such exchange leads to the contribution which is
of the order of

(
α2
Ss

∆LO
)n. Therefore when α2

Ss
∆LO ≈ 1 we need to sum all contributions

due to BFKL Pomeron exchanges. In terms of energy this is the range 1 ≤ αS ln s ≤ ln(1/α2
S).

In simple words, theoreticaly first we need to solve the problem of high parton density QCD
and only for higher energies we should take care about next-to-leading order corrections to ∆.
However, the life turns out to be more complicated and these corrections numerically are so
huge that for any practical applications we have to account for them. The sad truth is we have
not learned how to do this. As far as I know there is only one attempt to include them in non-
linear evolution [12] which is still very approximate. It means that, frankly speaking, we cannot
guarantee the value of the possible high parton density effects at the LHC.

At the moment we can give some estimates to illustrate how essential can be the high
density collective effects at the LHC. The most important result has been achieved during the
past year. It turns out that the contribution of the semi-hard processes (with the typical transverse
momenta of the order of the saturation scale) to the survival probability of the diffractive Higgs
boson production is large and it could lead to a substantial suppression of the QCD calculated
cross section (see Refs. [13,14]. The estimates were obtained for different contributions: the fan
diagrams in Ref. [13] and the enhanced diagrams in Ref. [14] with the same results. Namely, all
diagrams of these types should be summed. The model attempt to perform such a summation
with the result that the survival probability is as small as 0.4%. This is a good example that we
need to concentrate our efforts on LHC physics even in the case of the first wave of experiments,
in particular in Higgs search.

2. Statistical approach: its beauty and problems. Based on the probability interpre-
tation of the non-linear equation in the dipole approach [7] we have tried to develop the more
general statistical-like scheme that would include the Pomeron loops (see review [15] and refer-
ences therein). The hope is to rewrite the QCD evolution equations including Pomeron loops in
the form of Langevin equation (

⊗
stands for all needed integrations):

dN

d ln s
= αSK

⊗(
N −N2

)
+ ζ with 〈|ζ|〉 = 0, 〈|ζ ζ|〉 6= 0 (1)

In Ref. [17] it was proven that in QCD we can obtain Eq. (1) but the form of 〈|ζ ζ|〉 is so
complicated that , I think, there is no chance of solving Eq. (1). The attempts to solve Eq. (1)
were made in the QCD motivated models with a lot of assumptions. All these assumptions
(especially that impact parameter is much larger than the dipole sizes) are such that we are losing
the possibility to calculate the Pomeron loops. The main physical result from these models and
statistical like approach is the violation of the geometrical scaling behaviour [16]. I do not think
we can trust this prediction.

3. BFKL Pomeron calculus: overlapping singularities. The important news is the fact
that everything that has been done during the past three years is nothing more than understanding
of the BFKL Pomeron calculus [17]. Therefore we have to return back to this calculus to re-
examine how to include the Pomeron loops in our approach. In doing so, Refs. [18, 19] found
that the Pomeron interaction generates a new state with the intercept large than intercept of two
BFKL Pomerons. In spite of the lack of room I will try to illustrate this result calculating the first
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fan diagram (see Fig. 1).

ω(γ)

ω(γ1) + ω(γ2)

1 + γ = γ1 + γ2

Fig. 1: The first fan diagram.

The expression for this diagram includes the in-
tegral over anomalous dimensions, dipole sizes in the
triple Pomeron vertices which leads to δ - function ,
shown in Fig. 1, and the integral over ω which has the
form:

A ∝ 1
2πi

∫ ε+i∞
ε−i∞ dωeω Y 1

ω−ω(γ)
1

ω−ω(γ1)−ω(γ2)

One can see that we can close the contour over ω
on two poles: ω(γ) and ω(γ1) + ω(γ2), which lead
to contribution exp (ω(1/2)Y ) and exp (2ω(1/2)Y ).
However, in the integral over γ there exists γ = γ0

which is a solution to the equation: ω(2γ0 − 1) =
2 ω(γ0). For γ0 we have a double pole and the amplitude behaves as A ∝ Y e2 ω(γ0)Y �
exp (ω(1/2)Y ) . This new singularity we call overlapping singularity. Its appearance is kind
of disaster since it means that even in ’fan’ diagrams the partons from different parton showers,
which are described by exchange of two Pomerons, interacts. In particular, overlapping singu-
larities destroy the non-linear Balitsky-Kovchegov equation even for the scattering with nucleus,
preserving nevertheless the Balitsky chain of equations [2, 20]. So, the truth is that we have
to start from the beginning not only in summing the Pomeron loops but also in the mean field
approximation.

4. BFKL Pomeron calculus: solution for αS lns < 1/αS . Therefore, the first thing
that we need to do is to suggest our way to overcome the difficulties related to the overlapping
singularities.

γ0

Y

γγγγγγγ γ

Y ′

γRγ

γR = γ + γ2

Y2

0

Y1

Y

γRγRγRγγγ γ γR

∆R = ∆ + α3

S

Fig. 2: The calculation of the first fan and enhanced diagrams.

Our observation is the following: γ0 > γcr therefore, two Pomerons (γ1 and γ2) are
inside the saturation region while one upper Pomeron is outside. Inside the saturation region
we cannot use the BFKL kernel to determine ω(γ) but we need to use the expression found in
Ref. [4], namely, ωsat(γ) = ω(γcr)

1−γcr (1−γ). Noticing that equation 2ωsat(γ0) = ωpert(2γ0−1)
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has no solution, we can conclude that as the first try we can neglect the overlapping singularities.
However, we have to check the self consistency of our approach, namely, obtaining a solution to
calculate back the diagrams and show that they indeed give a small contribution.

Our main idea [19] that in this case and for the kinematic region αS lns < 1/αS we are
dealing with the system of non-interacting Pomerons, Fig. 2, in which we present the calculation
of the first fan and the first enhanced diagrams, illustrates this idea. One can see in Fig. 2 that
these diagrams can be reduced to the system of non-inetracting Pomerons since in the kinematic
region under consideration the corrections to the Pomeron intercept turn out to be small. (see
Fig. 2). Having this fact in mind we can use for summing Pomeron loops the Iancu-Mueller-
Patel -Salam approximation [21], improved by the renormalization of the scattering amplitude at
low energies. This approach is nothing more than the t-channel unitarity constraint adjusted to
the dipole approach.

However, the first part of the problem: to find the sum of fan diagrams we need to solve
using a different method. We were able to do this for the simplified BFKL kernel in which we
took into account only the leading twist part of the full BFKL kernel. We heavily use the fact that
in Ref. [22] the solution for this kernel has been found. The simplified kernel looks as follows

ω(γ) = ᾱS





1
γ for r2Q2

s � 1 summing (ᾱS ln(1/(r2 Q2
s)))n;

1
1− γ for r2Q2

s � 1 summing (ᾱS ln(r2 Q2
s))

n;
(2)

For this kernel we obtain: the solution that icludes the Pomeron loops, with the following main
properties: ,geometrical scaling behaviour and rather slow approaching the asymptotic value,
namely 1−N ∝ exp(−z) where z = ln(r2Q2

s).

Resume. One my friend, a good experimentalist, told me, that what I am doing, is the
same as string theorists are doing : the approach is complicated and a lot of promises but no
delivery (no connection with the reality) . I agree with him that the problem is not simple and
during the last 25 years we learned how difficult it is. However, the main difference with the
string theory is that we are solving a well formulated theoretical problem about the nature while
string theory is dealing with the imaginary world without any chance to approach reality and in
attempts to include the principle property of the nature they have to build models for each well
established phenomenon: running αS ; confinement of quarks and gluons; and the violation of
chiral symmetry. Accepting the fact that we have not prepared yet the experimental program
for the LHC for measuring saturation effect we are developing fast in this direction and I firmly
believe that I will report very soon to my friend about such program beating his second claim.
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Small x QCD and Multigluon States: a Color Toy Model
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Abstract
We introduce and study a toy model with a finite number of degrees
of freedom whose Hamiltonian presents the same color strucure of the
BKP system appearing in the studies of QCD in the Regge limit. We
address within this toy model the question of the inportance of finite
Nc corrections with respect to the planar limit case.

1 Introduction

The large Nc expansion [1] is a widely popular framework of approximations which has been
succefully applied to gauge theories and has given at leading order some analytical results other-
wise impossible to obtain. Within the Regge limit of QCD scattering amplitudes, L.N. Lipatov
found [2] that systems of reggeized gluons evolving in rapidity in the leading logarithmic approx-
imation (LLA) were showing the emergence of an integrable structure in the planar limit. Similar
feature were found later in other kinematical regimes for other QCD observables. Moreover the
N = 4 SYM theory has been investigated at different orders in perturbation theory and is now
believed to be integrable at all orders.

But if one considers some QCD observables at the physical point Nc = 3 the situation is
much more complicated and even the order of the corrections with respect to the planar limit are
not really known. This is the situation, for example, for the spectrum of the BKP kernel [3, 4] at
one loop, which describes the high energy behavior in the Regge limit of a system of reggeized
gluons.

It is the pourpose of this talk to discuss a toy model [5] which has a color structure similar
to the BKP system but a different “configuration” dynamics with a finite number of d.o.f., con-
strained only by the fact that the two Hamiltonians must have the same leading eigenvalues in the
large Nc limit for both one and two cylinder topologies. The main motivation to study this model
is to understand in a simpler case how much the large Nc approximation fails to reproduce the
dynamics at finite Nc. In order to understand this we shall study the spectrum of such a model as
a function of Nc.

2 Small x QCD: the LLA BKP kernel

Let us start by giving a brief overview of the LLA kernels encoding the evolution in rapidity of
systems of interacting reggeized gluons, which provide a convenient perturbative description of
some relevant QCD degrees of freedom in the Regge limit (small x). Their dynamics determine
the high energy behavior of the cross sections, typically associated to the so called BFKL (per-
turbative) pomeron [6, 7]. In the simplest form, the BFKL pomeron turns out to be a composite
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state of two interacting reggeized gluons “living” in the transverse configuration plane in the
colorless configuration. Its kernel or Hamiltonian is infrared finite and in LLA is constructed
summing the perturbative contributions of different Feynman diagrams: in particular the virtual
ones (reggeized one loop gluon trajectories) ω and the real ones (associated to an effective real
gluon emission vertex) V . One writes formally H = ω1 + ω2 + ~T1

~T2V12 where ~Ti are the gen-
erators of the color group in adjoint representation . In the colorless case one has ~T1

~T2 = −Nc

and finally one obtains:

H12 = ln |p1|2 + ln |p2|2 +
1

p1p
∗
2

ln |ρ12|2 p1p
∗
2 +

1
p∗1p2

ln |ρ12|2 p∗1p2 − 4Ψ(1) , (1)

where Ψ(x) = d ln Γ(x)/dx, a factor ᾱs = αsNc/π has been omitted and the gluon holo-
morphic momenta and coordinates have been introduced. One has the freedom, because of
gauge invariance to choose a description within the Möbius space [8–10]. Then the BFKL
hamiltonian has the property of the holomorphic separability (H12 = h12 + h̄12) and is in-
variant under the Möbius group SL(2, C) transformations, whose generators for the holomor-
phic sector in the Möbius space for the principal series of unitary representations are given by
M3
r = ρr∂r , M

+
r = ∂r , M

−
r = −ρ2

r∂r. The associated Casimir operator for two gluons is
M2 = | ~M |2 = −ρ2

12 ∂1 ∂2 where ~M =
∑2
r=1

~Mr and ~Mr ≡ (M+
r ,M

−
r ,M

3
r ). Note that, after

defining formally J(J − 1) = M 2, one may write h12 = ψ(J) + ψ(1− J)− 2ψ(1).

The eigenstates and eigenvalues of the full hamiltonian in eq. (1), H12Eh,h̄ = 2χhEh,h̄
are labelled by the conformal weights h = 1+n

2 + iν , h̄ = 1−n
2 + iν. The leading eigenvalue, at

the point n = ν = 0, has a value χmax = 4 ln 2 ≈ 2.77259, responsible for the rise of the total
cross section as sᾱsχmax , which corresponds to a strong violation of unitarity.

Let us now consider the evolution in rapidity of composite states of more than 2 reggeized
gluons [3, 4]. The BKP Hamiltonian in LLA, acting on a colorless state, can be written in terms
of the BFKL pomeron Hamiltonian and has the form (see [2])

Hn = − 1
Nc

∑

1≤k<l≤n
~Tk ~TlHkl . (2)

This Hamiltonian is conformal invariant but can be solved only for 3 reggeized gluons, since
the color structure factorizes, leaving an integrable dynamics [2]. Different families of odderon
solutions were found [11, 12]. The family of solutions given in [12] are the leading ones corre-
sponding to intercept up to 1 and have a non null coupling to photon-meson impact factors [13].

The case of more than three reggeized gluons is in general not solvable, but in the large
Nc limit, taking the one cylinder topology (1CT), one obtains the integrable Hamiltonian

H∞n =
1
2

[H12 +H23 + · · ·+Hn1] = hn + h̄n , (3)

i.e. there exists a set of other n − 1 operators qr, which commute with it and are in involution.
This integrable model is a non compact generalization of the Heisenberg XXX spin chains [2,14]
and has been intensively studied with different techniques in the last decade [15–20].

Here we remind the value of the highest eigenvalue of a system of 4 reggeized gluons:
H∞4 ψ4 = 2E 1CT

4 ψ4. The maximum value found, for zero conformal spin, is

E 1CT
4 = 0.67416 . (4)
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How to go beyond the large Nc approximation is not an easy question to answer. One may be
tempted to apply variational or perturbative techniques to the spectral problem, which neverthe-
less appears to be quite involved.

3 Color structure for the 4 gluon case

Let us analyze the color structure of the BKP kernel H4 for four gluons, given in eq. (2). It is
acting on 4-gluon states, which may be represented as functions of the transverse plane coordi-
nates and of the gluon colors, v({ρi})a1a2a3a4 . Since the four gluons are in a total color singlet
the color vector va1a2a3a4 can be described in terms of the color state of a two gluon subchan-
nel. On such a subspace, introducing the projectors P [Ri]

a′1a
′
2

a1a2 onto irreducible representations of
SU(Nc), one has 1 = P1 +P8A +P8S +P10+1̄0 +P27 +P0 =

∑
i P [Ri], where TrP [Ri] = di

is the dimension of the corresponding representation and we consider a unique subspace for the
10 and 1̄0 representations. This is convenient for our purposes and we shall therefore work with
6 different projectors to span the color space of two gluons.

On considering gluons (1, 2) to be the reference channel we introduce as the base for the
color vector space the set {P [Ri]a3a4

a1a2
} of projectors and write

va1a2a3a4 =
∑

i

vi
(
P [Ri]a3a4

a1a2

)
or v =

∑

i

viP12[Ri] . (5)

Having chosen a color basis, the next step is to write the BKP kernel with respect to it. Since∑
i
~Tiv = 0 one may finally obtain:

H4 = − 1
Nc

[
~T1
~T2 (H12 +H34) + ~T1

~T3 (H13 +H24) + ~T1
~T4 (H14 +H23)

]
. (6)

Let us now write explicitely the action of the color operators ~Ti ~Tj =
∑
a T

a
i T

a
j which are as-

sociated to the interaction between the gluons labelled i and j. We start from the simple “di-
agonal channel” for which we have relation ~Ti ~Tj = −∑k akPij [Rk] with coefficients ak =
(Nc,

Nc
2 ,

Nc
2 , 0,−1, 1). Consequently we can write in the (1, 2) reference base

(
~T1
~T2v
)j

= −ajvj = − (Av)j , (7)

where A = diag(ak). The action on v of the ~T1
~T3 and ~T1

~T4 operators is less trivial and is
constructed in terms of the 6j symbols of the adjoint representation of SU(Nc) group:

(
~T1
~T3 v

)j
= −

∑

i

(∑

k

CjkakC
k
i

)
vi = − (CAC v)j (8)

and (
~T1
~T4 v

)j
= −

∑

i

(∑

k

sjC
j
kakC

k
i si

)
vi = − (SCACS v)j . (9)

The matrix C is the symmetric crossing matrix build on the 6j symbols and S = diag(sj) is
constructed on the parities sj = ±1 of the different representations Rj .
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We can therefore write the general BKP kernel for a four gluon state, given in eq. (6), as

H4 =
1
Nc

[A (H12 +H34) + CAC (H13 +H24) + SCACS (H14 +H23)] (10)

One can check that if we make trivial the transverse space dynamics, replacing the Hij operators
by a unit operators, the general BKP kernel in eq. (2) becomes Hn = n

2 1̂ and indeed one can
verify that A+ CAC + SCACS = Nc1̂.

Let us make a few comments on the large Nc limit approximation. As we have already
discussed, in the Regge limit one faces the factorization of an amplidute in impact factors and
a Green’s function which exponentiates the kernel. The topologies resulting from the large Nc

limit depend on the impact factor structure. In particular one expects the realization of two
cases: the one and two cylinder topologies. The former corresponds to the case, well stud-
ied, of the integrable kernel, Heisenberg XXX spin chain-like. It is encoded in the relation:
~Ti ~Tj → −Nc

2 δi+1,j which leads to H4 = 1
2 (H12 +H23 +H34 +H41). It is characterized by

eigenvalues corresponding to an intercept less then a pomeron. The latter case instead is expected
to have a leading intercept, corresponding to an energy dependence given by two pomeron ex-
change. Consequently one expects at finite Nc a contribution with an energy dependence even
stronger. In the two cylinder topology the color structure is associated to two singlets (δa1a2δa3a4 ,
together with the other two possible permutations). Such a structure is indeed present in the anal-
ysis, within the framework of extended generalized LLA, of unitarity corrections to the BFKL
pomeron exchange [21] and diffractive dissociation in DIS [22], where the perturbative triple
pomeron vertex (see also [23,24]) was discovered and shown to couple exactly to the four gluon
BKP kernel.

It is therefore of great importance to understand how much the picture derived in the planar
Nc = ∞ case is far from the real situation with Nc = 3. One clearly expects, for example, that
the first corrections to the eigenvalues of the BKP kernel are proportional to 1/N 2

c , but what is
unknown is the multiplicative coefficient as well as the higher order terms.

4 A BKP toy model

In this section we shall consider a toy model [5], different from the BKP system, but sharing
several features with it. Analysing it may help to understand the large Nc approximation might
be more or less satisfactory.

Besides the color space, a state of n reggeized gluons undergoing the BKP evolution be-
longs to the configuration space R2n, associated to the position or momenta in the transverse
plane of the n gluons. The operators Hkl act (see eq. (10)) on such a state and, in the Möbius
space, can be written in terms of the Casimir of the Möbius group, i.e. in terms of the scalar
product of the generators of the non compact spin group SL(2, C): Hkl = Hkl( ~Mk · ~Ml).

We are therefore led to consider a class of toy models where the BKP configuration space
R2n is subsituted by the space V n

s where Vs is the finite space spanned by spin states belonging
to the irreducible representation of SU(2) with spin s. In particular we shall consider quantum
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systems with an Hamiltonian:

Hn = − 1
Nc

∑

1≤k<l≤n
~Tk ~Tl f(~Sk~Sl) , (11)

where ~Si are SU(2) generators associated to the particle i in any chosen representation and f
is a generic function. A particular toy model is therefore specified by giving the spin s of each
particle (“gluons”) and the function f . Our BKP toy model is built choosing the spin s = 1 case
in a global singlet state v (

∑
i
~Si v = 0) and the family of functions f

fα(x) = 2Re
[
ψ

(
1
2

+
√
−α(4 + 2x)

)]
− 2ψ(1) . (12)

This form is suggested by the conformal spin n = 0 BFKL Hamiltonian with the substitution
1
4 + L2

ij → −αS2
ij which assures to have the same leading eigenvalue for any α, since both

expressions have the value zero as upper bound. The parameter α will be chosen in order to
constrain the full 4-particle Hamiltonian (11) to have the same leading eigenvalue as the QCD
BKP system in the large Nc limit an one cylinder topology (at zero conformal spin), given in eq.
(4). This “BKP toy model” will be used to investigate finite Nc effects.

Since we have chosen to work with states singlet under SU(2)spin conf , also for the spin
part we employ the 2 particle subchannel decomposition in irreducible representations, in a
way similarly adopted for the color part. After that one is left with the problem of diagonal-
izing an Hamiltonian which is a 18 × 18 matrix. Therefore we proceed by introducing, for 2
particle spin 1 states the resolution of unity 1 = Q1 + Q3 + Q5 =

∑
iQ[Ri] which let us

write f(~Si~Sj) =
∑
k f(−bk)Qij [Rk] with bk = (2, 1,−1), using for f a power series rep-

resentation (Qij [Rk] are projectors). Introducing the crossing matrices D and the parity ma-

trix S′ we obtain the relations
(
f
(
~S1
~S2

)
v
)j

= (B v)j ,
(
f
(
~T1
~T3

)
v
)j

= (DBD v)j and
(
f
(
~T1
~T4

)
v
)j

= (S′DBDS′ v)j . It is then straightforward to derive a matrix form for the
Hamiltonian of this toy model

H4a =
2
Nc

(
A⊗B + CAC ⊗DBD + SCACS ⊗ S ′DBDS′) (13)

which depends on Nc and on the parameter α through the function fα given in eq. (12).

In the large Nc limit one faces for the Hamiltonian two possible cases (see [5] for more
detais): the one cylinder topology (1CT) which corresponds to the simpler HamiltonianH1CT

4a =
B + S′DBDS′ and the two cylinder topology (2CT) corresponding to the even simpler Hamil-
tonian H2CT

4a = 2B. Let us remark that while in the case of Nc > 3 we consider a basis for the
vector states made of P [Ri]Q[Rj ] with 18 elements since in the color sector there is also the P0

projector, the case Nc = 3 is characterized by a basis of 15 elements.

The last step to obtain the BKP toy model is to fix the parameter α by requiring H1CT
4a to

have the value of eq. (4) so we obtain α = 2.80665. We are therefore left with an Hamiltonian
which is just a function of the number of colors Nc.

Let us now consider its spectrum for the cases Nc = 3 and Nc = ∞. Here we report just
the leading eigenvalues ofH4a with their multiplicities: (7.042, 2×5.519, 2×1.123, · · ·). Chang-
ing Nc from 3 to ∞ we observe that the first three move to the 2CT leading eigenvalue 5.545
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while the next two move to the 1CT leading eigenvalue 0.674. With very good approximation
one finds that the Nc dependence of the leading eigenvalue E0 is given by

E0(Nc) = E0(∞)
(

1 +
2.465
N2
c

)
, (14)

One can see that for this toy model the large Nc approximation corresponds to an error of about
27%, an error which is not negligible because the coefficient of the leading correction to the
asymptotic value, proportional to 1/N 2

c , is a large number. The color- “spin” configuration mix-
ing which is encoded in the eigenvectors has been also studied.

5 Conclusions

We have introduced a family of dynamical models describing interacting particles with color
and spin degrees of freedom in order to see how much the large Nc approximation is significant
when one is trying to extract the spectrum of these quantum systems. In particular we have
investigated a toy model, constructed to mimic some features of the 4 gluon BKP system. We
have determined the Nc dependence of the spectrum and discussed the Nc =∞ limit finding for
the leading eigenvalue corrections of about 30% at Nc = 3.
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The Reggeon→ 2 Reggeons + Particle vertex in the Lipatov
effective action formalism

M.A.Braun†, M.I.Vyazovsky
Dept. of High Energy Physics, University of St. Petersburg,
198904 St. Petersburg, Russia

Abstract
The Reggeon→ 2 Reggeons+Particle vertex is constructed in the frame-
work of Lipatov effective action formalism. Its reduction to a pure
transverse form for the diffractive amplitude gives the standard Bartels
vertex plus an additional contribution given by a longitudinal integral
divergent both in the ultraviolet and infrared. A certain specific recipe
for this part, including the principal value prescription for the integra-
tion, allows to eliminate this unwanted contribution.

1 Introduction

Particle interaction in the Regge kinematics and QCD perturbative region , Λ2
QCD << |t| << s,

is described by exchange of reggeized gluons (’reggeons’) accompanied by emission of real
gluons (’particles’). To automatically calculate all relevant diagrams in a systematic and self-
consistent way a potentially powerful formalism of an effective action has been proposed by
L.N.Lipatov [1], in which the longidudinal and transverse variables are separated from the start
and one arrives at a theory of interaction of reggeized gluons and particles described by inde-
pendent fields. However the resulting vertices are 4-dimensional and reduction of them to the
2-dimensional transverse form still has to be done.

Up to the present, several application of this formalism have been done and a number of
interaction vertices have been calculated [2]. In this paper we study a vertex for the transition of a
reggeon into a pair of reggeons and a particle (the RRRP vertex). The 2-dimensional form of this
vertex (the ’Bartels’ vertex) is well-known [3,4]. The found 4-dimensional vertex resembles the
Bartels vertex, although it contains a new structure absent in the latter and of course longitudinal
variables. Unlike the vertices obtained so far in the effective action formalism, reduction of the
RRRP vertex to the 2-dimensional form involves a non-trivial integration in the loop formed by
the two reggeons and the target. For a simple diffractive diagram, in which both the projectile
and target are quarks, a literal integration over the longitudinal variables proves to be impossible
(divergent). The Bartels vertex is obtained only if certain ad hoc rules are followed, which reduce
to neglecting all small longitudinal momenta in the target factor and subsequent integration over
the minus component of the loop momentum according to the principal value prescription.

2 Calculation of the vertex

In the effective action formalism, calculation of the RRRP vertex is straightforward. The relevant
Feyman rules were presented in [2] and we only recapitulate them here for convenience and to
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fix our notations. We write Dµ = ∂µ + gVµ where Vµ = −iV a
µ T

a is the gluon field and T a are
the SU(N) generators in the adjoint representation. The reggeon field A± = −iAa±T a satisfies
the kinematical condition

∂+A− = ∂−A+ = 0. (1)

The field A+ comes from the region with a higher rapidity, its momentum q− is small, the field
A− comes from the region with a smaller rapidity, its q+ is small. The QCD Lagrangian for the
particle (gluon) field V is standard and so are the Feynman rules. The effective action is

Leff = LQCD(Vµ+Aµ)+Tr
(
A+(V++A+)−A+)∂2

⊥A−+A−(V−+A−)−A−)∂2
⊥A+

)
, (2)

where
A±(V±) = −1

g
∂±

1
D±

∂± ∗ 1 =
∑

n=0

(−g)nV±(∂−1
± V±)n

= V± − gV±∂−1
± V± + g2V±∂

−1
± V±∂

−1
± V± +−... (3)

The reggeon propagator in the momentum space is

< Aa+A
b
− >= −i2δab

q2
⊥
. (4)

The well-known R→RP (’Lipatov’) vertex is

gfab2d

2

[
qσ + q2σ +

( q2
2

q+
− q2−

)
n+
σ +

( q2

q2−
− q+

)
n−σ
]
. (5)

In the convenient gauge V+ = 0 the polarization vector has the form

εµ(k) = ε⊥µ (k)− kε⊥

k+
n+
µ . (6)

Convolutiong the vertex (5) with this polarization vector we find

gfab2dq2
⊥
(qε⊥
q2
⊥
− kε⊥

k2
⊥

)
, (7)

which form of the Lipatov vertex is widely used in literature.

Our aim is to calculate the vertex R→RRP. The total contribution to it is represented by
four diagrams shown in Fig. 1, in which particles are shown by solid lines and reggeons by wavy
lines.

Of these diagrams the one described by Fig. 1.3 vanishes due to condition (1). Diagram
1.4 gives

V =
4

ig2

4

[
f b1cdfab2d

(
2
q2
⊥n
−
µ

p−q2−
− n+

µ

)
+ fab1df b2cd

(
2
q2
⊥n
−
µ

p−q1−
− n+

µ

)]
. (8)

Diagram Fig. 1.1 gives

V1.1 =
−ig2f b1cdfab2d

4k2

(
− 2p+gµσ + (p+ 2q1)µn+

σ + (p− q1)σn+
µ +

q2
1

p+
n+
µ n

+
σ

)
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Fig. 1: Reggeon diagrams for the vertex R→RRP

[
qσ + q2σ +

( q2
2

q+
− q2−

)
n+
σ +

( q2

q2−
− q+

)
n−σ
]
. (9)

The contribution from diagram Fig. 1.2 is obtained by the interchange of the outgoing gluons 1
and 2.

The total vertex obtained as a sum of the contributions from diagrams shown in Fig. 1 is
found to be transversal (convolution with pµ is zero) as it should be.

To find the transition amplitude one has to convolute the sum of diagrams Fig. 2.1+2+4
with the polarization vector ε∗µ(p). In the gauge V+ = 0 the result of the convolution is

g2 f
b1cdfab2d

(q − q2)2

[
q+(qε∗⊥) +

q2

q2−

(
− (q − q2)ε∗⊥ +

(q − q2)2

p2
⊥

(pε∗⊥)
)]

+g2 f
b2cdfab1d

(q − q1)2

[
q+(qε∗⊥) +

q2

q1−

(
− (q − q1)ε∗⊥ +

(q − q1)2

p2
⊥

(pε∗⊥)
)]
. (10)

3 The diffractive amplitude

The obtained R→RRP vertex (10) has a 4-dimensional form. To reduce it to the transverse vertex
we have to study a concrete amplitude which involves this vertex. We choose the simplest ampli-
tude possible: production of a real gluon in collision of two quarks, the target quark interacting
with the two final reggeized gluons in the colourless state (Fig. 2). Note that there are additional
diagrams for this process which involve two reggeon exchange between projectile and target with
the gluon emitted by the Lipatov vertex. However, as is known, for them integration over longi-
tudinal variables in the loop presents no difficulties, so that all the problem is concentrated in the
diagram with the found R→RRP vertex.
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Fig. 2: The difractive diagram with a R→RPP vertex

The two terms in the vertex (10), which differ by the permutation 1↔ 2, evidently give the
same contribution after integration over the loop momentum and summation over colour indices.
So it is sufficient to study only one of them. We choose the second term.

Reduction to the 2-dimensional form requires integration over the longitudinal variables.
We first integrate over q1+ and then over q1−.

The first term in the second part of (10), proportional to (qε)⊥ has two denominators
depending on the longitudinal variables:

[2q1−(q1+ − q+) + (q − q1) ⊥2 +i0][2q1+(l− + q1−) + q2
1⊥ + i0] (11)

in the direct term and

[2q1−(q1+ − q+) + (q − q1) ⊥2 +i0][−2(q1+ − l′+)(l′− − q1−) + (l′ − q1)2
⊥ + i0]. (12)

in the crossed term. A non-zero result is obtained only when the two poles in q1+ are on the
opposite sides from the real axis. This limits the integration over q1−: −l− < q1− < 0 and
0 < q1− < l′− ' l− in the direct and crossed terms respectively. Calculation of integrals is
straightforward, meets no trouble and can be done separately in the direct and crossed term. In
their sum the real parts cancel and only the imaginary part remains, given exclusively by the
direct term.

Taking into account the colour factor and momentum factors coming from the two impact
factors we find the contribution from the first term in the second part of (10) as

∫
dq1+dq1−

2πi
T1 = 4πi(pl)δacu′tau ·

1
q2

1⊥q
2
2⊥

qε⊥
q2
⊥
. (13)

It coincides with the first term in the contribution from the Bartels vertex to the diffractive am-
plitude.

Note that the same result is obtained if one introduces energies squared s1 = (q−q1)2 and
s2 = (l + q1)2 for the amplitudes R+R→ P+R and q+R→ q+R and then deforms the Feynman
integration contour to close on the unitarity cuts of both amplitudes. The contribution from the
intermediate quark+gluon state will immediately give (13).
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The situation is a bit more complicated with the second term in the second part of (10),
proportional to (q − q1)ε⊥. In both the direct and crossed term an extra factor 1/q1− appears.
The integration over q1+ is done exactly as before. However the subsequent integration over q1−
cannot be done separately for the direct and crossed term because of the singularity at q1− = 0.
However in their sum this singularity cancels and integration becomes trivial. Adding all the rest
factors we get for the second term in the second part of (10)

∫
dq1+dq1−

2πi
T2 = −4πi(pl)δacu′tau ·

1
q2

1⊥q
2
2⊥

(q − q1)ε⊥
(q − q1)2

⊥
. (14)

This coincides with the second part of the contribution corresponding to the Bartels vertex.

Note that if one tries to use here the method of integration over energies of the R+R→R+P
and q+R→ q+P amplitudes by closing the contour around the unitarity cuts, then one encounters
the singularity at q1− = 0 with an unknown way of integration around it. If one just neglects this
singularity, that is takes into account only the unitarity contribution to the dicontinuities of the
amplitudes, then one gets a result which is twice larger than (14) and hence incorrect.

We are left with the third term in the second part of (10) with a structure which has no
counterpart in the Bartels vertex. For the 4 dimensional and 2-dimensional pictures to coincide
this contribution has to disappear.

The only denominator in the direct term is

(l + q1)2 + i0 = 2q1+(l− + q1−) + q2
1⊥ + i0 (15)

and in the crossed term

(l′ − q1)2 + i0 = −2(q1+ − l′+)(l′− − q1−) + (l′ − q1)2
⊥ + i0. (16)

Integration over q1+ gives

− iπ
2

(sign (l− + q1−)
l− + q1−

+
sign (l′− − q1−)

l′− − q1−

)
. (17)

This expression does not vanish at q1− = 0, so that the subsequent integration with the denomi-
nator q1− is meaningless.

To give some sense to this integration we may assume that in the target denominators one
may neglect minus components of all momenta except for the incoming target momentum l−.
This means that in (15) and (16) we take l′− = l− and q1− = 0. Then the result of integration
over q1+ becomes independent of q1−. After that we find the integral over q1− of the form

∫ ∞

−∞

dq1−
q1−

. (18)

If we assume that this integral should be taken according to the principal value prescription then
it vanishes, the third term in (10) disappears and the obtained transverse vertex coincides with
the Bartels one.
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4 Conclusions

We have found that the longitudinal integration of the 4-dimensional vertex constructed by the
effective action technique requires certain caution. One finds a piece, for which a strict integra-
tion is divergent. To overcome this diffculty one has to neglect the small minus components in
the target impact factor (and then do the q1+ integration in the trival manner closing the contour
around the unitarity cut of the reggeon-target amplitude) and afterwards do the remaining q1−
integration by the principal value recipe. This result has been derived only for the diffractive
amplitude. It remains an open question if it has a wider validity and applies also to other cases,
which correspond to double and single cuts of the general triple pomeron amplitude.
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On the behaviour of RpA at high energy
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Abstract
We discuss the behaviour of RpA, the ratio of the unintegrated gluon
distribution of a nucleus over the unintegrated gluon distribution of
a proton scaled up by A1/3, at high energy and fixed coupling. We
show that RpA exhibits a rising gluon shadowing with growing ra-
pidity, approaching 1/A1/3 at asymptotic rapidity, which means total
gluon shadowing due to gluon number fluctuations or Pomeron loops.

1 Introduction

We study the ratio of the unintegrated gluon distribution of a nucleus ϕA(k⊥, Y ) over the unin-
tegrated gluon distribution of a proton ϕp(k⊥, Y ) scaled up by A1/3

RpA =
ϕA (k⊥, Y )

A
1
3 ϕp (k⊥, Y )

. (1)

This ratio is a measure of the number of particles produced in a proton-nucleus collision versus
the number of particles in proton-proton collisions times the number of collisions. The transverse
momentum of gluons is denoted by k⊥ and the rapidity variable by Y = ln(1/x).

The ratio RpA has been widely studied [1] in the framework of the BK-equation [2] which
describes the small-x physics in the mean field approximation. Using the BK-equation one finds
in the geometric scaling regime (transition from high to low gluon density, see Fig.1) in the fixed
coupling case that the shape of the unintegrated gluon distribution of the nucleus and proton as
a function of k⊥ is preserved with increasing Y , see Fig.2(a), because of the geometric scaling
behaviour ϕp,A(k⊥, Y ) = ϕp,A(k2

⊥/Q
2
s(Y )), and therefore the leading contribution to the ratio

RpA is basically k⊥ and Y independent, scaling with the atomic number A as [3, 4]

RpA '
1

A
1
3

(1−γ0 )
, (2)

where γ0 = 0.6275. This means that gluons inside the nucleus and proton are somewhat shad-
owed since ϕA/ϕp = Aγ0/3 lies between total (ϕA/ϕp = 1) and zero (ϕA/ϕp = A1/3) gluon
shadowing. The partial gluon shadowing comes from the anomalous behaviour of the uninte-
grated gluon distributions which stems from the BFKL evolution. The partial gluon shadowing
may explain why particle production in heavy ion collisions scales, roughly, like Npart [5].

Over the last few years, it has been understood how to deal with small-x physics at high
energy beyond the mean field approximation, i.e., beyond the BK [2] and JIMWLK [6] equa-
tions. We have learned how to account for the elements missed in the mean field evolution,

† speaker
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such as the discreteness and fluctuations of gluon numbers [7, 8] or the Pomeron loops [9].
The main result as a consequence of the above is the emerging of a new scaling behaviour for
the dipole-hadron/nucleus scattering amplitude at high rapidities [7, 8], the so-called diffusive
scaling. This is different from the geometric scaling behaviour which is the hallmark of the
”mean-field” evolution equations (JIMWLK and BK equations). The effects of fluctuations on
the scattering amplitude [10], the diffractive scattering processes [11,12] and forward gluon pro-
duction in hadronic scattering processes [13, 14] has been studied so far. In this work we show
how the behaviour of RpA as a function of k⊥ and Y in the fixed coupling case is completely
changed due the effects of gluon number fluctuations or Pomeron loops at high rapidity [15].

diffusive
scaling

geometric
scaling

saturation

low density

〈ρ
s
(A

, Y
)〉

ρ = ln(k2
⊥/k2

0)ln(Λ2
QCD/k2

0)

Y = ln 1/x

YDS

YF

Fig. 1: Phase diagram of a highly evolved nucleus/proton.

2 RpA ratio in the diffusive scaling regime

According to the statistical physics/high energy QCD correspondence [8] the influence of fluctu-
ations on the unintegrated gluon distribution of a nucleus/proton is as follows: Starting with an
intial gluon distribution of the nucleus/proton at zero rapidity, the stochastic evolution generates
an ensemble of distributions at rapidity Y , where the individual distributions seen by a probe
typically have different saturation momenta and correspond to different events in an experiment.
To include gluon number fluctuations one has to average over all individual events,

〈ϕp,A(ρ− ρs)〉 =
∫
dρs ϕp,A(ρ− ρs) P (ρs − 〈ρs〉) , (3)

where ϕp,A(ρ−ρs) is the distribution for a single event with ρ = ln(k2
⊥/k

2
0) and P (ρs−〈ρs〉) the

probability distribution of the logarithm of the saturation momentum, ρs(Y ) = ln(Q2
s(Y )/k2

0),
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which is argued to have a Gaussian form [16],

P (ρs) '
1√

2πσ2
exp

[
−(ρs − 〈ρs〉)2

2σ2

]
for ρ− ρs � γ2

cσ
2 , (4)

with the dispersion
σ2 = 〈ρ2

s〉 − 〈ρs〉2 = DY. (5)

The main consequence of fluctuations is the replacement of the geometric scaling, ϕp,A(k⊥, Y ) =
ϕp,A(k2

⊥/Q
2
s(Y )), by a new scaling, the diffusive scaling [7,8], namely, 〈ϕp,A(k⊥, Y )〉 is a func-

tion of another scaling variable (〈Qs〉 is the average saturation momentum),

〈ϕp,A(k⊥, Y )〉 = Fp,A

(
ln(k2

⊥/〈Qs(Y )〉2)
DY

)
. (6)

The diffusive scaling, see Fig. 1, sets in when the dispersion of the different events is large,
σ2 = 〈ρ2

s〉 − 〈ρs〉2 = DY � 1, i.e., Y � YDS = 1/D where D is the diffusion coefficient, and
is valid in the region σ � ln(k2

⊥/〈Qs(Y )〉2)� γ0 σ
2.

The diffusive scaling means that the shape of the unintegrated gluon distribution of the nu-
cleus/proton changes with increasing Y because of the additional DY dependence as compared
with the geometric scaling. The shape becomes flatter and flatter with increasing rapidity Y , as
shown in Fig.2(b), in contrast to the preserved shape in the geometric scaling regime shown in
Fig.2(a). This flattening will lead to a new phenomenon for RpA as discussed below.

Using Eq.(3) for the averaging over all events and the result from the BK-equation for the
single event distribution one obtains [15] for the ratio

RpA '
1

A
1
3

(1−∆ρs
2σ2 )

[
k2
⊥

〈Q2
s(A, y)〉

]∆ρs
σ2

(7)

with the difference between the average saturation lines of the nucleus and the proton

∆ρs ≡ 〈ρs(A, Y )〉 − 〈ρs(p, Y )〉 = ln
〈Qs(A, Y )〉2
〈Qs(p, Y )〉2 (8)

where 〈Qs(A, Y )〉 (〈Qs(p, Y )〉) is the average saturation momentum of the nucleus (proton).
The difference ∆ρs is fixed by the inital conditions for the average saturation momenta of the
nucleus and proton and is Y -indipendent in the fixed coupling case. For example, using the
known assumption 〈Qs(A)〉2 = A1/3 〈Qs(p)〉2 one obtains ∆ρs = lnA1/3.

The ratio RpA in Eq. (7) shows the following very different features as compared with the
ratio in the geometric scaling regime given in Eq. (2):

• In the diffusive scaling regime where k2
⊥ is close to 〈Q2

s(A, Y )〉, the gluon shadowing

characterized by A
1
3

( ∆ρs
2σ2 −1) increases as the rapidity grows (at fixed A or ∆ρs) because

of σ2 = DY . At asymptotic rapidity one obtains total gluon shadowing, RpA = A1/3,
which means that the unintegrated gluon distribution of the nucleus and that of the proton
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become the same in the diffusive scaling regime at Y → ∞. The phenomenon of total
gluon shadowing is universal since it does not depend on the initial conditions (∆ρs).

Total gluon shadowing is an effect of gluon number fluctuations (or Pomeron loops) since
fluctuations make the unintegrated gluon distributions of the nucleus and of the proton
flatter and flatter [8] and their ratio closer and closer to 1 (at fixed ∆ρs) with rising rapidity,
as shown in Fig.2(b). Total gluon shadowing is not possible in the geometric scaling regime
in the fixed coupling case since the shapes of the gluon distributions of the nucleus and of
the proton remain the same with increasing Y giving a constant ratio unequal one, as shown
in Fig.2(a). In the absence of fluctuations one can expect only partial gluon shadowing,
see Eq. (2), in the fixed coupling case.

• The ratio RpA increases with rising k2
⊥ within the diffusive scaling region. Since the

exponent ∆ρs/σ2 decreases with rapidity, the slope of RpA as a function of k2
⊥ becomes

smaller with growing Y . The result forRpA in the diffusive scaling regime in Eq.(3) is very
different from the result obtained in the mean field approximation given in Eq. (2), where
gluon number fluctuations are not included, which is basically k⊥ and Y -independent.

The qualitative behaviour of RpA as a function of k⊥ at four different rapidities, Y1 ≤
Y2 ≤ Y3 ≤ Y4, in the diffusive scaling regime and for a fixed coupling is shown in Fig. 3. Note
that RpA is always smaller than one for values of k⊥ in the diffusive scaling regime.

ϕ(k⊥, Y )

k⊥

1

αs

Ap Ap

ϕ(k⊥, Y )

k⊥

1

αs

ApAp

(a) (b)

Fig. 2: The qualitative behaviour of the unintegrated gluon distribution of a nucleus (A) and a proton (p) at two

different rapidities in the geometric scaling regime (a) and diffusive scaling regime (b).

The above effects of fluctuations on RpA are valid in the fixed coupling case and at very
large energy. It isn’t clear yet whether the energy at LHC is high enough for them to become
important. Recently, while in Ref. [17] a possible evidence of gluon number fluctuations in the
HERA data has been found, in Ref. [18], using a toy model, it has been argued that in case of
a running coupling fluctuations can be neglected in the range of HERA and LHC energies. See
also Refs. [7, 19] for more studies on running coupling plus fluctuation effects.

Moreover, the running of the coupling [20] may become more important than the effect of
gluon number fluctuations [18]. In case of a running coupling, the gluon shadowing increases
with rising rapidity in the geometric scaling regime [1], as opposed to the (roughly) fixed value
(partial shadowing) in the fixed-coupling case, and would lead to total gluon shadowing [4]
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Qs(Y1) Qs(Y4)

RpA

k⊥

1

A
1
3

1

Y1

Y2

Y3

Y4

Fig. 3: The qualitative behaviour of the ratioRpA as a function of k⊥ at four different rapidities, Y1 ≤ Y2 ≤ Y3 ≤ Y4,

in the diffusive scaling regime. RpA is always smaller than one for values of k⊥ in the diffusive scaling regime.

at very high rapidities even if fluctuations were absent. In case fluctuations are important at
LHC energy, in addition to the theoretically interesting consequences of fluctuations on RpA,
the features of RpA worked out here, as the increase of the gluon shadowing and the decrease
as a function of the gluon momentum with rising rapidity, may be viewed as signatures for
fluctuation effects in the LHC data. More work remains to be done in order to clarify how
important fluctuation or running coupling effects are at given energy, e.g., at LHC energy. An
extension of this work by the running coupling may help to clarify some of the open questions.
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The coordinate representation of NLO BFKL and the dipole picture

Fadin V.S.
Institute of Nuclear Physics and Novosibirsk State University, 630090, Novosibirsk, Russia

Abstract
For scattering of colourless objects, the freedom in definition of the
BFKL kernel resulting from invariance of scattering amplitudes under
simultaneous transformations of the kernel and impact factors permits
to present the kernel in the dipole form. This form is found in the next-
to-leading order (NLO) by direct transfer from the momentum space
to the coordinate one.

1 Introduction

The BFKL approach [1] gives the most common basis for theoretical description of small-x
processes. Usually the approach is formulated in the momentum space. Scattering amplitudes

pA pA′

pB pB′

G

ΦB′B

ΦA′A

q1

q′
1

q2

q′
2

Fig.1

AA′B′AB are presented in the form of convolution ΦA′A ⊗
G ⊗ ΦB′B of impact factors Φ and Green’s function
G for two interacting Reggeized gluons (see Fig.1). All
dependence from properties of scattering particles is con-
tained in the impact factors ΦA′A and ΦB′B describing
transitions A → A′ and B → B′. The Green’s
function G holds all energy dependence. The impact fac-
tors and the kernel of the BFKL equation for the Green
function are defined in the transverse momentum space.
The kernel is known now in the NLO for arbitrary mo-
mentum transfer t and all possible colour states in the
t – channel [2–4]. The most important for phenomeno-
logical applications is the colour singlet state – Pomeron
channel. In the following only this channel is consid-
ered. A distinctive feature of the colour singlet kernel is
the cancellation of the infrared divergencies.

For scattering of colourless objects, in the leading order (LO), a remarkable property of the
BFKL equation is its Möbius invariance [5]. In this case the BFKL kernel can be taken in
a special representation, which we call dipole form. The Möbius invariance of the kernel in
this representation can be made evident by transformation from the transverse momentum to
the transverse coordinate space. Moreover, in the coordinate space the dipole form coincides
with the kernel of the colour dipole approach [6]. It makes very interesting the finding of the
dipole form of the BFKL kernel in the NLO. Of course, the conformal invariance is violated
by renormalization. One may wonder, however, whether the renormalization is the only source
of the violation. If so, one can expect the conformal invariance of the NLO BFKL kernel in
supersymmetric extensions of QCD.
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The dipole form of the BFKL kernel is very useful also for a better understanding of the
relation between the BFKL and colour dipole approaches. It should help in further development
of the theoretical description of small-x processes.

An additional reason is the complexity of the NLO BFKL kernel in the momentum space
for t 6= 0 . It is found in the form of intricate two-dimensional integrals. Its simplification is
extremely desirable.

2 The dipole form in the LO

In the operator notations (see e.g. [7]) s–channel discontinuities of scattering amplitudes are
presented in the form

δ(~qA − ~qB)discsAA
′B′

AB =
i

4(2π)D−2
〈A′Ā|eY K̂ 1

~̂q
2

1 ~̂q
2

2

|B̄′B〉 , (1)

where 〈A′Ā| and |B̄′B〉 are t–channel states related to the impact factors, Y = ln(s/s0) , K̂
is the BFKL kernel, K̂ = Ω̂ + K̂r, Ω̂ = ω(~̂q1) + ω(~̂q2) is the “virtual” part, 〈~qi|ω̂i|~q ′i 〉 =
δ(~qi − ~q ′i )ω(~qi), ω(~q) is the gluon Regge trajectory; K̂r is the “real” part;

〈~q1, ~q2|K̂r|~q ′1 , ~q ′2 〉 = δ(~q − ~q ′) 1

~q 2
1 ~q

2
2

Kr(~q1, ~q
′

1 ; ~q), ~q = ~q1 + ~q ′1 = ~q2 + ~q ′2 ,

K̂r(~q1, ~q
′

1 ; ~q) is the usually used expression for it. In the leading order at D = 4 + 2ε

ω(1)(~q) = −g
2NcΓ(1− ε)

(4π)2+ε

2

ε
(~q)ε, KBr (~q1, ~q2; ~q) =

g2Nc

(2π)D−1

(
~q 2

1 ~q
′2
2 + ~q 2

2 ~q
′2
1

(~q1 − ~q ′1 )2
− ~q 2

)
. (2)

The direct Fourier transform of the LO kernel gives [7]

〈~r1~r2|K̂|~r ′1~r ′2 〉 = 〈~r1~r2|K̂dip|~r ′1~r ′2〉

−g
2NcΓ

2(1 + ε)

8π3+2ε

[
δ(~r11′)

~r
2(1+2ε)
12′

+
δ(~r22′)

~r
2(1+2ε)
21′

− 2
δ(~r1′2′)~r11′~r22′

~r
2(1+ε)
11′ ~r

2(1+ε)
22′

]
, (3)

where

〈~r1~r2|K̂dip|~r ′1~r ′2 〉 =
g2NcΓ

2(1 + ε)

8π3+2ε

∫
d2+2ερ


 ~r1ρ

~r
2(1+ε)

1ρ

− ~r2ρ

~r
2(1+ε)

2ρ




2

× (δ(~r11′ )δ(~r2ρ) + δ(~r22′ )δ(~r1ρ)− δ(~r11′ )δ(~r22′)) (4)

is the dipole kernel in the (D − 2)-dimensional space. Here and below ~rij = ~ri − ~rj , ~ri′j′ =

~ri′ −~rj′ , ~rij′ = ~ri−~rj′ , ~riρ = ~ri− ~ρ. At D = 4 〈~r1~r2|K̂dip|~r ′1~r ′2 〉 acquires well known form:

〈~r1~r2|K̂dip|~r ′1~r ′2〉 =
αsNc

2π2

∫
d2ρ

~r 2
12

~r 2
1ρ~r

2
2ρ

(δ(~r11′)δ(~r2ρ) + δ(~r22′)δ(~r1ρ)− δ(~r11′)δ(~r22′ )) . (5)
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It is seen that the BFKL kernel is not equivalent to the dipole one. Actually the first is more
general than the second. This is clear, because the BFKL kernel can be applied not only in the
case of scattering of colourless objects.

However, when it is applied to the latter case, one can use the “dipole” and “gauge in-
variance” properties of targets and projectiles [5] and omit the terms in the kernel proportional
to δ(~r1′2′), as well as change the terms independent either of ~r1 or of ~r2 in such a way that the
resulting kernel becomes conserving the “dipole” property.

Indeed, for colourless objects the impact factors in the representation (1) are “gauge in-
variant”:

〈A′Ā|~q, 0〉 = 〈A′Ā|0, ~q〉 = 0 .

Therefore 〈A′Ā|Ψ〉 = 0 if 〈~r1, ~r2|Ψ〉 does not depend either on ~r1 or on ~r2. Since 〈~q1, ~q2|K̂r|~q
′
1, ~q

′
2〉

vanishes at ~q
′
1 = 0 or ~q

′
2 = 0, 〈A′Ā|K̂ is “gauge invariant” as well. It means that we can change

|In〉 ≡ (~̂q
2

1 ~̂q
2

2 )−1|B̄′B〉 for |Ind〉, where |Ind〉 has the “dipole ” property 〈~r, ~r|Ind〉 = 0. Af-
ter this the terms proportional to δ(~r1′2′) can be omitted, and independent either of ~r1 or of ~r2

terms can be changed so that K̂ → K̂dip with the property 〈~r, ~r|K̂dip|~r ′1~r ′2〉 = 0. The coordinate
representation of the kernel obtained in such a way is what we call the dipole form of the BFKL
kernel.

3 A general structure of the dipole form of the NLO kernel and its ambiguity

In the NLO the dipole form can be written as

〈~r1~r2|K̂NLOd |~r ′1~r ′2〉 =
α2
s(µ)N2

c

4π3

[
δ(~r11′)δ(~r22′ )

∫
d~ρ g0(~r1, ~r2; ~ρ)

+δ(~r11′)g(~r1, ~r2;~r ′2) + δ(~r22′)g(~r2, ~r1;~r ′1 ) +
1

π
g(~r1, ~r2;~r ′1 , ~r

′
2 )

]
(6)

with the functions g turning into zero when their first two arguments coincide. The first three
terms contain ultraviolet singularities which cancel in their sum, as well as in the LO, with
account of the “dipole” property of the “target” impact factors. The coefficient of δ(~r11′ )δ(~r22′) is
written in the integral form in order to make the cancellation evident. The term g(~r1, ~r2;~r ′1 , ~r

′
2 ) is

absent in the LO because the LO kernel in the momentum space does not contain terms depending
on all three independent momenta simultaneously.

The discontinuities (1) are invariant under the operator transformation

K̂ → Ô−1K̂Ô, 〈A′Ā| → 〈A′Ā|Ô, 1

~̂q
2

1 ~̂q
2

2

|B̄′B〉 → Ô−1 1

~̂q
2

1 ~̂q
2

2

|B̄′B〉 . (7)

In the LO the kernel can be fixed by the requirement of the Möbius invariance of its dipole form.
But even after this transformations with Ô = 1 + Ô, where Ô ∼ g2, are still possible. At that

K̂ → K̂ − [K̂BÔ]. (8)

These transformations rearrange NLO corrections to the kernel and impact factors. They can be
used for simplification of the dipole form.
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4 The quark contribution

The simplest piece of the NLO BFKL kernel is the “non-Abelian” (leading in Nc) part of the
quark contribution. It is known at arbitrary D [2]. Its dipole form is found [7] at arbitrary
D as well. However, it is rather complicated. In the physical space-time dimension D = 4 the
dipole form can be obtained in a much easier way, starting from the renormalized BFKL kernel at
D = 4 in a specific form [7]. It occurs that the dipole form of the original “non-Abelian” part [7]
contains the term g(~r1, ~r2;~r ′1 , ~r

′
2 ) and is not very simple. But the operator transformation (8)

with

ÔQ =
αs(µ)

8π

2

3
nf ln

(
~̂q

2

1 ~̂q
2

2

)
(9)

removes this term and simplifies the dipole form considerably. After this transformation we
remain with

gQ(~r1, ~r2; ~ρ) = −g0
Q(~r1, ~r2; ~ρ) =

nf
3Nc

(
~r2

12

~r2
1ρ~r

2
2ρ

ln
~r 2
Q

~r2
12

+
~r2

1ρ − ~r2
2ρ

~r2
1ρ~r

2
2ρ

ln
~r2

1ρ

~r2
2ρ

)
, (10)

where

ln~r 2
Q = −5

3
+ 2ψ(1) − ln

µ2

4
. (11)

The result agrees with the quark contribution to the small-x evolution of color dipoles [8].

The “Abelian” contribution was calculated in the momentum representation many years
ago in the framework of QED [9] and is extremely complicated. It turns out, however, that the
dipole form of the Abelian” part of the quark contribution is quite simple. This part contributes
only to g(~r1, ~r2;~r ′1 , ~r

′
2 ):

gQ(~r1, ~r2;~r ′1 , ~r
′

2 ) =
nf
N3
c

1

~r 4
1′2′

[(
~r 2

12′~r
2
1′2 + ~r 2

11′~r
2
22′ − ~r 2

12~r
2
1′2′

2(~r 2
12′~r

2
1′2 − ~r 2

11′~r
2
22′)

ln
~r 2

12′~r
2
1′2

~r 2
11′~r

2
22′
− 1

)]
. (12)

It coincides with the corresponding part of the quark contribution to the dipole kernel [8]. More-
over, it is conformal invariant. It could be especially interesting for the QED Pomeron.

5 The gluon contribution

Note that the transformation of the kernel (8) must be accompanied by a corresponding transfor-
mation of the impact factors. The transformation (8) with Ô = ÔQ (9) removes quark parts of
NLO corrections to impact factors, so that all related to quarks corrections turn out to be included
in the kernel. The reason is the simplicity of the quark corrections. They are related to the charge
renormalization only. For the gluon contribution transformations which include all corrections
to the kernel are not known. It would be a miracle if they existed at all.

It seems reasonable to perform the transformation related to the charge renormalization,
i.e. the transformation (8) with

ÔG =
αs(µ)

8π
(−11

3
Nc) ln

(
~̂q

2

1 ~̂q
2

2

)
. (13)
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With this tranformation the result [11] is the following.

g0
G(~r1, ~r2; ρ) =

3

2

~r 2
12

~r 2
1ρ~r

2
2ρ

ln

(
~r 2

1ρ

~r 2
12

)
ln

(
~r 2

2ρ

~r 2
12

)
− 11

12

[
~r 2

12

~r 2
1ρ~r

2
2ρ

ln

(
~r 2

1ρ~r
2

2ρ

r4
G

)

+

(
1

~r 2
2ρ

− 1

~r 2
1ρ

)
ln

(
~r 2

2ρ

~r 2
1ρ

)]
, (14)

gG(~r1, ~r2;~r ′2 ) =
11

6

~r 2
12

~r 2
22′~r

2
12′

ln

(
~r 2

12

r2
G

)
+

11

6

(
1

~r 2
22′
− 1

~r 2
12′

)
ln

(
~r 2

22′

~r 2
12′

)

+
1

2~r 2
22′

ln

(
~r 2

12′

~r 2
22′

)
ln

(
~r 2

12

~r 2
12′

)
− ~r 2

12

2~r 2
22′~r

2
12′

ln

(
~r 2

12

~r 2
22′

)
ln

(
~r 2

12

~r 2
12′

)
, (15)

where

ln r2
G = 2ψ(1) − ln

µ2

4
− 3

11

(
67

9
− 2ζ(2)

)
. (16)

Both g0
G(~r1, ~r2; ~ρ) and gG(~r1, ~r2; ~ρ) vanish at ~r1 = ~r2. Then, these functions turn into zero for

~ρ 2 → ∞ faster than (~ρ 2)−1 to provide the infrared safety. The ultraviolet singularities of these
functions at ~ρ = ~r2 and ~ρ = ~r1 cancel on account of the “dipole” property of the “target” impact
factors.

The most complicated is the structure which is absent in the LO:

gG(~r1, ~r2;~r ′1 , ~r
′

2) =

[
(~r22′ ~r12)

~r 2
11′~r

2
22′~r

2
1′2′
− 2 (~r22′ ~r11′)

~r 2
11′~r

2
22′~r

2
1′2′

+
2 (~r22′ ~r12′) (~r11′ ~r12′)

~r 2
11′~r

2
22′~r

2
1′2′~r

2
12′

]
ln

(
~r 2

12′

~r 2
1′2′

)

+
1

2~r 2
1′2′

[
(~r11′ ~r22′)

~r 2
11′ ~r

2
22′

+
(~r21′ ~r12′)

~r 2
21′ ~r

2
12′
− 2(~r22′ ~r21′)

~r 2
22′~r

2
21′

]
ln

(
~r 2

11′ ~r
2

22′

~r 2
1′2′~r

2
12

)
+

(~r11′ ~r22′)

2~r 2
11′ ~r

2
22′~r

2
1′2′

ln

(
~r 2

21′ ~r
2

12′

~r 2
11′ ~r

2
22′

)

+
1

d~r 2
1′2′

[
(~r1′2′ ~r12′)~r

2
12

~r 2
11′

+
2(~r22′ ~r21′)(~r12 ~r21′)

~r 2
21′

+
(~r22′ ~r12′)(~r11′ ~r21′)

~r 2
11′ ~r

2
22′

~r 2
1′2′ − ~r 2

1′2′

]
ln

(
~r 2

12′ ~r
2

21′

~r 2
11′ ~r

2
22′

)

+
1

2~r 4
1′2′

(
~r 2

11′ ~r
2

22′

d
ln

(
~r 2

12′ ~r
2

21′

~r 2
11′~r

2
22′

)
− 1

)
+

1

~r 2
11′

(
(~r12 ~r21′)

~r 2
1′2′~r

2
21′
− (~r11′ ~r12)

~r 2
1′2′~r

2
22′
− (~r11′ ~r21′)

~r 2
22′~r

2
21′

)
ln

(
~r 2

12′

~r 2
11′

)

− (~r12 ~r22′)

~r 2
1′2′~r

2
22′~r

2
12′

ln

(
~r 2

11′

~r 2
1′2′

)
+ (1↔ 2), (17)

where
d = ~r 2

12′~r
2

21′ − ~r 2
11′~r

2
22′ . (18)

This term also vanishes at ~r1 = ~r2, so that it possesses the “dipole” property. It has ultraviolet
singularity only at ~r1′2′ = 0 and tends to zero at large ~r ′ 21 and ~r ′ 22 sufficiently quickly in order
to provide the infrared safety.

The term (17) violates conformal invariance, although it has no relation to the charge
renormalization. Remind, however, the ambiguity of the NLO kernel discussed in Section (3).
The transformation (8) can change non-invariant contributions. It is not yet clear, if it is possible
to find such transformation which makes g(~r1, ~r2;~r ′1 , ~r

′
2 ) conformal invariant.
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6 Summary

The colour singlet BFKL kernel is more general than the dipole one. However, in the case of
scattering of colourless objects the BFKL kernel can be written in the dipole form (Möbius repre-
sentation). In the NLO the dipole form is greatly simplified in comparison with the BFKL kernel
in the momentum space. The quark contribution to the dipole form agrees with the correspond-
ing contribution to the kernel of the colour dipole approach. It would be extremely interesting
to compare corresponding gluon contributions. Unfortunately, such contribution to the kernel of
the colour dipole approach is not yet known. The “Abelian” part of the quark contribution is
conformal invariant. The ambiguity of the NLO kernel reserves a hope for conformal invariance
of the dipole form of the colour singlet NLO BFKL kernel at N = 4 SUSY.
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Abstract
We discuss the azimuthal angle decorrelation of Mueller–Navelet jets
at hadron colliders and forward jets in Deep Inelastic Scattering within
the BFKL framework with a NLO kernel. We stress the need of collinear
improvements to obtain good perturbative convergence. We provide
estimates of these decorrelations for large rapidity differences at the
Tevatron, LHC and HERA.

1 BFKL cross sections

In this contribution we discuss the results recently obtained in [1] where azimuthal angle corre-
lations in Mueller–Navelet jets [2] and forward jets at HERA using the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) equation in the next–to–leading (NLO) approximation [3] were investigated
(related works can be found in [4]). In this section we focus on normalized differential cross
sections for Mueller–Navelet jets, which are quite insensitive to parton distribution functions.
This justifies the use of partonic cross sections which can be written as

dσ̂

d2~q1d2~q2
=

π2ᾱ2
s

2
1

q2
1q

2
2

∫
dω

2πi
eωYfω (~q1, ~q2) , (1)

where ᾱs = αsNc/π, ~q1,2 are the transverse momenta of the tagged jets, and Y their relative
rapidity. The Green’s function carries the bulk of the Y dependence and is the solution to the
NLO BFKL equation,

(
ω − ᾱsK̂0 − ᾱ2

sK̂1

)
f̂ω = 1̂, (2)

which acts on the basis including the azimuthal angle, i.e.,

〈~q| ν, n〉 =
1

π
√

2

(
q2
)iν− 1

2 einθ. (3)

As Y increases the azimuthal dependence is mainly driven by the kernel and therefore we use
LO jet vertices which are simpler than the NLO ones [5]. The differential cross section in the
azimuthal angle φ = θ1 − θ2 − π, with θi being the angles of the two tagged jets, reads

dσ̂
(
αs,Y, p2

1,2

)

dφ
=

π2ᾱ2
s

4
√
p2

1p
2
2

∞∑

n=−∞
einφ Cn (Y) , (4)
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where

Cn (Y) =
1

2π

∫ ∞

−∞

dν(
1
4 + ν2

)
(
p2

1

p2
2

)iν
eχ(|n|, 12 +iν,ᾱs(p1p2))Y, (5)

and the NLO kernel can be written as

χ (n, γ, ᾱs) = ᾱsχ0 (n, γ) + ᾱ2
s

(
χ1 (n, γ)− β0

8Nc

χ0 (n, γ)
γ (1− γ)

)
. (6)

The eigenvalue of the LO kernel is χ0 (n, γ) = 2ψ (1) − ψ (γ + n
2

) − ψ (1− γ + n
2

)
, with ψ

being the logarithmic derivative of the Euler function. The action of K̂1, in MS scheme, can be
found in [6]. The full cross section only depends on the n = 0 component,

σ̂ =
π3ᾱ2

s

2
√
p2

1p
2
2

C0 (Y) . (7)

The average of the cosine of the azimuthal angle times an integer projects out the contribution
from each of these angular components:

〈cos (mφ)〉
〈cos (nφ)〉 =

Cm (Y)
Cn (Y)

. (8)

The normalized differential cross section is

1
σ̂

dσ̂

dφ
=

1
2π

∞∑

n=−∞
einφ
Cn (Y)
C0 (Y)

=
1

2π

{
1 + 2

∞∑

n=1

cos (nφ) 〈cos (nφ)〉
}
. (9)

The BFKL resummation is not stable at NLO for zero conformal spin. A manifestation of this
lack of convergence is what we found in the gluon–bremsstrahlung scheme where our NLO
distributions have an unphysical behavior whenever the n = 0 conformal spin appears in the cal-
culation. To solve this problem we imposed compatibility with renormalization group evolution
in the DIS limit following [7] for all conformal spins. The new kernel with improvements to all
orders reads [1]

ω = ᾱs (1 +Anᾱs)
{

2ψ (1)− ψ
(
γ +
|n|
2

+
ω

2
+ Bnᾱs

)

− ψ
(

1− γ +
|n|
2

+
ω

2
+ Bnᾱs

)}
+ ᾱ2

s

{
χ1 (|n| , γ)− β0

8Nc

χ0 (n, γ)
γ (1− γ)

−Anχ0 (|n| , γ)

)
+
(
ψ′
(
γ +
|n|
2

)
+ ψ′

(
1− γ +

|n|
2

))(
χ0 (|n| , γ)

2
+ Bn

)}
, (10)

where An and Bn are collinear coefficients [1]. After this collinear resummation our observables
have a good physical behavior and are independent of the renormalization scheme. It is very
important to remark that the asymptotic behavior of the BFKL resummation is convergent for non
zero conformal spins. In this sense the ideal distributions to investigate experimentally are those
of the form 〈cos(mφ)〉 / 〈cos(nφ)〉 with m,n 6= 0, we will see that in this case the difference
between the LO and higher orders results is small.
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2 Phenomenology for Mueller–Navelet jets

The D∅ [8] collaboration analyzed data for Mueller–Navelet jets at
√
s = 630 and 1800 GeV.

For the angular correlation LO BFKL predictions were first obtained in [9] and failed to de-
scribe the data estimating too much decorrelation. An exact fixed NLO analysis using JETRAD
underestimated the decorrelation, while HERWIG was in agreement with the data.
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Fig. 1: Top: 〈cos φ〉 = C1/C0 and Bottom: <cos 2φ>
<cosφ>

= C2
C1 , at a pp̄ collider with

√
s = 1.8 TeV for BFKL at LO

(solid) and NLO (dashed). The results from the resummation presented in the text are shown as well (dash–dotted).

In Fig. 1 we compare the Tevatron data for 〈cosφ〉 = C1/C0 with our LO, NLO and
resummed predictions. For Tevatron’s cuts, where the transverse momentum for one jet is 20
GeV and for the other 50 GeV, the NLO calculation is instable under renormalization scheme
changes. The convergence of our observables is poor whenever the coefficient associated to zero
conformal spin, C0, is involved. If we eliminate this coefficient by calculating the ratios defined
in Eq. (8) then the predictions are very stable, see Fig. 1.

The full angular dependence studied at the Tevatron by the D∅ collaboration was published
in [8]. In Fig. 2 we compare this measurement with the predictions obtained in our approach.
For the differential cross section we also make predictions for the LHC at larger Y in Fig. 3. We
estimated several uncertainties in our approach which are represented by gray bands.
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√
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kernel. Plots are shown for Y = 3 (top) and Y = 5 (bottom).
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3 Forward jets at HERA

In this section we apply the BFKL formalism to predict the decorrelation in azimuthal angle
between the electron and a forward jet associated to the proton in Deep Inelastic Scattering
(DIS). When the separation in rapidity space between the scattered electron and the forward
jet is large and the transverse momentum of the jet is similar to the virtuality of the photon
resolving the hadron, then the dominant terms are of BFKL type. This process is similar to
that of Mueller–Navelet jets, the only difference being the substitution of one jet vertex by the
electron vertex describing the coupling of the electron to the BFKL gluon Green’s function via a
quark–antiquark pair. Azimuthal angles in forward jets were studied at LO in [10]. We improved
their calculation by considering the NLO BFKL kernel.

In the production of a forward jet in DIS it is necessary to extract a parton with a large
longitudinal momentum fraction xFJ from the proton. When the jet is characterized by a hard
scale it is possible to use conventional collinear factorization to describe the process, and the jet
production rate may be written as

σ(s) =
∫
dxFJ feff(xFJ, µ

2
F )σ̂(ŝ), (11)

with σ̂(ŝ) denoting the partonic cross section, and the effective parton density [11] being

feff(x, µ2
F ) = G(x, µ2

F ) +
4
9

∑

f

[
Qf (x, µ2

F ) + Q̄f (x, µ2
F )
]
, (12)

where the sum runs over all quark flavors, and µF stands for the factorization scale.

The final expression for the cross section at hadronic level is of the form

dσ

dY dφ
= C0(Y ) + C2(Y ) cos 2φ, (13)

with

Cn(Y ) =
π2ᾱ2

s

2

∫

cuts
dxFJ dQ

2 dy feff(xFJ, Q
2)B(n)(y,Q2, Y )δ

(
xFJ −

Q2eY

ys

)
, (14)

where the index in the integral sign refers to the cuts

20 GeV2 < Q2 < 100 GeV2, 0.05 < y < 0.7, 5 · 10−3 > xBj > 4 · 10−4. (15)

The integration over the longitudinal momentum fraction xFJ of the forward jet involves a delta
function fixing the rapidity Y = lnxFJ/xBj, and B(n) is a complicated function which can be
found in [1].

Since the structure of the electron vertex singles out the components with conformal spin
0 and 2, the number of observables related to the azimuthal angle dependence is limited when
compared to the Mueller–Navelet case. The most relevant observable is the dependence of the
average < cos 2φ >= C2/C0 with the rapidity difference between the forward jet and the out-
going lepton. It is natural to expect that the forward jet will be more decorrelated from the
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leptonic system as the rapidity difference is larger since the phase space for further gluon emis-
sion opens up. This is indeed what we observe in our numerical results shown in Fig. 4. We
find results similar to the Mueller–Navelet jets case where the most reliable calculation is that
with a collinearly–improved kernel. The main effect of the higher order corrections is to increase
the azimuthal angle correlation for a given rapidity difference, while keeping the decrease of the
correlation as Y grows.
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Breakdown of Coherence ?
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1Physics Department, CERN, CH-1211 Geneva 23, Switzerland,
2School of Physics & Astronomy, University of Manchester, Manchester, M13 9PL, U.K.

Abstract
In a recent paper [1], Albrecht Kyrieleis, Jeff Forshaw and I discovered
a new tower of super-leading logarithms in gaps between jets cross
sections. After discussions with the referee of our paper and further
investigation, we have come to view this as a breakdown of naı̈ve co-
herence for initial state radiation. In this talk I illustrate this statement
in a simple way, and show how it results in the super-leading loga-
rithms.

1 Introduction and The Bottom Line

I begin by illustrating, in a simple pictorial way, what I mean by naı̈ve coherence. Consider
an arbitrary hard process that produces a hard parton, which then fragments into a system of
hard collinear partons, as shown in Fig. 1a. To be precise, by hard collinear I mean that the
plus components of all the partons are of the same order as that of the originating parton, and
all their transverse momenta are much smaller, with the originating parton defining the plus
direction. Consider calculating the first correction to this amplitude coming from a soft wide-
angle gluon. Again, to be precise, by soft wide-angle, I mean that its transverse momentum is
much smaller than the relative transverse momenta of all collinear partons in the jet, and that
its plus momentum is at most of order its transverse momentum. As illustrated in Fig. 1b, this
amplitude is obtained from the first one by inserting the soft wide-angle gluon onto each of the
external partons, summing over those partons. Studying the integral over the momentum of the
soft wide-angle gluon, it is straightforward to see that the momentum-dependent parts of all these
insertions are identical and they only differ by colour algebra. It is also straightforward to show,
for example using the diagrammatic technique of [2], that the contributions are simply additive
in colour space. The final result is therefore, as illustrated in Fig. 1c, that the amplitude can
be calculated as if the soft wide angle gluon was emitted by an on-shell parton with the same
plus momentum and colour as the initiating parton. This is the usual statement of naı̈ve colour
coherence: soft wide angle gluons are emitted by the jet as a whole, imagined to be on shell.

Now I turn to the case of an initial-state parton, Fig. 2. Consider an arbitrary hard process
initiated by a hard parton, which fragments into a system of hard collinear partons and its correc-
tion coming from a soft wide-angle gluon, as shown in Figs. 2a and c. At first sight it looks the
same as the final-state case and, in fact, if the soft wide-angle gluon is real, it is, so it is as if the
soft wide-angle gluon was emitted by the internal line, imagined to be on shell, Fig. 2b. However,
if the soft wide-angle gluon is virtual, one has to consider the momentum structure of the loop
integral more carefully. Performing one integration by contour, we generally pick up poles from
either the soft gluon propagator or the hard parton propagators. The former gives a real part that
has an identical form in all cases. The problem then reduces to colour algebra again and, just like
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(a)

(b)

∑

i

i

(c)

≡

Fig. 1: Illustration of naı̈ve coherence in final-state radiation. A hard parton produced in the hard process fragments

into a system of hard collinear partons (a). The amplitude for this system to emit a soft, wide-angle, real or virtual

gluon should be calculated from the insertion of the soft gluon onto each of the external hard partons, summed over

these partons (b). Colour coherence implies that this can be calculated as if the soft gluon were emitted by the original
hard parton, i.e. by the total colour charge of the jet (c).

for real emission, it is as if the soft wide-angle gluon was emitted by the internal line, imagined
to be on shell, Fig. 2b. However, for the other pole, coming from hard parton propagators, its
causal structure depends on whether the hard partons the gluon is attached to are in the final state
or the initial state. In particular, the imaginary part is zero if the gluon connects an initial-state
parton to a final-state parton1, and non-zero for initial-initial and final-final connections. There-
fore there is a mismatch between the different diagrams in Fig. 2c and they do not correspond to
the contribution from a single on-shell parton, Fig. 2d. It is this statement that we describe as a
breakdown of naı̈ve coherence for initial-state radiation.

We ‘discovered’ this breakdown of coherence in calculating corrections to the conventional
calculations of gaps-between-jets cross sections from one gluon emitted outside the gap accom-
panied by any number of soft wide-angle gluons. It was a great surprise to us, but we soon learnt
that it was actually well known to the early pioneers of QCD. In particular, there are lengthy
discussions in the literature of whether or not these known effects (coming from “Coulomb glu-
ons”) lead to violations of the Bloch–Nordsiek theorem (see for example Ref. [3]). These issues
were eventually settled, at least for massless partons, by Collins, Soper and Sterman’s proof of
factorization [4]. The hard collinear, and soft real, corrections are quickly dealt with in their
paper, and most of the subtlety of their proof is related to gluons with plus and minus momenta
much smaller than their transverse momenta (the “Glauber region”), which are exactly the ones
that give the imaginary parts we are discussing. They showed that these do lead to violations of

1I am working in Feynman gauge.
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Fig. 2: The analogue of Fig. 1 for initial-state radiation. A hard initial-state parton entering the hard process fragments

into a system of hard final-state collinear partons. The amplitude for this system to emit a soft, wide-angle, real or

virtual gluon should again be calculated from the insertion of the soft gluon onto each of the external hard partons,

summed over these partons (a,c). Because when the soft gluon is virtual the imaginary part of the loop correction is

sensitive to the direction of the momentum flow, the colour coherence argument can only be used for real emission
and the real part of the loop (b) but not for the imaginary part (d).
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factorization in individual diagrams, but that, eventually, these violations cancel each other after
summing over all diagrams for the scattering of colour-singlet incoming hadrons. Diagrams in
which the gluons are attached to the outgoing hadron remnants are essential for this cancelation.

However, in calculating perturbatively-exclusive cross sections, for example the gaps-
between-jets cross section defined below, one can perform factorization at the perturbative scale
defined by the scale below which the observable is inclusive, and one can calculate the cross
section perturbatively using incoming partons defined at this scale. Therefore one cannot appeal
to the hadron remnants, and these effects really remain in the cross section.

2 Consequences: Super-Leading Logarithms in Gaps Between Jets Cross Sections

In the remainder of the talk, I discuss the consequences of this breakdown of naı̈ve coherence and,
in particular, the appearance of super-leading logarithms in the gaps-between-jets cross section.
Here I am simply recapping the results of Ref. [1], so I can be brief.

To define the gap cross section, and the kinematic variables I use to describe it, consider
two-jet production at lowest order in hadron collisions. Since I am interested in the soft or
collinear corrections, the lowest-order kinematics are sufficient. I define the jets to have trans-
verse momenta Q and to be separated by a (reasonably large) rapidity interval ∆y. I define a
‘gap’ event sample by summing up the total scalar transverse momentum in a rapidity interval
of length Y < ∆y in the region between the two jets and only accepting events in which this
summed transverse momentum is less than Q0 ≤ Q. Provided Q0 is well above the confine-
ment scale, this gap cross section is perturbatively calculable. For Q0 � Q it develops large
logarithmic corrections at every order that must be summed to all orders to yield a reliable result.

The conventional wisdom for such calculations is that the logarithmic series is αns logn,
which define the leading logs for this process, that these leading logs can be calculated by con-
sidering only soft wide-angle virtual gluons stretched between the hard external partons, and that
for every real emission outside the gap there is an equal and opposite virtual correction. Our
findings contradict all of these points: we find super-leading2 logarithms αns logn+1. We already
expected, based on the work of Dasgupta and Salam [5] contributions from emission from gluons
outside the gap, but in distinction to their result which is an edge effect: emission just outside
the gap produces radiation just inside, the effect we find comes from emission arbitrarily far out-
side the gap. These results are directly related to a real–virtual mis-cancellation due to Coulomb
gluon effects and ultimately due to the breakdown of naı̈ve coherence for initial-state radiation.

To illustrate how these effects ultimately give rise to the super-leading logarithms, I briefly
recap the ingredients of the ‘conventional’ calculations for gaps-between-jets developed by Ster-
man and others over many years [6], first in the simpler setting of e+e− annihilation.

2I should clear up one possible point of confusion: by super-leading we do not mean that there are more than
the two logarithms per order expected from QCD, but only that this observable, which is expected to have only soft
contributions, so one logarithm per power of αs, actually develops additional collinear logarithms at high orders,
which we call super-leading since they are beyond the expected soft-only tower. More precisely, one power of Y that
appears in the coefficient of the leading logarithm, and is the remnant of the collinear logarithm, gets promoted to
become a logarithm of Q/Q0.
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2.1 Gaps in e+e− annihilation
The lowest order process produces a quark of momentum p1 and an antiquark of momentum p2.
Its amplitude is defined to be A. The one-loop correction in the Feynman gauge is given by the
single diagram with a gluon of momentum k stretched between p1 and p2. In order to extract the
leading logarithms, the eikonal approximation is sufficient. Performing the loop integral over k
by contour, one picks up poles at k2 = 0 and at p2

1 = p2
2 = 0. The former gives a contribution

that has exactly the form of a phase-space integral for a real gluon emission and leads to a term
in the cross section that is exactly equal and opposite to the real-emission cross section. The
conventional calculation uses this fact, by assuming that the real–virtual cancellation is perfect
for transverse momenta below Q0 and rapidities outside the gap, so that the entire first-order
correction can be calculated from the loop diagram integrated over the disallowed region of
phase space,

A1 = −2αs
π

∫ Q

Q0

dkt
kt
CF (Y − iπ)A0, (1)

where the Y term is the integral of the k2 = 0 pole over the gap region and the iπ term comes
from the p2

1 = p2
2 = 0 pole. To obtain the leading logarithmic contribution at nth order, one can

simply nest the kt integral n times and obtain

A = e
− 2αs

π

∫ Q
Q0

dkt
kt
CF (Y−iπ)A0. (2)

The gap cross section is then given by

σ = A?A = A?0e
− 2αs

π

∫ Q
Q0

dkt
kt
CF (Y+iπ)

e
− 2αs

π

∫ Q
Q0

dkt
kt
CF (Y−iπ)A0. (3)

It is easy to see that the Coulomb phase terms in the amplitude and its conjugate cancel, having
no physical effect.

2.2 Gaps in 2→ 2 scattering
In 2 → 2 scattering, one can make an exactly analogous calculation, with the one-loop result
nesting and exponentiating to give the all-order result. The only difference is that for a hard
process involving more than three partons there can be more than one colour structure, so the
amplitude becomes a vector in colour space and the loop correction (the CF (Y − iπ) in the e+e−

case) becomes a matrix,

σ = A†0e
− 2αs

π

∫ Q
Q0

dkt
kt

Γ†
S e
− 2αs

π

∫ Q
Q0

dkt
kt

ΓA0, (4)

where S is the metric of the colour space. The simplest case is quark scattering, in which the
colour space is 2 dimensional, and the anomalous dimension matrix Γ is given by3

Γ =

(
0 N2

c−1
4N2

c
iπ

iπ Nc
2 Y − 1

Nc
iπ

)
. (5)

The important point is that Γ and Γ† do not commute, so the Coulomb phase terms do not
cancel. Instead, they are responsible for important physical effects, giving rise to the ‘BFKL’-
type logarithms in the limit of large Y [8].

3I am grateful to Lev Lipatov for pointing out that this matrix was first calculated in Ref. [7].
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2.3 Emission outside the gap
The main point of Ref. [1] was to check whether emission outside the gap really cancels to all
orders, as is observed in the lowest order case, and as is assumed in the structure of the all-order
calculation. To do this, we explicitly calculated the cross section for one (real or virtual) gluon
outside the gap, summed over any number of soft virtual gluons integrated inside the gap and any
number of Coulomb gluons. The result is simply the sum of the all-order corrected virtual and
real terms, integrated over the out-of-gap phase space,

σ1 = −2αs
π

∫ Q

Q0

dkt
kt

∫

out

dy dφ

2π
(ΩV + ΩR) . (6)

ΩV corresponds to one virtual emission outside the gap and its all-order evolution. It has a very
similar structure to the conventional gap cross section,

ΩV = A†0e
− 2αs

π

∫ Q
Q0

dk′t
k′
t

Γ†
SV e

− 2αs
π

∫ kt
Q0

dk′t
k′
t

Γ
γ e
− 2αs

π

∫ Q
kt

dk′t
k′
t

ΓA0 + c.c., (7)

where γ describes the virtual emission (roughly speaking it is the differential of Γ) and I have
just renamed S to SV for a reason that will be seen shortly. The real part has a more compli-
cated structure, because it involves the evolution of a five-parton system at scales below kt (the
soft wide-angle gluon can be attached to the real out-of-gap gluon, in addition to the original
four partons). The five-parton colour structure has a different (higher) dimensionality (four for
the simplest case, qq → qqg for which the anomalous dimension matrix, Λ, was calculated in
Ref. [9]) so the real emission matrix element, Dµ, is a rectangular matrix acting on the colour
space of the four-parton process on the right and of the five-parton process on the left. The
structure is then

ΩR = A†0e
− 2αs

π

∫ Q
kt

dk′t
k′
t

Γ†
D†µe

− 2αs
π

∫ kt
Q0

dk′t
k′
t

Λ†
SRe

− 2αs
π

∫ kt
Q0

dk′t
k′
t

Λ
Dµ e

− 2αs
π

∫ Q
kt

dk′t
k′
t

ΓA0, (8)

where SR is the metric of the five-parton colour space.

The out-of-gap gluon must be integrated everywhere outside the gap, including right into
the collinear regions, in which ΩV and ΩR are separately divergent. It is easy to check that in the
final-state collinear region, they indeed become equal and opposite and the singularities cancel.
In the initial-state collinear limit4 however, one finds

ΩV + ΩR
|y|→∞−→ const. (9)

This means that in the pure eikonal theory the cross section is not well-behaved, because the
contribution from hard collinear configurations becomes significant. This non-cancellation can
be traced to the Coulomb phase terms in the evolution matrices, and ultimately to the breakdown
of naı̈ve coherence discussed earlier.

Having made this discovery, it is easy to see how this behaviour leads to the superleading
logarithms we observed. To leading approximation, the effect of incorporating the correct split-
ting functions, energy conservation, etc, in the collinear limit is to introduce an effective cutoff on

4This means the rapidity tending to infinity, but at fixed kt, so the emission never becomes truly collinear.
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the rapidity range over which the eikonal result should be integrated, ymax ∼ ln Q
kt

. The nested
integrals over kt then have one additional log of kt, leading to one additional log of Q/Q0,

σ1 ∼ σ0

(
2αs
π

)4

π2Y ln5 Q

Q0
+O

(
αns lnn+1 Q

Q0

)
. (10)

3 Open Issues

I end this talk by briefly mentioning some of the many open issues that remain.

I stated that we do not need to consider soft gluons attached to the hadron remnants. A
simple estimate shows that this has to be the case. Since we are only interested in gluons with
transverse momenta aboveQ0, even in the Glauber region, and we assume thatQ0 is large relative
to the hadronic scale, any such corrections should be suppressed by powers of Q0. Nevertheless,
since a number of objections have been made in this direction, it would be worth working through
the first such correction, to shore up this argument.

Once we accept the breakdown of naı̈ve coherence, the choice of ordering variable be-
comes relevant. Our calculation is based on transverse momentum ordering and different order-
ing variables might give different coefficients for the super-leading logarithms. Further work,
for example by developing a full diagrammatic approach, is needed to be sure that transverse
momentum ordering leads to the correct physical results.

Once we have found that one gluon outside the gap gives a tower of terms enhanced by one
additional logarithm, it is natural to speculate that n gluons outside the gap will give n additional
logarithms [1]. If this is right it would mean that at each order, the leading term is actually
αns log2n−3 and it would be imperative to organize and sum these terms to all orders. Performing
such a resummation is a daunting task, since, like an exact calculation of non-global logarithms,
it would depend on the full colour structure of multi-parton ensembles.

I close by mentioning that I look forward to a critical appraisal of this work. The result
came as such a surprise to us that we felt sure it was wrong. Two years of checking has not
diminished this feeling. However we have certainly ruled out simple error, since, in addition to
the two independent calculations we made, James Keates recently succeeded in constructing an
algorithm that generates all possible cut diagrams order by order and evaluates them [10]. Within
the same strongly-ordered-in-kt approximation that we use, his calculation reproduces ours up
to fourth order, and confirms the coefficient of the first super-leading logarithm. Once issues of
calculational speed have been solved, he will be able to run at fifth order and beyond and check
our speculation about the rôle of multiple gluons outside the gap.

In the meantime we are trying to obtain a deeper understanding of our findings, and I
welcome any comments that help us in this direction.
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Abstract
The BFKL approach to the Regge processes in QCD is reviewed. It is
shown, that in the multi-colour QCD the BKP equations for composite
states of several Reggeized gluons are integrable. We discuss the re-
lation between Pomeron and Graviton in N=4 SUSY. The property of
the maximal transcendentality is formulated. It gives us a possibility
to calculate the three-loop anomalous dimension. With the use of the
asymptotic Bethe ansatz and a model for wrapping effects the anoma-
lous dimension is calculated in four loops in an agreement with the
BFKL and double-logarithmic predictions.

1 Introduction

It is known [1], that the QCD scattering amplitude in the leading logarithmic approximation
(LLA) has the Regge-type asymptotics

MA′B′
AB (s, t) = MA′B′

AB (s, t)|Born sω(t) , (1)

where MA′B′
AB (s, t)|Born is the Born amplitude and the gluon Regge trajectory is given below

ω(−|q|2) = − αc
4π2

Nc

∫
d2k

|q|2
|k|2|q − k|2 ≈ −

αc
2π

ln
|q2|
λ2

. (2)

At high energies the gluons are produced in the multi-Regge kinematics. The elastic am-
plitude with the vacuum quantum numbers in the t-channel can be obtained with the use of the
s-channel unitarity by summing over multi-gluon intermediate states [1]. It is convenient to
introduce the complex variables for the gluon transverse coordinates and momenta

ρk = xk + iyk , ρ
∗
k = xk − iyk , pk = i

∂

∂ρk
, p∗k = i

∂

∂ρ∗k
. (3)

In the coordinate representation the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for
the Pomeron wave function can be written as follows [1]

EΨ(~ρ1, ~ρ2) = H12 Ψ(~ρ1, ~ρ2) , ∆ = −αsNc

2π
min E , (4)

where ∆ is the Pomeron intercept. The BFKL Hamiltonian is presented below [2]

H12 = ln |p1p2|2 +
1

p1p∗2
ln |ρ12|2p1p

∗
2 +

1
p∗1p2

ln |ρ12|2p∗1p2 − 4ψ(1) , (5)
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where ρ12 = ρ1 − ρ2. The kinetic energy is proportional to the gluon Regge trajectories, and the
potential energy ∼ ln |ρ12|2 is related to the gluon production effective vertices.

The Hamiltonian is invariant under the Möbius transformation [3]

ρk →
aρk + b

cρk + d
, (6)

where a, b, c and d are complex numbers. The eigenvalues of the Casimir operators

M2 =

(
2∑

r=1

~M (r)

)2

= ρ2
12 p1 p2 , M

∗2 = (M2)∗ (7)

are related with the conformal weights

m = 1/2 + iν + n/2 , m̃ = 1/2 + iν − n/2 (8)

for the principal series of unitary representations.

2 Integrability of the BFKL dynamics at Nc →∞
The Bartels-Kwiecinskii-Praszalowicz (BKP) equation [5] for the n-gluon composite state is
simple at Nc →∞, where its Hamiltonian has the property of the holomorphic separability [4]

H =
1
2

∑

k

Hk,k+1 =
1
2

(h+ h∗) , [h, h∗] = 0 . (9)

The holomorphic Hamiltonian can be written as follows

h =
∑

k

hk,k+1 , h12 = ln(p1p2) +
1
p1

ln ρ12 p1 +
1
p2

ln ρ12 p2 − 2ψ(1) , (10)

where ψ(x) = (ln Γ(x))′. As a result, we obtain for Ψ the holomorphic factorization [4]

Ψ(~ρ1, ~ρ2, ..., ~ρn) =
∑

r,s

ar,s Ψr(ρ1, ..., ρn) Ψs(ρ∗1, ..., ρ
∗
n) (11)

and the duality symmetry [6]
ρr,r+1 → pr → ρr−1,r . (12)

Moreover, there are integrals of motion commuting among themselves and with h [2, 7]

qr =
∑

k1<k2<...<kr

ρk1k2ρk2k3 ...ρkrk1 pk1pk2 ...pkr , [qr, h] = 0 . (13)

The integrability of the BFKL dynamics [7] is related to the fact, that H coincides with the local
Hamiltonian of the Heisenberg spin model [8].

In particular the Pomeron intercept ∆ is positive [1]

∆ = 4
αs
π
Nc ln 2 (14)

and the Froissart bound for the total cross-section is violated. To restore the s-channel unitarity
of scattering amplitudes one can use the effective field theory for Reggeized gluons [9]- [11].
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3 DGLAP and BFKL dynamics in N = 4 SUSY

The momenta fa(j,Q2) of parton distributions satisfy the renormalization group equation with
the anomalous dimension matrix γab

d

d lnQ2
fa(j,Q2) =

∑

b

γab(j)fb(j,Q2) . (15)

They are proportional to matrix elements of the light-cone components of twist-2 operators

Oa = ñµ1 ...ñµj Oaµ1 ,...,µj , Õa = ñµ1 ...ñµj Õaµ1,...,µj . (16)

The anomalous dimensions do not depend on other possible tensor projections

ñµ1 ...ñµ1+ω Oaµ1,...,µ1+ω,σ1,...,σ|n| l
σ1
⊥ ...l

σ|n|
⊥ . (17)

The solution of the BFKL equation due to its Möbius invariance is classified by the anoma-
lous dimension γ = 1

2 + iν and the conformal spin |n| coinciding with the number of transverse
indices of O. The eigenvalue of the BFKL kernel in the next-to-leading approximation is

ω = ω0(n, γ) + 4 â2 ∆(n, γ) , â = g2Nc/(16π2) . (18)

In QCD ∆(n, γ) is a non-analytic function of the conformal spin |n| [12, 13]

∆QCD(n, γ) = c0δn,0 + c2δn,2 + analytic terms ,

but in N = 4 SUSY the Kroniker symbols are cancelled [13].

Moreover, in this model we obtain for ∆(n, γ) the Hermitian separability

∆(n, γ) = φ(M) + φ(M ∗)− ρ(M) + ρ(M ∗)
2â/ω

, M = γ +
|n|
2
, (19)

ρ(M) = β′(M) +
1
2
ζ(2) , β′(z) =

1
4

[
Ψ′
(z + 1

2

)
−Ψ′

(z
2

)]
. (20)

It is important, that here all special functions have the maximal trancendentality prop-
erty [13].

φ(M) = 3ζ(3) + Ψ
′′
(M)− 2Φ(M) + 2β

′
(M)

(
Ψ(1)−Ψ(M)

)
, (21)

where

Φ(M) =
∞∑

k=0

β′(k + 1)
k +M

+
∞∑

k=0

(−1)k

k +M

(
Ψ′(k + 1) − Ψ(k + 1)−Ψ(1)

k +M

)
. (22)

For the one loop anomalous dimension matrix of the twist-2 operators in the case N = 4
the calculations were performed in Ref. [14]. The eigenvalues of this matrix are expressed in
terms of the universal anomalous dimension for the super-multiplet unifying all twist-2 operators

γ
(0)
uni(j) = −4S1(j − 2) , Sr(j) =

j∑

i=1

1
ir
. (23)

Note, that γ(0)
uni(j) has the maximal transcendentality property, which leads to an integrability of

evolution equations for matrix elements of quasi-partonic operators in N = 4 SUSY [14].

BFKL EQUATION AND ANOMALOUS DIMENSIONS IN N = 4 SUSY

517



4 Relation between Pomeron and Graviton

The Pomeron intercept in the N = 4 supersymmetric gauge theory was calculated recently at
large coupling constants [17]. Here we shall review the basic arguments. To begin with, one can
simplify the eigenvalue for the BFKL kernel in the diffusion approximation as follows (see [12])

j = 2−∆−Dν2 , γuni =
j

2
+ iν , (24)

assuming, that the parameter ∆ is small at large z = αNc/π. Due to the energy-momentum
conservation we have γ|j=2 = 0 and therefore γ can be expressed in terms of the parameter ∆

γ = (j − 2)

(
1
2
− 1/∆

1 +
√

1 + (j − 2)/∆

)
. (25)

On the other hand with the use of the AdS/CFT correspondence [18] the above BFKL equation
can be written as the graviton Regge trajectory

j = 2 +
α′

2
t , t = E2/R2 , α′ =

R2

2
∆ . (26)

The behaviour of γ at g →∞, j →∞ was predicted earlier [19]

γ|z→∞ = −
√
j − 2 ∆−1/2

|j→∞ =
√
πj z1/4 . (27)

Therefore one can calculate the Pomeron intercept at large coplings [17] (see also Ref. [23])

j = 2−∆ , ∆ =
1
π
z−1/2 . (28)

5 Two and three loops anomalous dimensions in N = 4

One can argue [13], that the perturbative expansion of the universal anomalous dimension

γuni(j) = âγ
(0)
uni(j) + â2γ

(1)
uni(j) + â3γ

(2)
uni(j) + ... (29)

contains in each order of the perturbation theory only special functions with the highest trancen-
dentality. With such assumption one can obtain [13]

1
8
γ

(1)
uni(j + 2) = 2S1(j) (S2(j) + S−2(j))− 2S−2,1(j) + S3(j) + S−3(j) , (30)

where the corresponding harmonic sums are given below

Sa(j) =
j∑

m=1

1
ma

, Sa,b,c,···(j) =
j∑

m=1

1
ma

Sb,c,···(m) , (31)

S−a(j) =
j∑

m=1

(−1)m

ma
, S−a,b,···(j) =

j∑

m=1

(−1)m

ma
Sb,···(m), (32)
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S−a,b,c···(j) = (−1)jS−a,b,...(j) + S−a,b,···(∞)
(
1− (−1)j

)
. (33)

This result was verified by direct calculations of the anomalous dimension matrix in two loops [15].

Later the three-loop anomalous dimension matrix for QCD was calculated [16], which
allowed us to find the universal anomalous dimension in three loops for N = 4 SUSY [17]

1
32
γ

(2)
uni(j + 2) = 24S−2,1,1,1 − 12 (S−3,1,1 + S−2,1,2 + S−2,2,1)

+6 (S−4,1 + S−3,2 + S−2,3)− 3S−5

−2S2
1 (3S−3 + S3 − 2S−2,1)− S2 (S−3 + S3 − 2S−2,1)

−S1

(
8S̄−4 + S̄2

−2 + 4S2S̄−2 + 2S2
2

)

−S1
(
3S4 − 12S̄−3,1 − 10S̄−2,2 + 16S̄−2,1,1

)
. (34)

6 Relations between weak and strong coupling regimes

The asymptotics of γuni for N = 4 SUSY at j − 1 = ω → 0

γN=4
uni (j) = â

4
ω
− 32ζ3 â

2 + 32ζ3 â
3 1
ω
− 16â4

ω4

(
32ζ3 +

π4

9
ω

)
+ ... (35)

is in an agreement with the predictions from the BFKL equation [13].

Near the negative even points j + 2r = ω → 0 the anomalous dimension satisfy the
equation

ωγuni = γ2
uni + 16â2(S2 + ζ2 − S2

1)

+4 â
(
1− ωS1 − ω2(S2 + ζ2) + γ2(S2 + S−2)

)

resumming the double logarithmic terms ∼ α/ω2 and corrections to them.

Further, the universal anomalous dimension at large j

γN=4
uni = a(z) ln j , z =

αNc

π
= 4â (36)

can be found from our results up to three loops

a(z) = −z +
π2

12
z2 − 11

720
π4z3 + ... . (37)

It is remarkable, that using the AdS/CFT correspondence [18] between the superstring model
on the anti-de-Sitter space and the N = 4 supersymmetric Yang-Mills theory A. Polyakov with
collaborators found the coefficient a(z) in the strong coupling limit [19]

lim
z→∞a(z) = −z1/2 +

3 ln 2
4π

+ ... . (38)
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In Ref. [15] the resummation of a(z) in the form

ã = −z +
π2

12
ã2. (39)

was suggested. The prediction of this equation

ã = −z +
π2

12
z2 − 1

72
π4z3 + ... (40)

is in a rather good agreement with a(z) in three loops and the strong coupling asymptotics.

7 Beisert-Eden-Staudacher equation

Our results agree also with the recent papers [20, 21], where a(z) is constructed in all orders.
One can rewrite the Eden-Staudacher integral equation [20] as a set of linear equations [22]

an,ε =
∞∑

n′=1

Kn,n′(ε)
(
δn′,1 − an′,ε

)
, Kn,n′(ε) =

2n
∞∑

R=0

(−1)R
2−2R−n−n′

ε2R+n+n′ ζ(2R+ n+ n′)
(2R + n+ n′ − 1)! (2R + n+ n′)!
R! (R+ n)! (R + n′)! (R + n+ n′)!

, (41)

where the function a(z) is expressed in terms of a1,ε

a(z) =
2(1− a1,ε)

ε2
, ε =

1
g
√

2
. (42)

We can easiliy prove, that the maximal transcendentality property for a(z) is valid in all orders of
perturbation theory and the coefficients in front of the products of the corresponding ζ-functions
are integer numbers [22]. Also a(z) has an essential singularity in the point g =∞.

It is possibly to show [22], that the asymptotic behaviour of a(z) in the case of the Beisert-
Eden-Staudacher equation [20] is in an agreement with the AdS/CFT prediction [19]

lim
g→∞ γsing =

2
ε

I1(2ε−1)
I0(2ε−1)

≈ 2
√

2 g − 1
2
. (43)

8 Universal anomalous dimension in 4 loops

With the use of the asymptotic Bethe ansatz and the maximal transcendentality hypothesis the
anomalous dimension in four loops was calculated [24]

γ4

256
= 4S−7 + 6S7 + 2(S−3,1,3 + S−3,2,2 + S−3,3,1 + S−2,4,1)

+3(−S−2,5 + S−2,3,−2) + 4(S−2,1,4 − S−2,−2,−2,1 − S−2,1,2,−2

−S−2,2,1,−2 − S1,−2,1,3 − S1,−2,2,2 − S1,−2,3,1) + ......................

−72S1,1,1,−4 − 80S1,1,−4,1 − ζ(3)S1(S3 − S−3 + 2S−2,1) ,
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where the dots mean the dropped terms. The harmonic sums here depend on the parameter
M = j − 2. They can be analytically continued to the complex values of M . It turns out, that
the first two terms lead to the singularity of γ4 at ω = M + 1→ 0

lim
M→−1

γ4(M) = −512
ω7

,

which contradicts to the above BFKL prediction

Therefore the asymptotic Bethe ansatz is not correct and it is needed to take into account
the so-called wrapping effects. As an attempt to find the contribution of these effects we can
modify the last term in the expression for γ4 corresponding to the so-called dressing phase, which
was found in Ref. [21] for the cusp anomalous dimension. The simplest modification conserving
the transcendentality property and reproducing the BFKL prediction is given by the substitution
of the factor ζ(3) in the dressing phase by the following linear combination of the harmonic sums

ζ3 →
47ζ3

24
− S−3

4
+

3S−2S1

4
+

3S1S2

8
+

3S3

8
+
S−2,1

6
− 17S2,1

24
.

It turns out, that after this substitution the anomalous dimension has the correct singularity at
even negative points M predicted by the double-logarithmic resummation

1
256

γ4|j→−2k+ω =
5
ω7
− 20

S1

ω6
+

24S2
1 − 14(S2 + ζ2) + 4(S2 + S−2)

ω5
+ ... .

Therefore it is plausible, that this substitutions leads to the correct expression for γ4.

9 Discussion

The high energy theory in QCD is based on the fact, that the gluons and quarks are reggeized. To
solve the unitarization problem for the BFKL Pomeron one should use the effective action local
in the particle rapidities. The Reggeon calculus in the form of a 2+1 field theory can be derived
from this action. In particular next-to-leading corrections to the BFKL kernel are calculated in
QCD and in N=4 SUSY. In N=4 SUSY the eigenvalue of the kernel is expressed as a sum of
the most complicated functions which could appear in this order. Using the hypothesis of the
maximal transcendentality for the universal anomalous dimension of the twist-2 operators we
calculated it up to the third order. Our resummation procedure is in an agreement with the strong
coupling predictions obtained from the AdS/CFT correspondence. In particular, we calculated
the intercept of the BFKL pomeron in N = 4 SUSY and the cusp anomalous dimension at strong
couplings. The anomalous dimension in 4-loops was also found with the use of the asymptotic
Bethe ansatz, maximal transcendentality and predictions obtained from the BFKL and double-
logarithmic resummation.
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Abstract
We discuss the recent proposal [1] where it was shown that the critical
anomalous dimension associated to the onset of non–linear effects in
the high energy limit of QCD coincides with the critical exponent gov-
erning the radius of the black hole formed in the spherically symmetric
collapse of a massless scalar field. We argue that a new essential ingre-
dient in this mapping between gauge theory and gravity is continuous
self-similarity, not present in the scalar field case but in the spherical
collapse of a perfect fluid with barotropic equation of state. We iden-
tify this property with geometric scaling, present in DIS data at small
values of Bjorken x. We also show that the Choptuik exponent in di-
mension five tends to the QCD critical value in the traceless limit of
the energy momentum tensor.

1 Criticality in high energy QCD and black hole formation

One of the major insights of string theory is the unexpected connection between black hole
physics and confinement in QCD. This connection is realized on the basis of the deep holo-
graphic [2] duality between gravity and gauge theories [3, 4]. A particularly interesting connec-
tion between black holes and gauge theories is the dual interpretation [4] of the Hawking–Page
phase transition [5] in gravity as the confinement / deconfinement transition in gauge theory at
finite temperature. Holography is based on a very concrete set of rules for computing quantum

S1

S3

S1

S3

Fig. 1: The two relevant bulk geometries for confinement / deconfinement transition.

† speaker
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field theory expectation values in terms of classical solutions to SUGRA equations with concrete
boundary conditions. A further important ingredient of holography is the generalization of the
gauge–gravity correspondence to non local observables such as Wilson or Polyakov loops. In
this ‘non local’ version of the correspondence expectation values of Wilson loops are defined as
sums of string world sheets in the bulk geometry with boundary determined by the loop.

Wilson loops are natural candidates to define the order parameter of QCD phases. This
is the case not only for confinement but also for the transition from a dilute gas of partons to
the so–called ‘color glass condensate’ [6] of hadronic parton distributions. In the same way
as there exists a geometrical qualitative picture of the transition to confinement, illustrated in
Fig. 1, it is natural to search for the corresponding holographic description of the saturation
phenomena present in the high energy limit of QCD [7]. A very important experimental discovery
in HERA data was the rise of the gluon distribution function xG(x,Q2) (which is related to the
number of gluons in the target proton wave function with effective transverse size of order 1/Q2

carrying a fraction x of the hadron longitudinal momentum) when, for fixed Q2, the value of x
becomes small. This can be seen, e.g., in Fig. 2. In the ‘dipole frame’ the total cross section for
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Fig. 2: The dependence on x of the proton structure function F2 for different values of Q2.

the scattering of the virtual photon off the hadron can be expressed in terms of the probability
amplitude for the photon to decay into a quark–antiquark pair, creating a colour dipole of size
r = 1/Q, which then scatters off the proton’s effective colour field. The forward scattering
amplitude for the dipole depends on r and the rapidity variable Y = log(1/x). In the leading
order approximation this scattering amplitude depends linearly on xG(x,Q2). Since unitarity
requires the forward scattering amplitude not to be larger than one this indicates that the rise of
the gluon distribution should reach a saturation point, leading to the kinematic diagram shown
in Fig. 3, where the saturation line indicates the critical value xc(Q2) such that for x < xc and
fixed Q2 the gluon distribution function becomes effectively constant in x.

The two main theoretical problems associated with the previous picture are to identify i)
the dynamical origin of the rise of xG(x,Q2) with decreasing x and ii) the nature of the non–
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Y = Log 1/x
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xc(Q
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Dilute

Fig. 3: QCD kinematic space in DIS

linear dynamics responsible for saturation and restoration of unitarity. The current understanding
is that the dynamical origin of the rise of the gluon distribution function is due to the dominance
of BFKL dynamics [8] while the non–linear BK equation [9] is responsible for the onset of
saturation effects in the high energy limit of scattering amplitudes. In the eikonal approximation
the exponential rise in Y for the forward scattering amplitude can be computed as the Wilson
loop for the quark–antiquark pair propagating in the effective colour field of the proton which,
in the proton infinite momentum frame and large center–of–mass energies, is dominated by soft
gluon emissions in multi–Regge kinematics, with strong ordering in longitudinal components but
not in transverse ones. These configurations, shown in Fig. 4, build up the BFKL hard pomeron.

Fig. 4: BFKL gluon cascade in multi–Regge kinematics

In this framework the rapidity Y acts as a cutoff in the effective integration over longitudi-
nal momenta and the BFKL equation controlling the evolution in Y plays the conceptual rôle of
a renormalization group equation with a ‘fixed point’, generated by non–linear effects, at the sat-
uration line. This line, of the form Qs(x) ∼ x−λ, is characterized by the ‘saturation exponent’,
which, in the limit of a very small coupling, reads λ ' αsNc2.44/π. A direct consequence of the
onset of non–linear effects is that asymptotic amplitudes only depend on the variable

√
τ ' Qxλ

nearby the saturation region, i.e., in the (Y, logQ2) plane this implies that physical observables
only depend on lines of constant τ as it is shown in Fig. 5. Along those lines any continuous
boost in longitudinal components can be compensated by an equivalent one in the transverse di-
rections to leave physical quantities invariant. The ‘geometric scaling’ on this variable has been
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Fig. 5: Continuous self–similarity on the (Y, logQ2) plane.

experimentally observed in HERA data [7] for the γ∗p cross sections in the region x < 0.01 over
a large range in Q2, see Fig.6.
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Fig. 6: HERA data for σγ∗p with x < 0.01 versus the variable τ .

Our target is to find the holographic dual of the saturation line [10]. Taking into account
the Wilson loop picture of the forward scattering amplitude for the dipole, the holographic repre-
sentation of this quantity leads us to sum over world sheet amplitudes for a certain bulk geome-
try [11]. Since the dynamics we want to describe in gravity dual terms is the rapidity dependence
of the amplitude, we will formally consider a background metric depending on the dual variable
to Y in such a way that in the transition from the dilute to the dense or saturated regime it man-

L ÁLVAREZ-GAUMÉ, C GÓMEZ, A SABIO VERA, A TAVANFAR, M. A VÁZQUEZ-MOZO
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ifests some sort of ‘geometric scaling’ in terms of properly chosen holographic variables. To
establish the correspondence correctly this scaling must be characterized by a critical quantity
related to the saturation exponent λ.

A first hint in this direction was shown in [1]. There it was argued that in the numerical
studies of black hole formation for the spherically symmetric collapse of a massless scalar field
carried out by Choptuik [12] (see [13] for a review) there appears a critical exponent very similar
to λ. In particular, if we denote by p a generic parameter describing the initial radial density for
imploding scalar waves, Choptuik found that there are critical lines in p, p = p∗, such that, if
p < p∗ the scalar wave packet implodes through r = 0 and then disperses into flat space–time.
But if p > p∗, i.e., the ‘supercritical’ case, then after the implosion there is a fraction of field
which forms a small black hole. The interesting point is that its radius scales as rBH ' |p−p∗|

1
λc ,

and it turns out that precisely in dimension five λc ' 2.44.

Nonetheless, there is a difficulty to map the collapse of a scalar field with QCD, namely, the
metric and field components obtained in this case manifest ‘discrete self–similarity’. This means
that a similar variable as the above–mentioned τ leaves physical observables invariant under
the transformation τ → τ + ∆, with ∆ a constant which has no analogue in four dimensional
high energy scattering. We have investigated in detail a different type of gravitational collapse
which has self–similarity, in this case ‘continuous self–similarity’ (CSS): the spherical collapse
of a perfect fluid with a barotropic equation of state. The Einstein’s equations together with
matter’s equations of motion in d dimensions can be solved assuming a unique dependence on
the variable τ = −r/t. As an example we discuss the function y(r, t) which is proportional to
the ratio of the mean density inside the sphere of radius r to the local density at r. In Fig. 7 it
can be seen how y(r, t) maintains a constant r–profile for different values of t. This implies that
the solution is CSS since any change in the time coordinate can be compensated by a change
in r keeping y unchanged. This CSS property is what we associate with ‘geometric scaling’ in
QCD, with t and r being, respectively, the holographic duals of αsNcY and logQ2 in QCD.
The Choptuik exponent characterizing the black hole radius can be obtained by searching for
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Liapunov modes of instability of the CSS solution. In Fig. 8 we show how the exponentially
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growing mode removes CSS from the solution to the collapse. The rate of growth of this mode is
given by a coefficient which coincides with Choptuik’s exponent. We have numerically extracted
this coefficient in the five dimensional case and proven that it is very close to the QCD saturation
exponent in the limit of traceless energy–momentum tensor for the fluid [10].
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Experimental summary

Halina Abramowicz
DESY and Tel Aviv University

Abstract

A summary of the experimental results presented at this conference is
discussed together with an attempt to point out the links between the
various areas of research, affected by the understanding of elastic and
diffractive scattering.

1 Introduction

As demonstrated at this conference, elastic and diffractive scattering affect many areas of research
in high energy physics. While the definition of elastic scattering in hadron-hadron collisions
is unique, both theoretically and experimentally, the definition of diffractive scattering is less
precise. In elastic scattering, the interacting particles preserve their identity in the final state and
carry out of the scattering all the available energy. In single diffraction, one of the incoming
particles remains unscathed and is expected to carry out most of its initial momentum. Typical
of diffractive scattering at high energy is a large rapidity gap separating the diffracted system
from the ’unscathed’ particle. In double diffractive scattering, both incoming particles loose
their identity, however the respective final states, again well separated in rapidity, preserve the
quantum numbers of the colliding particles.

In soft hadron-hadron interactions, elastic and diffractive scattering are described by Regge
theory and understood as due to the exchange of the Pomeron trajectory [1,2]. The appearance of
diffractive scattering with associated large transverse momentum jets in pp̄ collisions observed
by the UA8 experiment [3], have prompted Ingelman and Schlein [4] to propose the concept of
a partonic structure of the Pomeron. Today, more than a decade after the discovery of diffractive
interactions in deep inelastic ep scattering (DIS) at HERA [5, 6], it is clear that the Pomeron is
predominantly a gluonic object [7]. This is consistent with expectations of perturbative QCD
where, in leading order, diffractive scattering is mediated by two-gluon exchange [8, 9]. The
appearance of diffraction is therefore closely related to the structure function of the proton and
its large gluon component at low x, where x is the fraction of the proton momentum carried by a
parton.

At high energy, elastic and diffractive scattering constitute a large fraction of the total scat-
tering cross section. However, in spite of a large theoretical effort vested in understanding the
dynamics of diffractive scattering (see summary by K. Golec-Biernat in these proceedings), there
is as yet no consistent theoretical framework able to describe all the aspects of experimental ob-
servations. Various theoretical frameworks, based on different degrees of freedom (partons, color
dipoles, color glass condensates, Regge trajectories), achieve different level of success, weaken-
ing therefore their predictive power and making the present and future experimental program that
much more interesting and important.
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The various aspects of diffractive scattering (large gluon density at low x, leading particle
effect, factorization breaking) correlate many research programs, at HERA, at FNAL, at RHIC,
at LHC and even in cosmic ray physics with extensive air showers (EAS). Some of it will be
pointed out in this summary.

2 Inclusive diffraction and rescattering

In DIS at HERA, the diffractive structure function of the proton, F D
2 , can be parameterised in

terms of diffractive parton distributions (dPDF) which can then be used to test the diffractive
QCD factorisation theorem, expected to hold at large Q2 [10]. Factorisation in diffractive scat-
tering has been successfully tested in dijet [11, 12] and in charm [13, 14] production in DIS , as
well as in diffractive charm photoproduction [14, 15].

As expected, factorisation fails in pp̄ interactions [18], where typically rates for diffractive
production in the presence of a hard scale are a factor 10 lower than expected from the HERA
dPDF. This rate reduction may be explained as the result of multiple interactions, whereby the
remnant partons of the diffracted proton rescatter off the leading proton and the products of the
rescatter destroy the large rapidity gap (gap survival probability) [19]. A similar effect, albeit at a
lower rate because of the size of the photon, is expected in dijet production in γp interactions [20],
in the regime in which the photon interacts with the proton through its partonic component. A
factor two suppression of dijet photoproduction has been observed by the H1 experiment [16]
independent of whether the reaction proceeds through the resolved or direct photon component
(see Fig. 1), though for the latter one expects factorisation to hold. A much weaker suppression,

Fig. 1: The differential cross section for diffractive dijet production in γp scattering as a function of the fraction of

the photon momentum involved in the interaction, xjetsγ or xobsγ , as measured by H1 (left) and by ZEUS (right).

if at all, has been reported by the ZEUS experiment [17] (see Fig. 1). This apparent discrepancy
requires further studies. What might be significant is that the transverse momenta of jets probed
by ZEUS are higher than those of H1, possibly squeezing the photon into a smaller transverse
configuration, in which case a smaller suppression would be expected. Gap survival and its
dependence on the projectile size may turn out to be important in understanding and modeling
multiple interactions.
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3 Exclusive reactions in hard diffraction

The sensitivity of diffractive scattering to the size of interacting objects may be directly probed
in exclusive reactions, such as vector meson production or deeply virtual Compton scattering
(DVCS), in ep interactions at HERA. The size of the interacting photon may be controlled either
by its virtuality Q2, or the mass of the vector meson (J/ψ, Υ), or the momentum transferred
squared at the proton vertex. Indeed, as discussed by A. Levy at this conference, when the
photon is squeezed into a small size qq̄ fluctuation, a bare proton emerges from the interaction
and the measurements are consistent with a picture in which the exclusive processes proceed via
the exchange of a two-gluon ladder.

In a larger picture, exclusive processes in ep scattering become a source of knowledge
of generalized parton distribution (GPD) functions [21] from which one can extract not only the
standard one-dimensional, longitudinal, parton distributions in the proton, but also the transversal
distributions and various correlations.

3.1 DVCS and GPDs
The various GPDs, which contribute to DVCS, H, E, H̃, Ẽ, may be extracted from exclusive
photon production, ep → epγ, from the interference terms between the DVCS (QCD) and the
Bethe-Heitler amplitude. The interference terms distort the distribution of the azimuthal angle, φ,
and lead to beam-charge, beam-spin, longitudinal target-spin asymmetries. The measurements
reported by the HERMES experiment at this conference clearly demonstrate the presence of
these asymmetries (see talk by R. Fabbri). These data will be invaluable in constraining GPDs,
for which the QCD evolution is known.

An attempt to extract GPDs in NLO and the ensuing three dimensional view of the pro-
ton structure has been presented at this conference (see talk by K. Passek-Kumericki). As x
decreases, the number of partons increases as expected, and the radial coverage in the transverse
plane increases (see Fig. 2). This is an important correlation which will affect the probability of

Fig. 2: Three dimensional extraction of the quark (left) and gluon (right) GPD (H).

multiple interactions in pp collisions as a function of x and the scale of the interaction [22].

3.2 Exclusive diffraction in pp̄
An analogue of the two-gluon exchange reaction in pp̄ (pp) is shown in Fig. 3(left). The same
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Fig. 3: Exclusive dijet (left) or Higgs (right) production in pp̄ interactions.

diagram, as shown in Fig. 3(right,) may lead to exclusive Higgs production, which may yet turn
out to be the cleanest way to measure the Higgs properties at the LHC [23], as massless quark
production in gg → qq̄ is suppressed in leading order QCD by the Jz = 0 selection rule (for a
discussion see contribution by A. De Roeck in this proceedings).

CDF has searched for diffractive exclusive dijets production in their RunII data. A signifi-
cant excess of events in which the invariant mass of the two jets,Mjj saturates the total diffractive
mass measured, MX , is observed over MC expectations for diffractive, inclusive dijet produc-
tion. As shown by K. Goulianos at this conference, the excess, in shape and rate, agrees well
with the expectations of the model by Khoze et al. [23]. Moreover, as expected by the Jz = 0
selection rule, the fraction of dijets containing either charm or beauty decreases for large values
of Mjj/MX .

This is certainly good news for the LHC forward physics program as indeed diffractive
Higgs production may be observed, although the expected rates are not very encouraging. In
the best case scenario of the SM, about 100 events are expected (acceptance included) for an
integrated luminosity of 30 fb−1 (see talk by J. Forshaw). The rates could turn out to be much
larger in some scenarios of the MSSM, where the channel h,H → bb̄ is enhanced.

4 Forward physics at LHC

Both the ATLAS and the CMS experiments have instrumented forward regions to study the
energy flow of particles in the very forward region, and to tag elastic and diffractive scattering
(see contributions by M. Tasevsky, M. Deile, A. Hamilton, A. De Roeck, L. Fano, C. Sbarra) .
The ATLAS forward detectors include LUCID, ALFA and ZDC. The first two, located at ±17 m
and ±220 m from the interaction point (IP), were originally designed for precise luminosity
measurement, while ZDC, located at ±140 m is sensitive to neutral particles emitted at 0◦. In
addition, the LHCf experiment has its calorimeters and trackers located at 140 m from the IP of
ATLAS. As an example, the pseudo-rapidity coverage provided by these detectors is shown in
Fig. 4. The CMS forward detectors include HF, CASTOR, and CMS-ZDC. The HF calorimeters,
for forward jet tagging is located ±11 m from the IP. The CASTOR calorimeters are located
at ±14 m from the IP. As in the case of ATLAS, the ZDC in CMS is located at ±140 m from
the IP. In addition, the TOTEM experiment has its two tracking telescopes (at about ±10 and
±14.5 m from the IP) and its Roman-pot stations (at ±147 and ±220 m from the IP) included in
the read-out of CMS, making the pseudo-rapidity coverage of CMS the largest ever achieved at
colliders.

For precise measurements of the Higgs mass from exclusive diffraction, the detectors lo-
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Fig. 4: The η coverage in the ATLAS experiment.

cated at 220 m from IP will have to be complemented by detectors at 420 m.

The forward coverage may provide a substantial extension of the low x range probed at
large scales, as to be sensitive to the expected saturation (unitarity) effects in QCD. In any event,
measurements of the very forward energy flow, be it in a restricted phase space, will provide
invaluable information for tuning MC programs which model the development of EAS and which
at present may differ by as much as factor two (see talk by A. Hamilton).

5 Underlying event and MPIs

Hard collisions in hadron-hadron interactions are accompanied by the so-called underlying event,
which is the result of fragmentation of hadron remnants after their color coherence is broken by
the hard parton-parton scattering. This part of the underlying event is usually assumed to have
the characteristics typical of soft interactions (cylindrical phase space). In addition, because
parton-parton scattering has an unphysically large cross section for low transverse momenta jets,
multiple hard scatters are expected. The added activity in the event obscures the properties of
hard physics, to be confronted with theory, and it is essential to model the underlying event
properly.

The pp and pp̄ data indicate that the presence of one subcollision enhances the probability
of another one (for a review and discussion see contribution by G. Gustafson in these proceed-
ings) . Moreover the harder the collision, the larger the probability of another collision. Multiple
interactions are also needed to describe jet production in ep collisions at HERA at moderate
Q2, which is interpreted as due to the presence of resolved virtual photons (see presentation by
T. Namsoo). This adds yet another dimension to the multiparton interactions, which may well
depend on the size of interacting objects.

An extensive study of the underlying event has been made by R. Field at the Tevatron (see
for example [24]) and he managed to tune the underlying event model of Sjoestrand and van
Zijl [25] in PYTHIA to essentially describe all the data. However the correlation between the
transverse energy and hadron multiplicity is not properly reproduced. An important ingredient of
the model is the non-uniform distribution of partons inside the proton and the dependence of the
cross section on the impact parameter. The studies of GPDs may help in modeling this aspect of
multiple interactions.

The experiments at the LHC, where the analysis will be complicated by the added presence
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of multiple collisions between two protons, are gearing themselves towards the direct measure-
ment of the properties of the underlying events. For that purpose both the forward and central
detectors will be used with special triggers, in particular for minimum bias events, as discussed
by L. Fano at this conference. It will be very interesting to observe what happens when at the
LHC the high density of gluons will be probed. Surprises may be expected, as diffraction is not
part of the modeling of multiple interactions.

6 Forward physics in heavy ion collisions

The complexity of the physics of forward particle production is exemplified by the results from
RHIC (see talk by D. Roehrich). Forward produced particles, with high transverse momenta,
originate from interactions of low x partons, predominantly from gq and gg interactions as de-
rived from NLO QCD calculations, which provide a reasonable description of the data. There-
fore, sensitivity to effects due to gluon saturation is expected on nuclear targets, where the gluon
density is enhanced by the presence of many nucleons, and in particular in central collisions.The
pattern of particle production and suppression (see Fig. 5) strongly suggest that collisions in-

Fig. 5: Nuclear modification factor RAuAu as a function of transverse momentum pT for different values of pseudo

rapidity η, for central (dots) and peripheral (squares) AuAu collisions.

volving nuclear targets at RHIC probe a novel regime of QCD governed by coherent non-linear
phenomena and gluon saturation - the color glass condensate. These effects are expected to be
amplified in heavy ion collisions at LHC.

7 Total cross section measurements and luminosity at the LHC

The energy dependence of the total pp cross section as well as the t dependence of elastic cross
cross section constitute a reference for the properties of soft interactions at high energy. Both
measurements are notoriously difficult at colliders. At present, the model dependent extrapo-
lation of the total cross section to be expected at the LHC is anywhere between 90 and 130
mb [26].

The LHC community has set a goal to measure both the total cross section and the t
dependence of the elastic cross section to high precision. The TOTEM experiment (see talk by
M. Deile), with the 3.1 < |η| < 6.5 region of phase space instrumented with trackers and Roman
pots, close to the CMS IP, aims at measuring the total pp cross section to a precision of 4% in
the early stages of LHC running, to be improved to a 1% level at a later stage. This will be
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achieved by determining the dσel/dt at t = 0 and by measuring the elastic and inelastic rates.
The detector acceptance for inelastic events is close to 95%, where most of the loss is due to low
mass diffraction. A byproduct of these measurements is luminosity. Dedicated beam conditions
will be needed to achieve these goals.

The results of TOTEM will be used by the ATLAS experiment to calibrate its luminosity
monitor (LUCID) and later will be cross checked when the very forward ALPHA detectors will
be installed (see talk by C. Sbarra).

8 Cosmic rays

Cosmic ray energy spectrum extends far beyond 1017 eV, the LHC energy reach. Cosmic rays
are therefore a unique source of high energy particles and could be important in providing in-
formation on total cross section behavior beyond accelerator energies. The interaction length is
extracted from properties of EAS, such as the shower maximum, and the total number of muons
and electrons at the observation depth, as explained by R. Ulrich in this conference. The trans-
lation of these properties into cross section requires simulations of shower development in air,
which are based on extrapolating our understanding of particle production to very high energies.
These simulations are particularly sensitive to the inelastic cross section and to particle produc-
tion spectra, which as shown in Fig. 6, vary substantially from model to model (see talks by
G. G. Trinchero and A. Tricomi). New constraints on these models are expected from the LHCf
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Fig. 6: Comparison of various shower development models: for inelastic p-air cross sections as a function of energy

(left), for expected γ spectrum (middle) and neutron spectrum (right).

detector whose purpose is to measure the forward spectra of neutral particles, π0 and neutrons,
at the LHC (see talk by A. Tricomi).

9 Conclusions

The area of high energy physics, which encompasses total, elastic and diffractive cross sections,
is far from being understood from first principles, yet it impacts many other aspects of high
energy physics. There is a steady influx of new experimental results to guide the theoretical
concepts. New results are expected at the LHC, though the experimental environment is very
difficult and requires great ingenuity of experimentalists.
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Theoretical summary

Krzysztof Golec-Biernat1,2
1Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
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Abstract
A summary of the theoretical talks given at 12th International Confer-
ence on Elastic and Diffractive Scattering – Forward Physics and QCD
(EDS07) is presented.

1 Forward physics at the LHC

The subtitle of the EDS07 conference is ”Forward physics and QCD” with an obvious relation
to the forward physics program at the LHC. The program is impressive. Albert De Roeck in his
talk [1] gave the following examples (see also [2]):

- soft and hard diffraction
- exclusive production of new mass states
- low-x dynamics
- new forward physics phenomena
- forward physics in heavy ion collisions.

All these topics were covered in the talks at this conference. In my summary, I will mostly
concentrate on their theoretical side, leaving the experimental aspects, which are crucial for the
final success, to the complementary talk by Halina Abramowicz [3]

2 Diffractive Higgs production

I start with a discussion of a particularly interesting processes which allow to search for new
particles at the LHC in a very clean experimental environment [4, 5]. This is central exclusive
production (CEP), pp → p + X + p, where the protons lost only a few percent of their initial
momenta, see Fig. 1. Thus, we deal with diffractive processes with large rapidity gaps between
the central system X and the scattered protons. By measuring them, the mass of X will be
determined as well as its quantum numbers.

Fig. 1: Central exclusive production in pp scattering.
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Fig. 2: The ratio of Higgs signals, R = MSSM/SM , for the decay mode H → bb̄.

The gold-plated CEP is a SM Higgs boson production. For Higgs masses in the range
140 − 200 GeV, it is possible to measure Higgs through its decay to WW bosons with a back-
ground which can be safely eliminated. However, for low Higgs mass, MH < 150 GeV, the
dominant decay mode to bb̄ quarks is more difficult to measure. Mostly because the trigger sig-
nals from protons detected at 420 meters (where forward detectors are placed) cannot reach the
central detector on time to register Higgs decay [1, 5]. Summarising the current estimates, there
will be only a dozen of Higgs events from CEP at the LHC for an integrated luminosity 60 mb−1.
This estimation can be lowered if unitarity corrections to the two gluon exchange are considered,
e.g. in the form of the black disk limit, as discussed in [6].

The situation is more optimistic in the MSSM. There are three neutral Higgs bosons in this
case, the scalars h and H and the pseudoscalar A. In the forward proton mode, the pseudoscalar
boson is filtered out and the heavier scalar bosons can be measured through the decay to bb̄ quarks
with the rate for large tan β of one or two orders of magnitude bigger than for the SM Higgs, see
Fig. 2 [5]. The prospects to detect Higgs in the NMSSM are discussed in detail in [4].

The centrally produced system can also be formed by more exotic particles like supersym-
metric light gluino or squark. In fact, any new object can be detected which has 0++ or 2++

quantum numbers and strongly couples to gluons. The latter aspect is related to the dominant
mechanism of CEP with a fusion of two gluons to produce the central system and the exchange
of an additional gluon which neutralises color. Thus, effectively, the LHC is turned into a gluon–
gluon collider which allows QCD studies of different aspects of gluon densities, as well as the
details of rapidity gap survival [5].

3 Total and elastic cross sections

The precise measurement of the total, σtot, and elastic, dσel/dt, cross sections for pp scattering
at the LHC is very important for various reasons. First, it allows to test different models of soft
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Fig. 3: Predictions for σtot (left) and dσel/dt (right) cross sections from different models.

interactions between nucleons, as well as their large distance structure. QCD, the underlying
theory of strong interactions, cannot say much at about soft interactions and their modelling is
necessary. Secondly, there is also a practical reason. From the elastic and inelastic rates, Nel and
Ninel, the luminosity L can be measured:

L =
1 + ρ2

16π
(Nel +Ninel)2

dNel/dt|t=0

. (1)

Here ρ is the ratio of the real to imaginary parts of the forward elastic scattering amplitude.
The measurement needs extrapolation to t = 0 and assumptions on the value of ρ, see [7] for
details. Current predictions for σtot at the LHC energy 14 TeV stay in a wide range between
85 mb and 130 mb, see Fig. 3 (left) [7]. A broad range of predictions exists also for dσel/dt at
|t| > 0.3 GeV, see Fig. 3 (right) [8]. The LHC measurements should bring order to the ideas
encoded in the above curves.

There were several talks presenting these ideas during the conference. The authors of [9]
analyse the behaviour of the elastic scattering amplitude at small t, assuming a contribution
from the hard pomeron. They link the strong energy growth of this component to the saturation
regime, called the black disk limit, which manifests itself in a non-exponential behaviour of the
scattering amplitude at small t. Whether this can be connected to parton saturation remains an
open question, but the possibility of a new behaviour of the hadronic amplitude has to be taken
into account while extracting σtot from data.

The behaviour of σtot and dσel/dt at the LHC energy is strongly dependent on unitarity
conditions imposed on elastic scattering amplitudes with a simple pomeron singularity. In [10],
models with the unitarized pomeron are fitted to the existing data and after that the predictions
for the LHC are made. The problem of unitarization of the soft or hard pomeron, reflected in the
behaviour of the total and elastic cross sections, is also studied in a multi-component nucleon-
structure model in [8]. The result for dσel/dt in this case is shown as the solid line in Fig. 3.
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4 Diffraction at ep and pp colliders

A wealth of diffractive data from HERA and the Tevatron raises important questions about the
nature of diffractive interactions. In hard diffraction, when a large scale is present, QCD plays
an important role. The hard part of diffractive scattering is described by perturbative QCD but
softer aspects, like the energy dependence, have to resort to modelling.

It has been proven that the diffractive cross sections in DIS can be factorised into process-
dependent coefficient functions, computed in perturbative QCD (pQCD), and diffractive parton
distribution functions (DPDFs) which can be extracted from fits to data. The natural question is
whether the DPDFs are universal objects like inclusive PDFs. It seems to be the case for DIS
processes. However, the DPDFs from HERA overestimate the Tevatron data on the diffractive jet
production in the pp̄ scattering by a factor of ten or so. This effect can be understood on theoret-
ical ground by taking into account soft interactions between spectator partons which spoil large
rapidity gaps between the diffractive system and the scattered protons. It is interesting to know
whether a similar effect occurs for the γp scattering at HERA with low virtuality photons, which
resemble hadrons in the range of phase space where the resolved photon contribution dominates
(xγ � 1). The experimental studies of this problem are reported in [11] with the conclusion
that the H1 measurement gives a global suppression of the diffractive cross section by a factor of
2, while the ZEUS measurement agrees with the calculations based on QCD factorisation. The
difference between these measurements can be partially attributed to the kinematic region of the
ZEUS analysis in which the resolved photon contribution might be suppressed.

The problem of proper theoretical schemes used to determine the DPDFs is discussed
in [12, 13]. In the standard procedure, based on the leading twist–2 formulas, the DPDFs are
fitted to the diffractive data from HERA, using the DGLAP equations to evolve them in Q2.
As emphasised in [12], it is also necessary to consider a higher twist contribution. In DIS, it

THEORETICAL SUMMARY

541



describes diffractive production of a qq̄ pair from longitudinally polarised virtual photons and
dominates for small diffractive masses, M 2 � Q2 (β → 1). The biggest impact of such an
analysis is on the diffractive gluon distribution and longitudinal structure function, see Fig. 4.

The role of the perturbative pomeron in the determination of the DPDFs is discussed in
[13]. One typically assumes Regge factorisation of the DPDFs with a pomeron flux describing
the colorless exchange responsible for the rapidity gap formation. In [13], the direct and resolved
perturbative Pomeron exchange is introduced. The latter exchange leads to an inhomogeneous
term in the DGLAP equations which is very important for the DPDFs determination.

Exclusive diffractive processes at HERA, such as vector meson production or deeply vir-
tual compton scattering (DVCS), were analysed in [14] using a dipole approach. An important
role in this case is played by the dipole scattering amplitude which describes the interaction of
a qq̄ dipole from the virtual photon, which later forms a meson, with the proton. The measured
t-distributions of the vector meson or DVCS cross sections allow to determine the shape of the
proton in the impact parameter space b, through the b-dependence of the dipole scattering ampli-
tude. An impressive agreement with the data is found in this comprehensive analysis, showing
universality of the dipole approach in the description of diffractive processes at HERA.

Various diffractive processes, measured in the pp̄ scattering at the Tevatron by the CDF
collaboration, are reported in [15] with the aim to elucidate the QCD nature of diffractive inter-
actions. Most important from this point of view is the central dijet production which is described
within the same QCD framework as the exclusive Higgs production in Sec. 2. The good news is
that the measured dijet rates support calculations which lead to the predictions for the diffractive
Higgs production.

5 Multiple interactions

There is a growing experimental evidence, reported in [16], that multiple parton interactions will
play a very important role in the interpretation of the LHC results. The necessity to include
multiple interactions into Monte Carlo models of hadronic scattering is discussed in [17]. The
minijet cross section, which describes parton-parton subcollisions, is divergent when parton’s
p⊥ → 0. Introducing a lower cutoff such that the minijet cross section equals the total cross
section, it is found that p⊥min ≈ 2.5 GeV at the Tevatron and 5 GeV at the LHC. These large
values mean that on average there must be several hard subcollisions in one event, which tame
the minijet cross section.

Multiple scattering at high energy can be modelled by multipomeron exchanges. In QCD,
the pomeron is represented by a gluon ladder. Assuming the AGK cutting rules, the multiplicity
in a multiple collision event can be calculated by cutting gluonic ladders. In particular, two cuts
double the multiplicity. However, the analysis of the CDF data shows that two subcollisions do
not give doubled multiplicity. Thus neglected pomeron interactions, given by pomeron loops or
multipomeron vertices, are very important.

A first Monte Carlo realization of such effects, given in a dipole cascade model, is pre-
sented in [17]. In this model, pomeron loops are formed due to a “dipole swing” in color space,
see Fig. 5. The multiple scattering Monte Carlo for hadron-hadron and nucleus-nucleus collisions
is also discussed in [18].
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Fig. 5: Pomeron loop from “dipole swing” in a dipole cascade model.

The validity of the Abramowski-Gribov-Kancheli (AGK) cutting rules in QCD is dis-
cussed in [19]. Multiple parton interactions are necessary in this context for unitarization of
the perturbative QCD (BFKL) pomeron. In this analysis, the multipomeron amplitude is built
from reggeized gluons and two important conditions are fomulated in order for the AGK cutting
rules to be valid in QCD.

6 BFKL pomeron

The vacuum quantum number exchange responsible for diffractive processes, called traditionally
the pomeron, is modelled in pQCD with the help of gluon exchanges projected into a color
singlet state. The Balitsky-Fadin-Lipatov-Kuraev (BFKL) pomeron is found in the Regge limit
after summing an infinite class of virtual corrections to the lowest order exchange with two
gluons. In the leading logarithmic order (LO), these corrections are proportional to the powers
of large logarithm of energy multiplied by the strong coupling constant, (αs log s)n. There are
two related problems with the BFKL pomeron. First, the question of the next-to-leading order
corrections (NLO) proportional to the powers αs(αs log s)n. Secondly, the problem of unitarity
corrections since the BFKL pomeron gives the power like dependence on energy, which violates
the Froissart bound for the total cross sections.

The NLO corrections to the BFKL pomeron equation were computed almost ten years ago
but they are still subjected to intensive studies. The BFKL kernel in the NLO is quite compli-
cated and a simpler form is desirable. This is achieved in [20], where a real part of the kernel is
computed in the transverse coordinate (dipole) representation. The new form, computed for the
scattering of colourless objects, is much simpler than the original one in the transverse momen-
tum space representation.

In the NNLO, the pomeron is no longer described by the equation in the BFKL form since
more than two (reggeized) gluons have to be exchanged. Nevertheless, the NNLO corrections to
the BFKL kernel are estimated in [21] for a better stability of the BFKL based results.

Various phenomenological applications of the NLO BFKL corrections were presented dur-
ing the conference. In [22], the azimuthal angle decorrelation between two jets separated by large
rapidity in hadronic scattering is studied within the NLO framework. The decorrelation between
the scattered electron and a forward jet in DIS is also presented there. The jet production in
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Fig. 6: Central inclusive jet production in the BFKL approach.

the central region of rapidity with two BFKL pomerons and the NLO jet vertex, see Fig. 6, is
analysed in [23]. This problem is discussed in the context of a proper choice of the energy scale
s0 for the dimensional quantity s/s0, which has to be used in the calculations. Finally, the ex-
clusive vector meson electroproduction, calculated with the BFKL corrections in hard scattering
amplitudes, is reported in [24]. These are preliminary studies with the LO BFKL resummation
which are already important for the data analysis.

The central role in the computational scheme (called kT -factorisation) of the presented
analyses play unintegrated parton distributions. A comprehensive discussion of these important
objects, concerning their proper definition in QCD, is presented in [25].

The calculation of unitarity corrections to the BFKL pomeron can be attempted with the
Lipatov effective action, which defines the theory of interaction of reggeized gluons (R) and
particles (P) described by independent fields. An interaction vertex for these fields (the RRRP
vertex) is studied in [26] in connection with the basic calculation done by Bartels.

Some years ago Lipatov showed that the theory of reggeized gluons in the leading loga-
rithmic approximation is integrable in the large Nc limit. It is now believed that this might be
true to all orders for the N = 4 supersymmetric Yang–Mills theory. Important aspects of this
theory, studied with the help of the asymptotic Bethe ansatz, are discussed by Lipatov in [27].
The role of the finite Nc corrections to the theory of reggeized gluons is discussed in [28].

7 Odderon

The odderon is a counterpart of the pomeron with C = −1 parity. In the lowest order QCD
approach, the odderon is the color singlet exchange of three perturbative gluons. In the Regge
limit of QCD, the pomeron is modelled by three interacting reggeized gluons. In this case, the
Bartels-Kwiecinski-Praszalowicz (BKP) equation is obtained, which gives to the odderon energy
dependence.

The odderon exchange is very elusive since it has not been experimentally identified yet.
Thus, it is very important to study processes involving the odderon at the LHC. One of them
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is exclusive hadroproduction of vector mesons with C odd parity, like J/ψ or Υ, is discussed
in [29]. Such a production occurs as a result of the pomeron–odderon (or pomeron–photon)
fusion, see Fig. 7. The predictions for the cross sections from this analysis are at the nb level,
but special care is needed to filter out the pomeron–photon fusion background. Careful studies
of the exclusive J/ψ hadroproduction with absorptive corrections is also performed in [30].

In DIS at HERA, the odderon searches were concentrated on the diffractive photoproduc-
tion of neutral pion, γp → πoN∗, with no positive result. The experimental upper limit for the
corresponding cross section equals 49 nb, while the theoretical estimations, based on the Heidel-
berg model of the QCD vacuum, predicts 300 nb. The experimental suppression of this process is
explained in [31] as a consequence of chiral symmetry since the amplitude for the π0 production,
proportional to the pion mass, vanishes in the chiral limit. A new process with the odderon is
proposed in [31] for peripheral collisions at the LHC: γγ → π0π0 scattering. This process could
also be measured at the future ILC.

A nonperturbative odderon is discussed within the Regge theory in [32]. It seems that the
only experimental evidence for such a odderon is the difference between the elastic cross sections
for pp̄ and pp scattering at ISR in the first dip region. According to [32], the nonperturbative
odderon will manifest itself in oscillations in t of the difference between the pp and pp̄ elastic
cross sections. The LHC does not offer pp̄ beams, thus the best way to look for such an effect is
the combination of RHIC and UA4/2 data.

8 High density QCD

High density (or high energy) QCD arises from a question: what happens with the system of
partons in the nucleon when their density becomes so large that they start to interact [33]. It is
believed that parton densities saturate in such a case and the power-like growth with energy of
the DIS cross sections, violating the Froissart bound, is tamed by nonlinear evolution equations.

The dipole picture of DIS at small x (large energy) is particularly useful in the discussion
of saturation. It considerably simplifies the understanding of unitarity conditions which have to
be imposed and provides interesting links to statistical physics [34]. In this picture, a qq̄ pair
from the virtual photon is viewed as a color dipole of a transverse size r, which scatters off the
proton. The limitations on the validity of this picture are presented in [35].

The basic quantity to discuss is the dipole scattering amplitude, T , which obeys the non-
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linear Balitsky-Kovchegov (BK) evolution equation in rapidity Y , shown in the pictorial form
in Fig. 8 [36]. The nonlinearity sits in the last term to the right which involves the amplitude
squared. The main property of the asymptotic solutions to the BK equation is geometric scaling,
when T becomes a function of only one variable, rQs, with the energy dependent saturation mo-
mentum Qs. This behaviour implies a similar scaling for the DIS cross section σγ

∗p
tot , observed

in the HERA data. It is very important that the local unitarity condition, T ≤ 1, is satisfied for
fixed impact parameter of the dipole. However, the Froissart bound is still violated because of
the long range perturbative gluons.

The BK equation was derived in the so-called mean field approximation in which im-
portant effects were neglected. The most important ones are: confinement (which is beyond
the reach of pQCD) and fluctuations in the number of dipoles in the proton target, computed
on the event-by-event basis. Despite the fact that these fluctuations are important in the low
density regime, they lead to observable effects in the saturation region. In particular, geomet-
ric scaling is replaced by diffusive scaling, when the averaged scattering amplitude becomes a
function of ln(rQs)/

√
Y [34, 36]. It has not been fully understood yet how saturation occurs

beyond the mean field approximation in the high density region. It is proposed in [34] that the
corresponding QCD evolution equation should belong to the universality class of the stochas-
tic Fisher-Kolmogorov-Petrovski-Piscounov (sFKKP) equation, known from statistical physics.
Unfortunately, nobody has proven this rigorously.

In [37], parton saturation in perturbative QCD is discussed from a general perspective in
which hadron or nucleus scattering can be accommodated. Depending on the relation between
two colliding objects, called the projectile and the target, different pictures of the unitarity limit
are achieved through the BK, JIMWLK or KLWMIJ equations. The most challenging is the sit-
uation when two large high density objects scatter, e.g. in the nucleus-nucleus collisions. In this
case, both the nonlinear evolution of partons and subsequent multiple scattering are important.
The theory of such collisions is not fully developed, nevertheless, promissing attempts exist.

The properties of dense quark-gluon systems are also studied in [38], using the Gribov
approach to the description of DIS. In this approach, an overlap of small x partons in longitudinal
momentum space leads to saturation, e.g. in the form of fusion of two chains of partons which
give large mass diffractive production. This size of this effect is estimated in [38] from the HERA
data and after that predictions for nuclear collisions are made.

Experimental aspects of parton saturation in hadron and nucleus scattering were inten-
sively discussed during the conference. They concern the gluon density saturation in nucleus
[39], hot spots in the proton [40] and the search for color glass condensate at RHIC [41]. A
comprehensive review of RHIC physics is also presented in [42].
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The transition to saturation is a source of inspirations for more exotic analyses. Based on
some numerical coincidence and following the idea of duality between gauge theory and gravity,
it is proposed in [43] that this phenomenon can be linked to the critical behaviour in the black
hole formation.

9 Exclusive reactions with photons

I finish my summary describing talks which are not directly related to the forward physics pro-
gram of the LHC, but are equally important for the QCD based understanding of high energy
scattering processes.

Various amplitudes involving QCD partonic operators can be studied in exclusive pro-
cesses with virtual or quasi-real photons. In the collinear factorisation approach with two quark
operators, these are: generalised parton distributions (GPD), distribution amplitudes (DA), gen-
eralised distribution amplitudes (GDA) and transition distribution amplitudes (TDA). They are
all nonperturbative objects which undergo pQCD evolution in the DGLAP or BFKL form. Thus,
the BFKL pomeron can be studied in the high energy γ∗γ∗ → ρ0

Lρ
0
L scattering at the future

ILC [44]. For moderate energies, however, the standard GDA is relevant for this process, see
Fig. 9.

In ep scattering at HERA, the generalised parton distributions are determined through
vector meson electroduction [45] or DVCS [46]. The theoretical analysis of these processes has
reached the state of maturity in which the NLO evolution equations are applied. In addition, the
transverse structure of the proton is being determined through the t-dependence of the GPDs [46].
The transition between the soft and hard t domains in DVCS can be analysed with the Regge
model proposed in [47].

Different approaches to exclusive electroproduction from those based on the collinear fac-
torisation of hard scattering amplitudes were also presented. They emphasise nonperturbative
aspects of these processes like the QCD vacuum [48] or the meson cloud of the proton [49].

10 Conclusions

Diffractive physics is very challenging since its experimental and theoretical aspects are pushed
into their boundaries. On the theory side, QCD is studied in most difficult limits touching con-
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finement or the transition between soft and hard regimes. The experience accumulated up till
now, combined with the excitement of a younger generation of physicists working in this area,
guarantees success in the years to come. At the dawn of the LHC era, the EDS07 conference has
shown that diffractive physics is in a good shape.
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